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Abstract Here, we discuss the near-optimality for a class of stochastic impulse control problems. The state

process in our problem is given by forward-backward stochastic differential equations (FBSDEs) with two control

components involved: the regular and impulse control. More specially, the impulse control is defined on a

sequence of prescribed stopping times. A recursive cost functional is introduced and the maximum principle

for its near-optimality (both necessary and sufficient conditions) is derived with the help of Ekeland’s principle

and variational analysis. For illustration, one concrete example is studied with our maximum principle and the

corresponding near-optimal control is characterized.
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1 Introduction

The problems of stochastic impulse control have been extensively studied in the last few decades. Their

applications can be found in various fields including engineering, operational research, mathematical

finance and economics, etc. A typical example can be addressed when we study the portfolio selection with

transaction costs (e.g., [1]): the regular control component is introduced to characterize the consumption

process while the impulse control is to characterize the transaction costs which may occur at given

stopping times. In addition, there also exist considerable decision-making and management problems

which can be framed into a dynamic game between a sequence of short-time impulses and a long-run

patient variable (see [2,3]). Consequently, the stochastic impulse control problems arise naturally in this

framework.

It is remarkable that in many cases, stochastic impulse control problems are discussed with the em-

ployment of the dynamic programming principle (DPP). Based on it, the value function is shown to

satisfy some HJB quasi-variational inequalities. On the other hand, an alternative method is to study

the associated maximum principle by which the necessary condition satisfied by the optimality can be

figured out with the (convex or spike) perturbation. Concerning this research line, some relevant liter-

ature includes [4] for forward stochastic singular control, [5–7] for forward-backward stochastic impulse

control.
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Unlike the above mentioned work, this paper aims to study the “near-optimality” of stochastic impulse

control for FBSDE system. To our best knowledge, this problem has never been touched although it

deserves some research attention due to the following motivations.

The first motivation is as follows. In general, the existence of “exact” optimal control for given

stochastic control problem cannot always be guaranteed under rather mild conditions. Furthermore,

even it exists, the characterization of exact-optimality is not feasible to get in considerable situations.

For example, when the datum of our control problem has no sufficient regularity (for instance, the

coefficients in state dynamics or cost functional are not smooth enough), an approximation procedure

should be applied and the near optimality should thus be addressed. Actually, for a given control problem,

its near-optimality always exists which usually meets our practical requirements. In this sense, the near-

optimal controls are more available and feasible than exact optimal ones. Some related literature which

is more close to our current work is briefly stated below: in [8], the necessary and sufficient conditions for

forward stochastic differential system are systematically discussed with the idea of Ekeland’s variational

principle. Based on it, Ref. [9] studies the near-optimal control where the state is driven by a linear

forward-backward stochastic differential equation, while in [10], the near-optimal control for general

nonlinear forward-backward state system is investigated. Recently, a critical case to stochastic system

is studied in [11] which provides an interesting insightful viewpoint to revisit the near-optimal control

problem.

The second motivation follows from the special structure of our stochastic impulse control problem

for FBSDE system. Roughly speaking, there exist two control variables (regular and impulse) and two

state components (forward and backward state) in our control problem. This structure feature makes

our datum set (e.g., coefficients or stopping times) of control problem more liable to be irregular hence

it is more reasonable to investigate the corresponding near-optimality. For example, the impulse control

problem for forward-backward system arises when the decision making policies involve the pre-scripted

random time horizons and the utility functional is of stochastic recursive type.

As the response to above motivations, in this paper we consider the maximum principle of near-optimal

control for stochastic recursive systems involving impulse controls. We aim to derive the necessary and

sufficient conditions of this kind of control problems. The rest of this paper is structured as follows.

Section 2 presents the formulation of our problem. In Section 3, the necessary condition to near-optimality

is derived while Section 4 gives its sufficient condition. For illustration, one example is introduced and

studied in Section 5 based on our theoretical results.

2 Preliminaries and problem formulation

Let [0, T ] be a finite time horizon. (Ω,F ,P) is a complete probability space on which {Bt, 0 � t � T } is

d-dimensional Brownian motion. Let {Ft}0�t�T be the natural filtration generated by {Bt} augmented

by P-null sets. Throughout this paper, we make use of the following notations:

L2
F(0, T ;R

n) : the set of all Rn-valued, Ft-adapted and square-integrable processes;

φx : the partial derivative of φ with respect to x;

| · | : the norm of an Euclidean space;

M τ : the transpose of a given matrix or vector M ;

XS : the indicator function of a set S;
X + Y : the set {x+ y : x ∈ X, y ∈ Y } for any X and Y .

Let {τi} be a given sequence of increasing Ft-stopping times such that τi ↑ +∞. We denote by I the

class of processes η(·) = ∑
i�1 ηiX[τi,T ](·), where ηi ∈ K is an Fτi-measurable bounded random variable,

K is a nonempty convex subset of R. It is worth noting that, the assumption τi ↑ +∞ implies there exist

at most finite impulses occurring on [0, T ]. Let U ⊆ R
k be a nonempty convex closed set and denote by

U the class of processes v : [0, T ]×Ω→U such that vt is an Ft-adapted process and E
∫ T

0
|vt|4dt < +∞.

