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Abstract This paper investigates the output reachability and output regulation control design of Boolean

control networks (BCNs) by using the semi-tensor product method, and presents a number of new results.

First, the concept of output reachability is proposed for BCNs, and some necessary and sufficient conditions

are presented for the verification of output reachability. Second, based on the output reachability of BCNs and

the attractor set of the reference Boolean network, an effective method is proposed for the control design of the

output regulation problem. The study of an illustrative example shows the effectiveness of the obtained new

results.
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1 Introduction

Output regulation is a fundamental issue in the systems control theory, which aims to design a feedback

control such that the output of the closed-loop system tracks reference signals produced by an exosystem.

In the last few decades, the output regulation problem has been well studied by lots of scientists [1–3].

In [1], the output regulation problem of linear systems was converted into an eigenvalue placement problem

for an augmented linear system via the internal model principle. Huang and Chen [2] established a

general framework which converts the robust output regulation problem of nonlinear system into a robust

stabilization problem for an appropriately augmented system. It is noted that the output regulation

problem is also important for the study of genetic regulatory networks [4]. For example, Julius et al. [4]

proposed a novel feedback control design procedure to make the fraction of induced cells in the Escherichia

coli bacteria attain a desired level. This is a typical example of the output regulation for genetic regulatory

networks.

As a suitable model of genetic regulatory networks, Boolean networks have attracted a great attention

from many scholars in the last few decades. The control of Boolean networks is an important issue in both

systems theory and medical science [5]. Recently, a semi-tensor product method has been proposed for the
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analysis and control of Boolean networks [6,7]. The main feature of this method is that one can convert

the dynamics of a Boolean control network (BCN) into a bilinear discrete-time system [8], and then one

can tackle BCNs by using the classical control theory. Using this novel method, many interesting results

have been established for the analysis and control of Boolean networks [9–28]. The semi-tensor product

method has also been applied to the modeling, analysis and optimization of networked evolutionary

games [29, 30].

It should be pointed out that for BCNs, the output regulation problem was also studied in [31–33].

The output regulation of BCNs to a constant reference signal was studied in [31, 32], and some effective

control design methods were presented. The output regulation of BCNs to reference signals produced

by some external Boolean network was investigated in [33], and a necessary and sufficient condition was

presented for the solvability of the problem. However, the result obtained in [33] cannot be applied to the

output regulation control design. Besides, since the reference signals produced by the external Boolean

network are time-varying, the methods proposed in [31, 32] can hardly be used for the control design of

the above output regulation problem.

In this paper, using the semi-tensor product method, we firstly analyze the output reachability of

BCNs, based on which, we then propose an effective method for the control design of the output regulation

problem. The main contributions of this paper are as follows. (i) Some necessary and sufficient conditions

are presented for the output reachability of BCNs, which are crucial for the control design of the output

regulation problem. (ii) A novel method is proposed for the control design of the output regulation

problem based on the output reachability of BCNs and the attractor set of the reference Boolean network,

which is very effective in dealing with time-varying reference signals.

The rest of this paper is organized as follows. Section 2 gives some preliminary results. In Section 3,

we study the output reachability and the control design of the output regulation problem for BCNs, and

present the main results of this paper. An example is worked out to illustrate our new results in Section 4,

which is followed by some concluding remarks in Section 5.

Notation:

D := {1, 0},Dn := D × · · · × D︸ ︷︷ ︸
n

,∆n := {δkn : 1 6 k 6 n},

where δkn is the kth column vector of the identity matrix In. For compactness, ∆ := ∆2. An n× t matrix

M is called a logical matrix, if M = [δi1n δi2n · · · δitn ], which is briefly expressed as M = δn[i1 i2 · · · it].

All the n × t logical matrices form a set Ln×t. Denote Blki(A) by the ith n × n block of an n × mn

matrix A. Given a real matrix A ∈ R
n×m, (A)i,j , Coli(A) and Rowi(A) denote the (i, j)th element of A,

the ith column of A, and the ith row of A, respectively. A > 0, if (A)i,j > 0 is satisfied for any i and j.