Let K be the class of impulse processes η ∈ I such that E
∑

i�1 |ηi|4 < ∞. We call A �
= U × K the

admissible control set.
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Now we consider the following stochastic recursive control system:

⎧
⎪⎪⎨

⎪⎪⎩

dXt = b(t,Xt, vt)dt+ σ(t,Xt, vt)dBt + Ctdηt,

−dYt = f(t,Xt, Yt, Zt, vt)dt− ZtdBt +Dtdηt,

X0 = x0, YT = g(XT ), t ∈ [0, T ],

(1)

where b : [0, T ]× R
n × U → R

n, σ : [0, T ]× R
n × U → R

n×d, f : [0, T ]× R
n × R

m × R
m×d × U → R

m

are measurable mappings, and C : [0, T ]→R
n×n, D : [0, T ]→R

m×n are continuous functions. The cost

functional to be minimized is given by

J (v, η) = E

{

φ(XT ) + γ(Y0) +

∫ T

0

h(t,Xt, Yt, Zt, vt)dt+
∑

i�1

l(τi, ηi)

}

, (2)

where φ : Rn →R, γ : Rm →R, h : [0, T ]×R
n×R

m×R
m×d×U →R and l : [0, T ]×R

n→R are measurable

mappings.

Next we want to illustrate the motivation and practical meaning of the above cost functionals. In short

selling models, endowed with a positive initial wealth x0, a small investor tries to maximize an expected

functional which includes three parts. The first part is the utility from the reward E[− 1
2 (XT − a)2], the

second part is a recursive utility functional (which is introduced by a backward SDE) with a generator

f(t, x, y, z), and the third part is the utility derived from the piecewise consumption process η(·). More

precisely, for any admissible control pair (v(·), η(·)), the utility functional can be defined by

J(v, η) = E

{

− 1

2
(Xv,η

T − a)2 + yv,η(0)− 1

2
S
∑

i�1

η2i

}

.

In what follows we assume Assumption 2.1.

Assumption 2.1. (H1) For any 0 � t � T , b, σ, f , g, φ, γ, h are continuous and they are continuous

differentiable w.r.t. (x, y, z, v). l is continuous, and it is continuous differentiable in η. Moreover, there

exists a constant C > 0 such that

|b(t, x, v)|+ |σ(t, x, v)| + |f(t, x, y, z, v)|+ |g(x)| � C(1 + |x|+ |y|+ |z|);

(H2) The derivatives of b, σ, f , g are uniformly bounded;

(H3) For any (t, x, y, z) ∈ [0, T ]× R
n × R

m × R
m×d, the partial derivatives of φx, γy, hx, hy, hz are

continuous and there exists a constant C such that

(1 + |x|)−1|φx(x)| + (1 + |y|)−1|γy(y)| � C;

|hx(t, x, y, z, v)|+ |hy(t, x, y, z, v)|+ |hz(t, x, y, z, v)| � C(1 + |x|+ |y|+ |z|);
|lη(t, η)| � C(1 + |η|), ∀ η.

The control problem under consideration is to find an admissible control which minimizes or nearly

minimizes the cost functional J (v, η) over all admissible controls
(
v(·), η(·) =

∑
i�1 ηiX[τi,T ](·)

) ∈ A.

The value function of our problem is thus defined as

V (0;x0)
�
= inf

(v,η)∈A
J (v, η). (3)

The utility maximization problems with piecewise consumption processes can be regarded as an above

stochastic optimal control problem with impulse control.

From the Propositions 2.1 and 2.2 in [5, 6], it follows that the forward-backward SDEs (1) admit a

unique solution (X(·), Y (·), Z(·)) ∈ L2
F (0, T ;R

n)×L2
F(0, T ;R

m)×L2
F(0, T ;R

m×d). For any (v, η) ∈ U×K,

the cost functional J in (2) is well defined.

Now we present the following two definitions, which are similar to those of [8].
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Definition 2.2 (Optimal control). An admissible control
(
u(·), ξ(·) = ∑

i�1 ξiX[τi,T ](·)
) ∈ A is called

the optimal, if
(
u(·), ξ(·)) attains the minimum of J (0, x0; v, η).

Definition 2.3 (Near-optimal control). Both a family of admissible controls
{(

uε(·), ξε(·))} parame-

terized by ε > 0, and any element
(
uε(·), ξε(·)) in the family is called the near-optimal if

|J (0, x0;u
ε(·), ξε(·)) − V (0, x0)| � δ(ε)

holds for sufficiently small ε, where δ is a function of ε satisfying δ(ε)→ 0 as ε→ 0. The estimate δ(ε) is

called an error bound. If δ(ε) = cεβ for some β > 0 independent of the constant c, then
(
uε(·), ξε(·)) is

called the near-optimal with order eβ.

Lemma 2.4 (Ekeland’s principle [12]). Let (S, d) be a complete metric space and F (·) : S→R be

lower-semicontinuous and bounded from below. Suppose that vε ∈ S satisfies

F (vε) � inf
v∈S

F (v) + ε.

Then there exists vλ ∈ S such that for any λ > 0,

(1) F (vλ) � F (vε),

(2) d(vε, vλ) � λ,

(3) F (vλ) � F (v) + ε
λd(v, v

λ) for all v ∈ S.

3 Necessary condition for near-optimality

3.1 Some prior estimates

This subsection gives some prior estimates which play an important role in deriving our maximum prin-

ciple. For any (v(·), η(·)) and (v′(·), η′(·)), let us introduce a metric on the admissible control set A as

follows:

d
((
v, η

)
,
(
v′, η′

)) �
=

(

E

∫ T

0

|v(t)− v′(t)|2dt+ E

∑

τi�T

|ηi − η′i|2
) 1

2

. (4)

Lemma 3.1. Under Assumption 2.1, for any given
(
v(·), η(·) =

∑
i�1 ηiX[τi,T ](·)

) ∈ A, ∀ p � 2, and

E[
∑

i�1 |ηi|p] � ∞, Eq. (1) admits one unique solution (Xt, Yt, Zt) ∈ Lp
F (0, T ;R

n) × Lp
F(0, T ;R

m) ×
Lp
F (0, T ;R

m×d). Moreover, it holds that

E sup0�t�T |Xt|p � C, sup0�t�T E|Yt|p � C, E sup0�t�T |Yt|p � C, E
∫ T

0 |Zt|pdt � C, (5)

where C is a constant.

Proof. Similar proof with Propositions 2.1 and 2.2 in [5, 6].

To solve the problem (NOC), we introduce the following FBSDE (adjoint equation):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dPt = [f τ
y (t,Xt, Yt, Zt, vt)Pt − hτ

y(t,Xt, Yt, Zt, vt)]dt

+[f τ
z (t,Xt, Yt, Zt, vt)Pt − hτ

z(t,Xt, Yt, Zt, vt)]dBt,

−dQt = [−fx(t,Xt, Yt, Zt, vt)Pt + bτx(t,Xt, vt)Q(t) + στ
x(t,Xt, vt)Kt

+hx(t,Xt, Yt, Zt, vt)]dt−KtdBt,

P0 = −γy(Y0), QT = −gx(XT )PT + φx(XT ), t ∈ [0, T ],

(6)

where v(·) is the admissible control and (Xt, Yt, Zt, vt) is the corresponding trajectory. Define the following

Hamiltonian function:

H(t, x, y, z, v, p, q, k) = 〈b(t, x, v), q〉 − 〈f(t, x, y, z, v), p〉+ 〈σ(t, x, v), k〉 + h(t, x, y, z, v), (7)
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with H : [0, T ]× R
n × R

m × R
m×d × U × R

m × R
n × R

n×d →R. Then Eq. (6) can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

dPt = −Hy(t,Xt, Yt, Zt, vt, Pt, Qt,Kt)dt+Hz(t,Xt, Yt, Zt, vt, Pt, Qt,Kt)dBt,

−dQt = Hx(t,Xt, Yt, Zt, vt, Pt, Qt,Kt)dt−KtdBt,

P0 = −γy(Y0), QT = −gx(XT )PT + φx(XT ), t ∈ [0, T ].

Under Assumption 2.1, Eq. (6) admits a unique solution (Pt, Qt,Kt) ∈ L2
F (0, T ;R

m)×L2
F (0, T ;R

n)×
L2
F (0, T ;R

n×d).

Lemma 3.2. Let Assumption 2.1 hold true, for p � 2, and E[
∑

i�1 |ηi|p] � ∞, then there exists a

constant C > 0 such that

E sup
0�t�T

|Pt|p � C, sup
0�t�T

E|Qt|p � C, E sup
0�t�T

|Qt|p � C, E

∫ T

0

|Kt|pdt � C. (8)

Proof. Similar to Lemma 3.1, and Propositions 2.1 and 2.2 in [5, 6].

The following lemma is concerned with the continuity of state process under metric d.

Lemma 3.3. Let Assumption 2.1 hold true, then there exists a constant C such that for any (v(·), η(·))
and (v′(·), η′(·)) along with the corresponding state processes (X,Y, Z), (X ′, Y ′, Z ′),

E sup
0�t�T

|Xt −X ′
t|2 � Cd2

((
v, η

)
,
(
v′, η′

))
; (9)

sup
0�t�T

E|Yt − Y ′
t |2 + E

∫ T

0

|Zt − Z ′
t|2dt � Cd2

((
v, η

)
,
(
v′, η′

))
. (10)

Proof. After direct computation, we have

E sup0�t�T |Xt −X ′
t|2 � C

{

E

∫ T

0

[|Xt −X ′
t|2 + |vt − v′t|2

]
dt+ E

∑

τi�T

|ηi − η′i|2
}

� C

[ ∫ T

0

E sup
0�t�r

|Xt −X ′
t|2dr + d2

((
v, η

)
,
(
v′, η′

))
]

.

Hence Eq. (9) follows from the Gronwall’s inequality. We now proceed to prove the second estimate. Set

Y t := Yt − Y ′
t , Zt := Zt − Z ′

t, Θt := (Xt, Yt, Zt) and Θ′
t := (X ′

t, Y
′
t , Z

′
t). Taking square in both sides of

Y t +

∫ T

t

ZsdBs = g(XT )− g(X ′
T ) +

∫ T

t

[
f(s,Θs, vs)− f(s,Θ′

s, v
′
s)
]
ds+

∑

t�τi�T

Cτi(ηi − η′i),

and using the fact that E[Y
τ

t

∫ T

t ZsdBs] = 0, we have

E|Y t|2 + E

∫ T

t

|Zs|2ds � C1E|g(XT )− g(X ′
T )|2 + C1E

{∫ T

t

|f(s,Θs, vs)− f(s,Θ′
s, v

′
s)|ds

}2

+ C1E

{ ∑

t�τi�T

Cτi(ηi − η′i)
}2

� C2E|XT −X ′
T |2 + C2E

{∫ T

t

[|Xs −X ′
s|+ |Ys − Y ′

s |+ |Zs − Z ′
s|

+ |vs − v′s|]ds
}2

+ C2E

∑

t�τi�T

|ηi − η′i|2

� C3E|XT −X ′
T |2 + C3TE

∫ T

t

[|Xs −X ′
s|2 + |Ys − Y ′

s |2 + |vs − v′s|2]ds

+ C3(T − t)E

∫ T

t

|Zs − Z ′
s|2ds+ C3E

∑

t�τi�T

|ηi − η′i|2.



Huang J H, et al. Sci China Inf Sci November 2016 Vol. 59 112206:6

For t ∈ [T − δ, T ] where δ = 1
2C3

, using the first estimate of (9), we obtain

E|Y t|2 + 1
2E

∫ T

t

|Zs|2ds � C4E

∫ T

t

|Y s|2ds+ C4d
2
((
v, η

)
,
(
v′, η′

))
.