2 Preliminaries

Given two real matrices A ∈ R
m×n and B ∈ R

p×q, let α = lcm(n, p) be the least common multiple of n

and p. Then, the semi-tensor product of A and B is

A⋉B = (A⊗ Iα
n
)(B ⊗ Iα

p
), (1)

where ⊗ is the Kronecker product.

It is well known that the semi-tensor product of matrices is a generalization of the conventional matrix

product, which keeps all the properties of the conventional matrix product. In the following, we will omit

the symbol “⋉” if no confusion arises.

Unlike the conventional matrix product, the semi-tensor product of matrices has the following pseudo-

commutative law.

Lemma 1 ([6]). Let X ∈ R
t×1 be a column vector and A ∈ R

m×n. Then

X ⋉A = (It ⊗A)⋉X. (2)
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Using the semi-tensor product of matrices, one can convert a Boolean function into a matrix expression.

To do this, we identify ∆ ∼ D, where “∼” denotes two different forms of the same object. We have the

following result.

Lemma 2 ([6]). Let f(x1, x2, . . . , xs) : Ds 7→ D be a Boolean function. Then

f(x1, x2, . . . , xs) = Mf ⋉
s
i=1 xi, xi ∈ ∆, (3)

where Mf ∈ L2×2s is called the structural matrix of f .

For example, the structural matrices of Negation (¬), Conjunction (∧) and Disjunction (∨) are Mn =

δ2[2 1], Mc = δ2[1 2 2 2] and Md = δ2[1 1 1 2], respectively.

3 Main results

In this section, we firstly analyze the output reachability of BCNs, and present some necessary and

sufficient conditions, based on which, we then propose an effective method for the control design of the

output regulation problem.

3.1 Output reachability analysis of BCNs

Consider the following Boolean control network:





x1(t+ 1) = f1(X(t), U(t)),

x2(t+ 1) = f2(X(t), U(t)),

. . .

xn(t+ 1) = fn(X(t), U(t));

yj(t) = hj(X(t)), j = 1, . . . , p,

(4)

whereX(t) = (x1(t), x2(t), . . . , xn(t)) ∈ Dn, U(t) = (u1(t), . . . , um(t)) ∈ Dm and Y (t) = (y1(t), . . . , yp(t))

∈ Dp are the state, the control input and the output of the system (4), respectively, and fi : D
m+n 7→ D,

i = 1, . . . , n and hj : Dn 7→ D, j = 1, . . . , p are Boolean functions. Given a control sequence {U(t) : t ∈ N},

denote the state trajectory of the system (4) starting from an initial state X(0) ∈ Dn by X(t;X(0), U),

and the output trajectory of the system (4) starting from X(0) ∈ Dn by Y (t;X(0), U).

Using the vector form of Boolean values and setting x(t) = ⋉
n
i=1xi(t) ∈ ∆2n , u(t) = ⋉

m
i=1ui(t) ∈ ∆2m

and y(t) = ⋉
p
i=1yi(t) ∈ ∆2p , by Lemma 2, one can convert (4) into the following algebraic form:

{
x(t + 1) = Lu(t)x(t),

y(t) = Hx(t),
(5)

where L ∈ L2n×2m+n and H ∈ L2p×2n .

Now, we define the concept of output-reachability for BCNs as follows.

Definition 1. Consider the system (5). yf ∈ ∆2p is said to be s-output-reachable from the ini-

tial state x(0) ∈ ∆2n , if one can find a control sequence u(0), . . . , u(s − 1) ∈ ∆2m , under which

y(s;x(0), u(0), . . . , u(s − 1)) = yf . yf is said to be s-output-reachable from the initial state set ∆2n ,

if yf is s-output-reachable from any x(0) ∈ ∆2n . yf is said to be output-reachable from the initial state

x(0) ∈ ∆2n , if one can find an integer s > 0 such that yf is s-output-reachable from x(0). yf ∈ ∆2p is

said to be output-reachable from the initial state set ∆2n , if yf is output-reachable from any x(0) ∈ ∆2n .

In order to give a necessary and sufficient condition for the output-reachability of BCNs, we recall a

useful result on the reachability of BCNs. For details, please refer to [34].