By Gronwall’s inequality, we obtain

E|Y t|2 + E

∫ T

t

|Zs|2ds � C5d
2
((
v, η

)
,
(
v′, η′

))
, t ∈ [T − δ, T ].

Similarly we can get

E|Y t|2 + E

∫ T−δ

t

|Zs|2ds � C5d
2
((
v, η

)
,
(
v′, η′

))
, t ∈ [T − 2δ, T − δ].

After finite iterations, we get (10).

The following lemma gives the continuous-dependence of the solutions to adjoint equations. It plays

an important role in proving the necessary condition. Before giving the lemma, we need to introduce the

following assumptions.

Assumption 3.4. For any t ∈ [0, T ], (x, y, z, v) and (x′, y′, z′, v′) ∈ R
n ×R

m ×R
m×d ×U , there exists

a constant C > 0 such that

|hx(x)− hx(x
′)| � C|x− x′|; |γy(y)− γy(y

′)| � C|y − y′|;
|bα(t, x, v)− bα(t, x

′, v′)|+ |σα(t, x, v) − σα(t, x
′, v′)| � C(|x− x′|+ |v − v′|);

|fβ(t, x, y, z, v)− fβ(t, x
′, y′, z′, v′)|+ |lβ(t, x, y, z, v)− lβ(t, x

′, y′, z′, v′)|
� C(|x − x′|+ |y − y′|+ |z − z′|+ |v − v′|),

where α = x, v and β = x, y, z, v.

Lemma 3.5. Let Assumptions 2.1 and 3.4 hold, then there exists a constant C, such that for any

(v(·), η(·)) and (v′(·), η′(·)) along with the corresponding adjoint processes (P (·), Q(·),K(·)), (P ′(·), Q′(·),
K ′(·)), we have

E sup
0�t�T

|Pt − P ′
t |2 � Cd2

((
v, η

)
,
(
v′, η′

))
; (11)

sup
0�t�T

E|Qt −Q′
t|2 + E

∫ T

0

|Kt −K ′
t|2dt � Cd2

((
v, η

)
,
(
v′, η′

))
. (12)

3.2 Necessary condition

Now we can state the necessary condition for the near-optimality for problem NOC. To simplify notations,

throughout the paper we denote Θt := (Xt, Yt, Zt), Θ
ε
t := (Xε

t , Y
ε
t , Z

ε
t ), Θ̃t := (X̃t, Ỹt, Z̃t), and Θ̃ε

t :=

(X̃ε
t , Ỹ

ε
t , Z̃

ε
t ).

Theorem 3.6. If Assumptions 2.1 and 3.4 hold true, then there exists a constant C such that for any

ε > 0 and near-optimal pair (Xε(·), Y ε(·), Zε(·), vε(·), ηε(·)), we have

E

∫ T

0

Hv

(
t,Θε

t , v
ε
t , P

ε
t , Q

ε
t ,K

ε
t

)
(vt − vεt )dt � −Cε

1
3 ,

E

∑

i�1

(
lη(τi, η

ε
i ) + CτiQ

ε(τi)−DτiP
ε(τi)

)
(ηi − ηεi ) � −Cε

1
3 , (13)

for any (vt, ηt) ∈ U × K.

Proof. To ease the symbol burden, let us first introduce some notations. By virtue of Assumption 2.1,

J (0, x0; v, η) is lower-semicontinuous under metric (4). Combining Ekeland’s principle from Lemma 2.4

with λ = ε
2
3 , there exists (X̃ε(·), ṽε(·), η̃ε(·)) such that

d
((
vε(·), ηε(·)), (ṽε(·), η̃ε(·))) � ε

2
3 , (14)
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and

J̃ (ṽε(·), η̃ε(·)) � J̃ (v(·), η(·)) for all (v(·), η(·)) ∈ A, (15)

where the cost functional

J̃ (v(·), η(·)) � J (v(·), η(·)) + ε
1
3 d

((
v(·), η(·)), (ṽε(·), η̃ε(·))). (16)

This implies that (X̃ε(·), ṽε(·), η̃ε(·)) is optimal for control system (1) with the new cost functional

(16). For any ρ > 0, define the perturbed control variation

vε,ρ(t) = ṽε(t) + ρ(v(t) − ṽε(t)), ∀ v ∈ U , (17)

ηε,ρ(t) = η̃ε(t) + ρ(η(t)− η̃ε(t)), ∀ η ∈ K. (18)

We can get the following fact:

(1) J̃ (ṽε, η̃ε) � J̃ (vε,ρ, ηε,ρ),

(2) d
((
vε,ρ, ηε,ρ

)
,
(
ṽε, η̃ε

))
� Cρ, and

J (vε,ρ, ηε,ρ)− J (ṽε, η̃ε) = J̃ (vε,ρ, ηε,ρ)− ε
1
3 d

((
vε,ρ, ηε,ρ

)
,
(
ṽε, η̃ε

))− J̃ (ṽε, η̃ε)

� −ε
1
3 d

((
vε,ρ, ηε,ρ

)
,
(
ṽε, η̃ε

))
� −Cε

1
3 ρ. (19)

Dividing both sides of the above inequality by ρ and sending it to zero, we have

lim
ρ→ 0

ρ−1(J (vε,ρ, ηε,ρ)− J (ṽε, η̃ε)) � −Cε
1
3 . (20)

Following similar arguments with [5, 13], the left hand side of the above inequality leads to

E

∫ T

0

Hv

(
t, Θ̃ε

t , ṽ
ε
t , P̃

ε
t , Q̃

ε
t , K̃

ε
t

)
(vt − ṽεt )dt � −C1ε

1
3 ,

E

∑

i�1

(
lη(τi, η̃

ε
i ) + CτiQ̃

ε(τi)−DτiP̃
ε(τi)

)
(ηi − η̃εi ) � −C1ε

1
3 . (21)

Now to prove the desired results (13), we need to estimate

E

∫ T

0

Hv

(
t, Θ̃ε

t , ṽ
ε
t , P̃

ε
t , Q̃

ε
t , K̃

ε
t

)
(vt − ṽεt )dt− E

∫ T

0

Hv

(
t,Θε

t , v
ε
t , P

ε
t , Q

ε
t ,K

ε
t

)
(vt − vεt )dt,

E

∑

i�1

(
lη(τi, η̃

ε
i ) + CτiQ̃

ε(τi)−DτiP̃
ε(τi)

)
(ηi − η̃εi )

− E

∑

i�1

(
lη(τi, η

ε
i ) + CτiQ

ε(τi)−DτiP
ε(τi)

)
(ηi − ηεi ). (22)

For sake of simplicity, we set

I1(t) := Hv

(
t, Θ̃ε

t , ṽ
ε
t , P̃

ε
t , Q̃

ε
t , K̃

ε
t

)
ṽεt −Hv

(
t,Θε

t , v
ε
t , P

ε
t , Q

ε
t ,K

ε
t

)
vεt ;

I2(t) := Hv

(
t, Θ̃ε

t , ṽ
ε
t , P̃

ε
t , Q̃

ε
t , K̃

ε
t

)
v −Hv

(
t,Θε

t , v
ε
t , P

ε
t , Q

ε
t ,K

ε
t

)
v;

I3(t) :=
(
lη(τi, η̃

ε
i ) + CτiQ̃

ε
τi −DτiP̃

ε
τi

)
η̃εi −

(
lη(τi, η

ε
i ) + CτiQ

ε
τi −DτiP

ε
τi

)
ηεi ;

I4(t) :=
(
lη(τi, η̃

ε
i ) + CτiQ̃

ε
τi −DτiP̃

ε
τi

)
η̃i −

(
lη(τi, η

ε
i ) + CτiQ

ε
τi −DτiP

ε
τi

)
ηi. (23)

Then we have

E

∫ T

0

Hv

(
t, Θ̃ε

t , ṽ
ε
t , P̃

ε
t , Q̃

ε
t , K̃

ε
t

)
(vt − ṽεt )dt− E

∫ T

0

Hv

(
t,Θε

t , v
ε
t , P

ε
t , Q

ε
t ,K

ε
t

)
(vt − vεt )dt

= E

∫ T

0

(
I2(t)− I1(t)

)
dt, (24)
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and

E

∑

i�1

(
lη(τi, η̃

ε
i ) + CτiQ̃

ε
τi −DτiP̃

ε
τi

)
(ηi − η̃εi )− E

∑

i�1

(
lη(τi, η

ε
i ) + CτiQ

ε
τi −DτiP

ε
τi

)
(ηi − ηεi )

= E

∑

i�1

(
I4(t)− I3(t)

)
dt. (25)

Using Schwarz’s inequality and the boundness of Hv, we have

E

∫ T

0

|I1(t)|dt � E

∫ T

0

|Hv

(
t, Θ̃ε

t , ṽ
ε
t , P̃

ε
t , Q̃

ε
t , K̃

ε
t

)−Hv

(
t,Θε

t , v
ε
t , P

ε
t , Q

ε
t ,K

ε
t

)||ṽεt |dt

+ E

∫ T

0

|Hv

(
t,Θε

t , v
ε
t , P

ε
t , Q

ε
t ,K

ε
t

)||vεt − ṽεt |dt

� C2

(

E

∫ T

0

|vεt − ṽεt |2dt
) 1

2

+ C2E

∫ T

0

|〈bv(t, X̃ε
t , ṽ

ε
t ), Q̃

ε
t 〉 − 〈bv(t,Xε

t , v
ε
t ), Q

ε
t 〉||ṽεt |dt

+ C2E

∫ T

0

|〈σv(t, X̃
ε
t , ṽ

ε
t ), K̃

ε
t 〉 − 〈σv(t,X

ε
t , v

ε
t ),K

ε
t 〉||ṽεt |dt

+ C2E

∫ T

0

|〈fv(t, Θ̃ε
t , ṽ

ε
t ), K̃

ε
t 〉 − 〈fv(t,Θε

t , v
ε
t ),K

ε
t 〉||ṽεt |dt

+ C2E

∫ T

0

|hv(t, Θ̃
ε
t , ṽ

ε
t )− hv(t,Θ

ε
t , v

ε
t )||ṽεt |dt

= C2

(

E

∫ T

0

|vεt − ṽεt |2dt
) 1

2

+ C2

(

J1 + J2 + J3 + J4

)

. (26)

Firstly, for J1, by the boundness of bv, the fourth integral of v(t), and Lemma 3.2, we have