Lemma 3. Consider the system (5). Let xf = δ
q
2n and x(0) = δr2n be given. Then,

1) xf is reachable from x(0) at time s, if and only if

(M s)q,r > 0, (6)
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where

M =

2m∑

i=1

Blki(L); (7)

2) xf is reachable from x(0), if and only if

2m+n∑

s=1

(M s)q,r > 0. (8)

Based on Definition 1 and Lemma 3, we have the following result.

Theorem 1. Consider the system (5). Let yf = δk2p and x(0) = δl2n be given. Then,

1) yf is s-output-reachable from x(0), if and only if

(HM s)k,l > 0; (9)

2) yf is s-output-reachable from ∆2n , if and only if

Rowk(HM s) > 0; (10)

3) yf is output-reachable from x(0), if and only if

2m+n∑

s=1

(HM s)k,l > 0; (11)

4) yf is output-reachable from ∆2n , if and only if

2m+n∑

s=1

Rowk(HM s) > 0. (12)

Proof. We just need to prove Conclusions 1) and 3). Conclusion 2) follows from Definition 1 and

Conclusion 1), while Conclusion 4) follows from Definition 1 and Conclusion 3).

Firstly, we prove Conclusion 1).

(Sufficiency) Suppose that (9) holds. Since

(HM s)k,l =
2n∑

i=1

(H)k,i(M
s)i,l, (13)

there must exist an integer 1 6 i0 6 2n such that (H)k,i0 = 1 and (M s)i0,l > 0.

By Lemma 3, δi02n is reachable from δl2n at time s, that is, one can find a control sequence u(0), . . . , u(s−

1) ∈ ∆2m such that

x(s; δl2n , u(0), . . . , u(s− 1)) = δi02n .

Thus,

y(s; δl2n , u(0), . . . , u(s− 1)) = Hδi02n = Coli0(H) = δk2p ,

which implies that δk2p is s-output-reachable from x(0).

(Necessity) Assume that δk2p is s-output-reachable from δl2n . Then, there exists a control sequence

u(0), . . . , u(s− 1) ∈ ∆2m such that y(s; δl2n , u(0), . . . , u(s− 1)) = δk2p .

Since

y(s; δl2n , u(0), . . . , u(s− 1)) = Hx(s; δl2n , u(0), . . . , u(s− 1)),

setting x(s; δl2n , u(0), . . . , u(s− 1)) = δi02n , one can obtain that Coli0(H) = δk2p , and δi02n is reachable from

δl2n at time s, that is, (H)k,i0 = 1 and (M s)i0,l > 0.
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Thus,

(HM s)k,l =

2n∑

i=1

(H)k,i(M
s)i,l > (H)k,i0 (M

s)i0,l > 0,

which implies that (9) holds.

Next, we prove Conclusion 3).

(Sufficiency) Suppose that (11) holds. Then, there exists an integer 1 6 s 6 2m+n such that

(HM s)k,l > 0. By Conclusion 1), yf is s-output-reachable from x(0). Thus, yf is output-reachable

from x(0).

(Necessity) Assume that yf is output-reachable from x(0). Then, there exists an integer s > 0 such

that (HM s)k,l > 0. From (13), there must exist an integer 1 6 i0 6 2n such that (H)k,i0 = 1 and

(M s)i0,l > 0. By Lemma 3, we only need to consider 1 6 s 6 2m+n.

Therefore,
2m+n∑

j=1

(HM j)k,l > (HM s)k,l > 0,

which implies that (11) holds.

Finally, suppose that δk2p is s-output-reachable from δl2n . From the proof of Theorem 1, one can design

a control sequence to realize the output-reachability by Algorithm 1.

Algorithm 1

1) Find an integer 1 6 i0 6 2n such that (H)k,i0 = 1 and (Ms)i0,l > 0;

2) Find an integer 1 6 α 6 2m such that (Blkα(Ms−1L))i0,l > 0. Set u(0) = δα
2m

. If s = 1, stop. Otherwise, go to the

next step;

3) Find two integers 1 6 j 6 2n and 1 6 β 6 2m such that (Blkβ(L))i0 ,j > 0 and (Blkα(Ms−2L))j,l > 0. Set u(s−1) = δ
β
2m

and x(s− 1) = δ
j
2n

. If s− 1 = 1, stop. Otherwise, replace s and i0 by s− 1 and j, respectively, and go to 2).