J1 � E

∫ T

0

|〈bv(t, X̃ε
t , ṽ

ε
t )− bv(t,X

ε
t , v

ε
t ), Q̃

ε
t 〉||ṽεt |dt+ E

∫ T

0

|〈bv(t,Xε
t , v

ε
t ), Q̃

ε
t −Qε

t 〉||ṽεt |dt

� C3E

∫ T

0

(

|X̃ε
t −Xε

t |+ |ṽεt − vεt ||Q̃ε
t ||ṽεt |

)

dt+ C3

(

E

∫ T

0

|Q̃ε
t −Qε

t |2dt
) 1

2

� C̃4

(

E

∫ T

0

|X̃ε
t −Xε

t |2dt
) 1

2
(

E

∫ T

0

|Q̃ε
t ṽ

ε
t |2dt

) 1
2

+ C̃4

(

E

∫ T

0

|ṽεt − vεt |2dt
) 1

2
(

E

∫ T

0

|Q̃ε
t ṽ

ε
t |2dt

) 1
2

+ C̃4

(

E

∫ T

0

|Q̃ε
t −Qε

t |2dt
) 1

2

� Ĉ4

(

E

∫ T

0

|X̃ε
t −Xε

t |2dt
) 1

2
(

E sup
0�t�T

|Q̃ε
t |4dt

) 1
4
(

E

∫ T

0

|ṽεt |4dt
) 1

4

+ Ĉ4

(

E

∫ T

0

|ṽεt − vεt |2dt
) 1

2
(

E sup
0�t�T

|Q̃ε
t |4dt

) 1
4
(

E

∫ T

0

|ṽεt |4dt
) 1

4

+ Ĉ4

(

E

∫ T

0

|Q̃ε
t −Qε

t |2dt
) 1

2

� C4

(

E

∫ T

0

|X̃ε
t −Xε

t |2dt
) 1

2

+ C4

(

E

∫ T

0

|ṽεt − vεt |2dt
) 1

2

+ C4

(

E

∫ T

0

|Q̃ε
t −Qε

t |2dt
) 1

2

� C5d
((
vt, ηt

)
,
(
ṽεt , η̃

ε
t

))

� C5ε
2
3 . (27)

Using similar arguments for J1, J2, J3, J4, we can prove that

E

∫ T

0

|I1(t)|dt � C6ε
2
3 . (28)

About I2(t), I3(t) and I4(t), using the similar method with I1(t), we can conclude that

E

∫ T

0

(|I1(t)|+ |I2(t)|
)
dt � C7ε

2
3 , (29)
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E

∑

i�1

(|I3(t)|+ |I4(t)|
)
� C7ε

2
3 . (30)

Then we have

E

∫ T

0

Hv

(
t, Θ̃ε

t , ṽ
ε
t , P̃

ε
t , Q̃

ε
t , K̃

ε
t

)
(vt − ṽεt )dt− E

∫ T

0

Hv

(
t,Θε

t , v
ε
t , P

ε
t , Q

ε
t ,K

ε
t

)
(vt − vεt )dt � C7ε

2
3 , (31)

and

E

∑

i�1

(
lη(τi, η̃

ε
i ) + CτiQ̃

ε
τi −DτiP̃

ε
τi

)
(ηi − η̃εi )− E

∑

i�1

(
lη(τi, η

ε
i ) + CτiQ

ε
τi −DτiP

ε
τi

)
(ηi − ηεi ) � C7ε

2
3 .

(32)

Finally, combining (21), (31), and (32), we can obtain

E

∫ T

0

Hv

(
t,Θε

t , v
ε
t , P

ε
t , Q

ε
t ,K

ε
t

)
(vt − vεt )dt

= E

∫ T

0

Hv

(
t, Θ̃ε

t , ṽ
ε
t , P̃

ε
t , Q̃

ε
t , K̃

ε
t

)
(vt − ṽεt )dt− E

∫ T

0

Hv

(
t, Θ̃ε

t , ṽ
ε
t , P̃

ε
t , Q̃

ε
t , K̃

ε
t

)
(vt − ṽεt )dt

− E

∫ T

0

Hv

(
t,Θε

t , v
ε
t , P

ε
t , Q

ε
t ,K

ε
t

)
(vt − vεt )dt

� −Cε
1
3 − C7ε

2
3

� −C8ε
1
3 . (33)

Similarly we can get the second estimate of (13). The proof is complete.

Remark 3.7. In case ε = 0 in (13), Theorem 3.6 is just the necessary condition for exact optimality of

FBSDEs with impulse control.

4 Sufficient condition for near-optimality

This section gives a sufficient condition for the near-optimality under convexity. Our main result is as

follows.

Theorem 4.1. Suppose Assumptions 2.1 and 3.4 hold true. Let vε be admissible control, (Xε, Y ε, Zε)

and (P ε, Qε,Kε) be the solutions of (1) and (6) respectively. Moreover, for M ∈ R
m×n, ζ ∈ L2(Ω,FT ,P;

R
m), Y v,η

T has the following form: Y v,η
T = MXv,η

T + ζ, ∀ (v, η) ∈ U ×K. Suppose that H(t, ·, ·, ·, ·, P ε, Qε,

Kε) is convex for a.e. t ∈ [0, T ], P− a.s.. Moreover, φ, γ, l are convex. If for some ε > 0,

E

∫ T

0

Hv

(
t,Θε

t , v
ε
t , P

ε
t , Q

ε
t ,K

ε
t

)
(vt − vεt )dt � −ε

1
3 ,

E

∑

i�1

(
lη(τi, η

ε
i ) + CτiQ

ε(τi)−DτiP
ε(τi)

)
(ηi − ηεi ) � −ε

1
3 , (34)

then

J (vε, ηε) � min
(v,η)∈U×K

J (v, η) + Cε
1
3 . (35)

Proof. From (2) and the definition of Hamiltonian function H , we have

J (vε, ηε)− J (v, η) = I1 + I2 + I3 + I4 − I5, (36)

where

I1 := E[φ(Xε
T )− φ(XT )];

I2 := E[γ(Y ε
0 )− γ(Y0)];
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I3 := E