Remark 1. The main differences between the state reachability [34] and output reachability of BCNs

are shown below.

• The state reachability reflects the possibility of reachability between two states in the state space,

while the output reachability reflects the possibility of reachability between a state in the state space and

an output in the output space.

• The state reachability can be applied to the state feedback control design of BCNs (see [15]), while

the output reachability can be applied to the output related control problem of BCNs (see [12] and

Theorem 4 below).

3.2 Output regulation control design of BCNs

In this subsection, based on the output-reachability of BCNs, we study how to design the state feedback

gain for the output regulation of BCNs. To this end, we give the dynamics of the reference Boolean

network as follows. 



x̂1(t+ 1) = f̂1(X̂(t)),

x̂2(t+ 1) = f̂2(X̂(t)),

. . .

x̂n1(t+ 1) = f̂n1(X̂(t));

ŷj(t) = ĥj(X̂(t)), j = 1, . . . , p,

(14)

where X̂(t) = (x̂1(t), x̂2(t), . . . , x̂n1(t)) ∈ Dn1 and Ŷ (t) = (ŷ1(t), . . . , ŷp(t)) ∈ Dp are the state and the

output of the system (14), respectively, and f̂i : Dn1 7→ D, i = 1, . . . , n1 and ĥj : Dn1 7→ D, j = 1, . . . , p

are Boolean functions. Given an initial state X̂(0) ∈ Dn1 , the state trajectory of the system (14) is

denoted by X̂(t; X̂(0)), and the output trajectory of the system (14) is denoted by Ŷ (t; X̂(0)).
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The output regulation problem is to design a state feedback control in the form of




u1(t) = g1(X(t), X̂(t)),

. . .

um(t) = gm(X(t), X̂(t)),

(15)

where gi : Dn+n1 7→ D, i = 1, . . . ,m are Boolean functions, under which there exists an integer τ > 0

such that

Y (t;X0, U) = Ŷ (t; X̂0)

holds for ∀ t > τ , ∀X0 ∈ Dn and ∀ X̂0 ∈ Dn1 .

Using the vector form of Boolean values and setting x̂(t) = ⋉
n1

i=1x̂i(t) ∈ ∆2n1 and ŷ(t) = ⋉
p
i=1ŷi(t) ∈

∆2p , the system (14) and the control (15) can be converted to

{
x̂(t+ 1) = L̂x̂(t),

ŷ(t) = Ĥx̂(t),
(16)

and

u(t) = Gx(t)x̂(t), (17)

respectively, where L̂ ∈ L2n1×2n1 , Ĥ ∈ L2p×2n1 and G ∈ L2m×2n+n1 . Hence, the output regulation

problem becomes the design of the state feedback gain matrix G ∈ L2m×2n+n1 .

In the following, based on the output-reachability of BCNs, we study how to design the state feedback

gain for the output regulation problem.

For the system (16), starting from any initial state x̂(0) ∈ ∆2n1 , the state trajectory will converge to

a fixed point or a cycle. Correspondingly, the output trajectory will converge to a constant output or a

set of periodic outputs. Thus, to design the state feedback gain for the output regulation problem, we

just need to consider the states of the system (16) belonging to the attractor set. We firstly consider the

following two special cases:

• Case I: The attractor set of the system (16) only has fixed points. Denote the set of fixed points by

Π = {δπ1
2n1 , . . . , δ

πq

2n1}.

• Case II: The attractor set of the system (16) only has cycles with length greater than 1. Denote the

set of cycles by Γ = {C1, . . . , Cr}, where Ci = {δ
γi
1

2n1 , . . . , δ
γi
di

2n1 } is a cycle with length di, i = 1, . . . , r. We

assume that δ
γi
1

2n1 → · · · → δ
γi
di

2n1 → δ
γi
1

2n1 .

Consider the system (5) with L = δ2n [l1 l2 · · · l2m+n ]. For each integer 1 6 j 6 2p, define

O(δj2p) = {δi2n : Coli(H) = δ
j
2p}. (18)

For a nonempty set S ⊆ ∆2n and an integer k ∈ Z+, denote by Rk(S) the set of all the initial states

which reach S at the kth step, that is,

Rk(S)={x0 ∈ ∆2n : there exist u(0), . . . , u(k − 1) ∈ ∆2m such that x(k;x0, u(0), . . . , u(k − 1)) ∈ S}. (19)

Then, for Case I, we have the following result.