∫ T

0

H(t,Θε
t , v

ε
t , P

ε
t , Q

ε
t ,K

ε
t )dt− E

∫ T

0

H(t,Θt, vt, P
ε
t , Q

ε
t ,K

ε
t )dt;

I4 := E

∑

τi�T

[l(τi, η
ε
i )− l(τi, ηi)];

I5 := E

∫ T

0

〈b(t,Xε
t , v

ε
t )− b(t,Xt, vt), Q

ε
t 〉dt+ E

∫ T

0

〈−f(t,Θε
t , v

ε
t ) + f(t,Θt, vt), P

ε
t 〉dt

+ E

∫ T

0

〈σ(t,Xε
t , v

ε
t )− σ(t,Xt, vt),K

ε
t 〉dt. (37)

Since both H and U are convex,

I1 � E〈φx(X
ε
T )(X

ε
T −XT )〉;

I2 � E〈γy(Y ε
0 ), (Y

ε
0 − Y0)〉;

I3 � E

∫ T

0

[
〈Hx(t,Θ

ε
t , v

ε
t , P

ε
t , Q

ε
t ,K

ε
t ), X

ε
t −Xt〉+ 〈Hy(t,Θ

ε
t , v

ε
t , P

ε
t , Q

ε
t ,K

ε
t ), Y

ε
t − Yt〉

]
dt

+ E

∫ T

0

[
〈Hz(t,Θ

ε
t , v

ε
t , P

ε
t , Q

ε
t ,K

ε
t ), Z

ε
t − Zt〉dt+ 〈Hv(t,Θ

ε
t , v

ε
t , P

ε
t , Q

ε
t ,K

ε
t ), v

ε
t − vt〉

]
dt;

I4 � E

∑

τi�T

lη(τi, η
ε
i )(η

ε
i − ηi). (38)

Applying Ito’s formula to 〈Qε
t , X

ε
t −Xt〉 and 〈P ε

t , Y
ε
t − Yt〉, we have

E〈φx(X
ε
T ), X

ε
T −XT 〉 = E

∫ T

0

〈Hx(t,Θ
ε
t , v

ε
t , P

ε
t , Q

ε
t ,K

ε
t ), Xt −Xε

t 〉dt

+ E

∫ T

0

〈b(t,Xε
t , v

ε
t )− b(t,Xt, vt), Q

ε
t 〉dt

+ E

∫ T

0

〈σ(t,Xε
t , v

ε
t )− σ(t,Xt, vt),K

ε
t 〉dt

+ E[〈M τP ε
T , X

ε
T −XT 〉] + E

∑

i�1

CτiQ
ε(τi)(η

ε
i − ηi); (39)

and

E〈γy(Y ε
0 ), Y

ε
0 − Y0〉 = E

∫ T

0

〈Hy(t,Θ
ε
t , v

ε
t , P

ε
t , Q

ε
t ,K

ε
t ), Yt − Y ε

t 〉dt

+ E

∫ T

0

〈Hz(t,Θ
ε
t , v

ε
t , P

ε
t , Q

ε
t ,K

ε
t ), Zt − Zε

t 〉dt

+ E

∫ T

0

〈−f(t,Xε
t , v

ε
t ) + f(t,Xt, vt), P

ε
t 〉dt

+ E[〈P ε
T ,M(XT −Xε

T )〉]− E

∑

i�1

DτiP
ε(τi)(η

ε
i − ηi). (40)

Substitute (37)–(40) into (36), and

J (vε, ηε)− J (v, η) � E

∫ T

0

〈Hv(t,Θ
ε
t , v

ε
t , P

ε
t , Q

ε
t ,K

ε
t ), v

ε
t − vt〉dt

+ E

∑

i�1

(
lη(τi, η

ε
i ) + CτiQ

ε(τi)−DτiP
ε(τi)

)
(ηεi − ηi). (41)

From the condition (34), we can easily get the desired results. The proof is complete.

Remark 4.2. In case ε = 0 in (34), Theorem 4.1 is just the sufficient condition for exact optimality of

FBSDEs.
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5 One example

In this section, we propose one example and show how to get its near-optimal control using our maximum

principle. To simplify our analysis, here we set the admissible control domain U ×K = [0, 1]× [0, 1] and

(X,Y, Z) are all one-dimensional.

Example 5.1. The controlled forward-backward stochastic system is

⎧
⎪⎪⎨

⎪⎪⎩

dXt = (b1Xt + b2vt)dt+ σ1XtdBt + Ctdηt,

dYt = −(f1Xt + f2Yt + f3Zt + f4vt)dt+ ZtdBt −Dtdηt,

X0 = a, YT = hXT , t ∈ [0, T ].

(42)

Here, Xt represents some stochastic value (such as the surplus process in insurance management, or

stochastic production process in inventory management) process with control variable vt, and Yt denotes

a recursive utility which has some coupling structure to the value state Xt. Moreover, the cost functional

to be minimized over the admissible control set A is

J ε(v, η) =
1

2
E

[

LXT +MY0 +

∫ T

0

εh(vt)dt+ S
∑

τi�T

η2i

]

,

where ε > 0 is small enough, S > 0 and h (independent of ε) is a nonlinear convex function satisfying

0 � h′(v) � C, 0 � h′′(v) � C, ∀ v ∈ U ,

for constant C.

The cost functional in our system is nonlinear and we consider the near-optimal control. For further

analysis, we assume Ct = Dt = 0 and consider the case of the impulse control appearing in cost functional

only. Our following result can also be generalized to the case C2
t + D2

t 
= 0 with more additional

computations. Now we can write down the Hamiltonian function of our example as follows:

Hε(t, x, y, z, v, p, q, k) = (b1x+ b2v)q + σ1xk − (f1x+ f2y + f3z + f4v)p+
1

2
εh(v).

It follows that

Hv = b2q − f4p+
1

2
εh′(v).

The adjoint equation becomes

⎧
⎪⎪⎨

⎪⎪⎩

dPt = f2Ptdt+ f3PtdBt,

−dQt = (b1Qt + σ1Kt − f1Pt)dt−KtdBt,

P0 = −M, QT = −hPT + L, t ∈ [0, T ].

(43)

From the necessary condition for near-optimality, for ε > 0, ∀ (vt, ηt) ∈ U × K, the near-optimal pair

(Xε(·), Y ε(·), Zε(·), vε(·), ηε(·)) should satisfy

E

∫ T

0

Hv

(
t,Xε

t , Y
ε
t , Z

ε
t , v

ε
t , P

ε
t , Q

ε
t ,K

ε
t

)
(vt − vεt )dt � −Cε

1
3 ,

and

E

∑

i�1

(
lη(τi, η

ε
i ) + CτiQ

ε(τi)−DτiP
ε(τi)

)
(ηi − ηεi ) � −Cε

1
3 . (44)

That is,

E

∫ T

0

(

b2Q
ε
t − f4P

ε
t +

1

2
εh′(vεt )

)

(vt − vεt )dt � −Cε
1
3 , (45)
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and

E

∑

i�1

Sηεi (ηi − ηεi ) � −Cε
1
3 . (46)

First we need to find the near-optimal control of vε. Using some basic techniques, we know the inequality

(45) takes the following form:

E

∫ T

0

(

b2Q
ε
t − f4P

ε
t +

1

2
εh′(vεt )

)

vtdt � E

∫ T

0

[
1

2
εh′(vεt )v

ε
t + (b2Q

ε
t − f4P

ε
t )v

ε
t −

Cε
1
3

T

]

dt. (47)

Under the condition 0 � h′(v) � C and vt ∈ U = [0, 1], the left hand side of the above inequality can be

relaxed to

E

∫ T

0

(

b2Q
ε
t − f4P

ε
t +

1

2
εh′(vεt )

)

vtdt � E

∫ T

0

(b2Q
ε
t − f4P

ε
t )vtdt. (48)

Then we only need to find the proper vεt such that

E

∫ T

0

(

b2Q
ε
t − f4P

ε
t +

1

2
εh′(vεt )

)

vtdt � E

∫ T

0

(b2Q
ε
t − f4P

ε
t )vtdt

� E

∫ T

0

[
1

2
εh′(vεt )v

ε
t + (b2Q

ε
t − f4P

ε
t )v

ε
t −

Cε
1
3

T

]

dt. (49)

As to the coefficients in our system, we give the following assumptions:

h > 0, a > 0, b2 > 0, f1 > 0, f4 > 0, L < 0, M < 0, S > 0. (50)

In adjoint equation (43), we can get

Pt = −M exp

[(

f2 − 1

2
(f3)

2

)

t− f3(Bt −B0)

]

. (51)

By the condition M < 0, we can deduce that Pt > 0, ∀ t ∈ [0, T ]. In particular, PT > 0.

Under the condition h > 0, L < 0 and f1 > 0, we know for any given Fτi-adapted square integral

process Pt, there exists a unique (Qt,Kt) satisfying the second equation of (43). Moreover, using the

comparison theorem of BSDE, we have Qt < 0, ∀ t ∈ [0, T ]. This implies that b2Q
ε
t − f4P

ε
t < 0 for all

t ∈ [0, T ]. Then the problem can be transformed to find some proper vε such that

E

∫ T

0

(

b2Q
ε
t − f4P

ε
t +

1

2
εh′(vεt )

)

vtdt � E

∫ T

0

(b2Q
ε
t − f4P

ε
t )vtdt � E

∫ T

0

(b2Q
ε
t − f4P

ε
t )dt

� E

∫ T

0

[
1

2
εh′(vεt )v

ε
t + (b2Q

ε
t − f4P

ε
t )v

ε
t −

Cε
1
3

T

]

dt. (52)

That is,

E

∫ T

0

[
1

2
εh′(vεt )v

ε
t + (b2Q

ε
t − f4P

ε
t )(v

ε
t − 1)− Cε

1
3

T

]

dt � 0. (53)

For any given small enough ε > 0, we know

vε(t) ≡ 1− ε
1
2 (54)

is a near-optimal control of this problem.

Next we turn to find the near-optimal impulse control ηε. From Eq. (46) and the control domain of η,

we know Eq. (46) leads to

E

∑

i�1

Sηεi ηi � E

∑

i�1

S(ηεi )
2 − Cε

1
3 . (55)

It follows that the left side of above inequality is non-negative. Then the problem turns to find the

near-optimal control such that

E

∑

i�1

S(ηεi )
2 � Cε

1
3 .
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For any given sufficiently small ε > 0, we know

ηε ≡ ε
1
2

is a near-optimal control for our impulse control component.

6 Conclusion

The subject of near optimality has been studied by some researchers, such as Zhou [8], etc. In this

paper, we investigate the near-optimality for a class of stochastic impulse control problems. To our best

knowledge, this problem has never been touched although it deserves some research attention. Some

classical techniques for optimal controls do not work in our problem, and some new techniques were

introduced. In this sense, our study is different from the prior studies relating to classical exact optimality.

By Ekeland’s principle and some delicate estimates, this paper establishes a necessary condition and

a sufficient condition of near-optimality with stochastic impulse control problems in terms of a small

parameter ε. Our work is partly based on the work from [8,9,10], and hopefully this result derived in this

paper may inspire some applications in finance or engineering.
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