Theorem 2. The output regulation problem is solvable for Case I, if and only if the following two

conditions hold:

1) O(Ĥδπi

2n1 ) 6= ∅, ∀ i = 1, . . . , q;

2) for each i ∈ {1, . . . , q}, there exist a nonempty set Si ⊆ O(Ĥδπi

2n1 ) and an integer 1 6 τi 6 2n such

that

Si ⊆ R1(Si) and Rτi(Si) = ∆2n . (20)

Proof. (Sufficiency) Assuming that Conditions 1) and 2) hold, we prove that the output regulation

problem is solvable for Case I by a constructed state feedback control.
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For each i ∈ {1, . . . , q}, set

R◦
k(Si) = Rk(Si) \Rk−1(Si), k = 1, . . . , τi, (21)

where R0(Si) := ∅. Then, it is easy to see that R◦
k1
(Si)

⋂
R◦

k2
(Si) = ∅, ∀ k1, k2 ∈ {1, . . . , τi}, k1 6= k2,

and
⋃τi

k=1 R
◦
k(Si) = ∆2n . Thus, for any integer 1 6 j 6 2n, there exists a unique integer 1 6 kij 6 τi such

that δj2n ∈ R◦
ki
j

(Si).

For kij = 1, there exists an integer 1 6 θij 6 2m such that

L⋉ δ
θi
j

2m ⋉ δ
j
2n = δ

l
(θi

j
−1)2n+j

2n ∈ Si.

For 2 6 kij 6 τi, there exists an integer 1 6 θij 6 2m such that δ
l
(θi

j
−1)2n+j

2n ∈ Rki
j
−1(Si).

Now, we set G = δ2m [v1 v2 · · · v2n+n1 ] ∈ L2m×2n+n1 , where

{
vk = θij , for k = (j − 1)2n1 + πi, i = 1, . . . , q, j = 1, . . . , 2n,

vk ∈ {1, 2, . . . , 2m}, otherwise.
(22)

Then, starting from any x(0) ∈ ∆2n and any x̂(0) ∈ ∆2n1 , under the control u(t) = Gx(t)x̂(t), there exist

three integers 1 6 σ 6 2n1 , 1 6 i 6 q and 1 6 j 6 2n such that

x̂(t; x̂(0)) = δπi

2n1 , ∀ t > σ,

x(σ;x(0), u) = δ
j
2n ,

x(σ + kij ;x(0), u) ∈ Si.

Since Si ⊆ R1(Si), one can see that

x(t;x(0), u) ∈ Si, ∀ t > σ + kij ,

which implies that

y(t;x(0), u) = Hx(t;x(0), u) = Ĥδπi

2n1 = ŷ(t; x̂(0)), ∀ t > σ + kij .

From the arbitrariness of x(0) and x̂(0), one can see that the output regulation problem is solvable for

Case I by u(t) = Gx(t)x̂(t).

(Necessity) Suppose that the output regulation problem is solvable for Case I by a state feedback

control, say, u(t) = Gx(t)x̂(t), G ∈ L2m×2n+n1 . Then, the closed-loop system consisting of the system

(5) and the control u(t) = Gx(t)x̂(t) becomes

{
x(t+ 1) = L̃(x̂(t))x(t),

y(t) = Hx(t),
(23)

where L̃(x̂(t)) = LG(I2n ⊗ x̂(t))Mr,2n .

Firstly, we prove that Condition 1) holds. In fact, if Condition 1) is not true, then there exists an integer

1 6 i 6 q such that O(Ĥδπi

2n1 ) = ∅, that is, y(t;x(0), u) 6= Ĥδπi

2n1 holds for any t ∈ N, any x(0) ∈ ∆2n and

any control sequence {u(t) : t ∈ N}. On the other hand, ŷ(t; δπi

2n1 ) = Ĥδπi

2n1 , ∀ t ∈ N. Thus, starting from

x̂(0) = δπi

2n1 and under the control u(t) = Gx(t)x̂(t), we have y(t;x(0), u) 6= ŷ(t; x̂(0)), ∀x(0) ∈ ∆2n , ∀ t ∈

N, which is a contradiction to the solvability of the output regulation problem by u(t) = Gx(t)x̂(t). Hence,

Condition 1) holds.

Next, we prove that Condition 2) holds.

For the system (16), starting from any x̂(0) = δπi

2n1 , i = 1, . . . , q, it is easy to see that x̂(t; x̂(0)) =

δπi

2n1 , ∀ t ∈ N. In this case, L̃(x̂(t)) = LG(I2n ⊗ δπi

2n1 )Mr,2n , ∀ t ∈ N.

For each i ∈ {1, . . . , q}, denote all the states belonging to the attractor set of the system (23) with

L̃(x̂(t)) ≡ LG(I2n ⊗ δπi

2n1 )Mr,2n by Si. In addition, let 1 6 τi 6 2n be the transient period [6] of the
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system (23) with L̃(x̂(t)) ≡ LG(I2n ⊗ δπi

2n1 )Mr,2n . Obviously, Si ⊆ R1(Si) and Rτi(Si) = ∆2n . We just

need to prove that Si ⊆ O(Ĥδπi

2n1 ).

In fact, if Si 6⊆ O(Ĥδπi

2n1 ), then there exists δ
j
2n ∈ Si such that Hδ

j
2n 6= Ĥδπi

2n1 . Since δ
j
2n is a

fixed point or a state belonging to some cycle of the system (23) with L̃(x̂(t)) ≡ LG(I2n ⊗ δπi

2n1 )Mr,2n ,

there exists a positive integer T such that δ
j
2n = x(kT ; δj2n) holds for all k ∈ N. Thus, y(kT ; δj2n) =

Hx(kT ; δj2n) 6= Ĥδπi

2n1 , ∀ k ∈ N, which is a contradiction to the solvability of the output regulation

problem by u(t) = Gx(t)x̂(t).

Therefore, Condition 2) holds for Si and τi. This completes the proof.

In what follows, we study Case II.

For the system (16), starting from any initial state x̂(0) ∈ ∆2n1 , the state trajectory will converge to a

cycle, say Ci = {δ
γi
1

2n1 , . . . , δ
γi
di

2n1 }. Then, the output trajectory also converges to a set of periodic outputs

Ô(Ci) := {Ĥδ
γi
1

2n1 , . . . , Ĥδ
γi
di

2n1}. Thus, if the output regulation problem is solvable for Case II, there exists

a state feedback control such that the output trajectory of the system (5) starting from any x(0) ∈ ∆2n

converges to Ô(Ci), i = 1, . . . , r. Hence, a necessary condition for the solvability of the output regulation

problem for Case II is as follows.

Proposition 1. If the output regulation problem is solvable for Case II, then Ĥδ
γi
j

2n1 , i = 1, . . . , r, j =

1, . . . , di are output-reachable from ∆2n .

However, the condition presented in Proposition 1 is not sufficient. For example, consider the systems

(5) and (16) with L = δ4[1 1 2 1 3 4 4 4], H = δ2[1 1 1 2], L̂ = δ4[2 3 2 1] and Ĥ = δ2[1 1 2 1].

Obviously, the attractor set of the system (16) only has a cycle with length 2, that is, C1 = {δ24 , δ
3
4}, and

Ô(C1) = {δ12 , δ
2
2}. A simple calculation shows that

∑8
s=1 Rowi(HM s) > 0, i = 1, 2. By Theorem 1, both

δ12 and δ22 are output-reachable from ∆4. However, one can easily check all G ∈ L2×16 and find that the

output regulation problem is not solvable for this example.

Now, we give a sufficient condition for the solvability of the output regulation problem for Case II as

follows.

Theorem 3. The output regulation problem is solvable for Case II, if Ĥδ
γi
j

2n1 , i = 1, . . . , r, j = 1, . . . , di
are 1-output-reachable from ∆2n .

Proof. Suppose that Ĥδ
γi
j

2n1 , i = 1, . . . , r, j = 1, . . . , di are 1-output-reachable from ∆2n . Then, for any

i ∈ {1, . . . , r}, any j ∈ {1, . . . , di} and any k ∈ {1, 2, . . . , 2n}, from Algorithm 1, one can design a control

δ
ηi,j,k

2m such that Ĥδ
γi
j

2n1 is 1-output-reachable from δk2n .

We set G = δ2m [v1 v2 · · · v2n+n1 ] ∈ L2m×2n+n1 , where

{
vµ = ηi,j,k, for µ = (k − 1)2n1 + γi

j−1, i = 1, . . . , r, j = 1, . . . , di, k = 1, . . . , 2n,

vµ ∈ {1, 2, . . . , 2m}, otherwise,
(24)

and γi
0 := γi

di
. Then, starting from any x(0) ∈ ∆2n and any x̂(0) ∈ ∆2n1 , for the system (16), there exist

three integers 1 6 σ 6 2n1 , 1 6 i 6 r and 1 6 j 6 di such that x̂(σ; x̂(0)) = δ
γi
j

2n1 ; for the system (5),

under the control u(t) = Gx(t)x̂(t), there exists an integer 1 6 k 6 2n such that x(σ − 1;x(0), u) = δk2n .

Since Ĥδ
γi
j

2n1 is 1-output-reachable from δk2n under the control δ
ηi,j,k

2m , we have

y(σ;x(0), u) = H ⋉ L⋉G⋉ δk2n ⋉ δ
γi
j−1

2n1 ⋉ δk2n = HLδ
ηi,j,k

2m δk2n = Ĥδ
γi
j

2n1 = ŷ(σ; x̂(0)).

Similarly, since Ĥδ
γi
j+1

2n1 is 1-output-reachable from x(σ;x(0), u) under the control Gx(σ;x(0), u)δ
γi
j

2n1 , one

can see that

y(σ + 1;x(0), u) = Ĥδ
γi
j+1

2n1 = ŷ(σ + 1; x̂(0)).

In general, for any integer t > σ, we have

y(t;x(0), u) = Ĥδ
γi
α

2n1 = ŷ(t; x̂(0)),

where α = (j + t− σ) mod (di).
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From the arbitrariness of x(0) and x̂(0), one can see that the output regulation problem is solvable for

Case II by u(t) = Gx(t)x̂(t).

Finally, based on Cases I and II, we study the general case, that is, the attractor set of the system

(16) has fixed points and cycles with length greater than 1. Denote the set of fixed points by Π =

{δπ1
2n1 , . . . , δ

πq

2n1 }, and the set of cycles by Γ = {C1, . . . , Cr}, where Ci = {δ
γi
1

2n1 , . . . , δ
γi
di

2n1} is a cycle with

length di. We assume that δ
γi
1

2n1 → · · · → δ
γi
di

2n1 → δ
γi
1

2n1 .

For the general case, combining the proofs of Theorems 2 and 3 together, we have the following result.

Theorem 4. Suppose that the following three conditions hold:

1) O(Ĥδπi

2n1 ) 6= ∅, ∀ i = 1, . . . , q;

2) for each i ∈ {1, . . . , q}, there exist a nonempty set Si ⊆ O(Ĥδπi

2n1 ) and an integer 1 6 τi 6 2n such

that Si ⊆ R1(Si) and Rτi(Si) = ∆2n ;

3) Ĥδ
γi
j

2n1 , i = 1, . . . , r, j = 1, . . . , di are 1-output-reachable from ∆2n .

Then, the output regulation problem is solvable.

Algorithm 2

1) For each i ∈ {1, . . . , q}, calculate Rk(Si) and R◦

k
(Si), k = 1, . . . , τi according to (19) and (21), respectively;

2) For any i ∈ {1, . . . , q} and any j ∈ {1, 2, . . . , 2n}, find the unique integer 1 6 kij 6 τi such that δ
j
2n

∈ R◦

ki
j

(Si). If

kij = 1, find an integer 1 6 θij 6 2m such that δ
l
(θi

j
−1)2n+j

2n
∈ Si. If 2 6 kij 6 τi, find an integer 1 6 θij 6 2m such that

δ
l
(θi

j
−1)2n+j

2n
∈ Rki

j
−1

(Si);

3) For any i ∈ {1, . . . , r}, any j ∈ {1, . . . , di} and any k ∈ {1, 2, . . . , 2n}, from Algorithm 1, design a control δ
ηi,j,k
2m

such

that Ĥδ
γi
j

2
n1 is 1-output-reachable from δk

2n
;

4) The state feedback gain matrix can be designed as

G = δ2m [v1 v2 · · · v
2
n+n1 ],

where





vµ = θij , for µ = (j − 1)2n1 + πi, i = 1, . . . , q, j = 1, . . . , 2n,

vµ = ηi,j,k , for µ = (k − 1)2n1 + γi
j−1

, i = 1, . . . , r, j = 1, . . . , di, k = 1, . . . , 2n,

vµ ∈ {1, 2, . . . , 2m}, otherwise,

(25)

and γi
0
:= γi

di
.

Remark 2. It should be pointed out that the conditions presented in Theorem 4 are not necessary

for the output regulation problem of BCNs. For instance, consider the systems (5) and (16) with L =

δ4[4 3 3 2 1 4 2 4 3 2 1 2 4 4 4 3], H = δ2[1 2 1 1], L̂ = δ8[1 4 1 6 6 2 4 7] and Ĥ = δ2[2 1 1 1 2 2 1 1].

One can easily see that for this example, the system (16) has a fixed point δ18 and a cycle with length

3, that is, C1 = {δ28 , δ
4
8 , δ

6
8}. Moreover, Ĥδ28 = Ĥδ48 = δ12 , and Ĥδ68 = δ22 . For this example, it is easy to

obtain from (7) that

M =




1 0 1 0

0 1 1 2

1 1 1 1

2 2 1 1



.

Thus,

HM =

[
4 3 3 2

0 1 1 2

]
,

which implies that δ22 is not 1-output-reachable from ∆4. However, it is easy to check that the output regu-

lation problem is solvable for this example under the state feedback gainG = δ4[3 2 1 4 1 1 2 3 3 1 1 3 1 1 2 2

2 4 4 2 3 3 4 4 1 2 2 3 2 2 1 1]. Therefore, the condition presented in Theorem 4 is not necessary. A

necessary and sufficient condition needs to be obtained in the future work.
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Finally, suppose that all the conditions of Theorem 4 hold. One can design a state feedback gain for

the output regulation problem by Algorithm 2.

Remark 3. From (25), one can see that the state feedback gain is completely determined by the

attractor set of the system (16). Therefore, Theorems 2–4 establish an attractor-driven method for the

control design of the output regulation problem.

Remark 4. The computational complexity of Algorithm 1 is O(2m+n+p). Moreover, the computational

complexity of Algorithm 2 is O(2m+n+n1+p).

4 An illustrative example

In this section, we present an illustrative example to show the effectiveness of our main results.

Example 1. Consider the following BCN:




x1(t+ 1) = [u(t) ∧ (x1(t) ∨ x2(t))] ∨ [¬u(t) ∧ ¬(x1(t) ∨ x2(t))],

x2(t+ 1) = (u(t) ∧ x1(t)) ∨ (¬u(t) ∧ ¬x1(t));

y(t) = x1(t).

(26)

The dynamics of the reference Boolean network is




x̂1(t+ 1) = (x̂1(t) ∧ x̂2(t)) ∨ ¬x̂1(t),

x̂2(t+ 1) = x̂1(t) ∨ (¬x̂1(t) ∧ ¬x̂2(t));

ŷ(t) = x̂1(t) ∨ (¬x̂1(t) ∧ ¬x̂2(t)).

(27)

Our objective is to design a state feedback control (if possible) such that the output regulation problem

is solvable for (26) and (27).

Using the vector form of Boolean values and setting x(t) = ⋉
2
i=1xi(t) and x̂(t) = ⋉

2
i=1x̂i(t), by

Lemma 2, one can convert (26) and (27) into

{
x(t + 1) = Lu(t)x(t),

y(t) = Hx(t),
(28)

and
{
x̂(t+ 1) = L̂x̂(t),

ŷ(t) = Ĥx̂(t),
(29)

respectively, where L = δ4[1 1 2 4 4 4 3 1], H = δ2[1 1 2 2], L̂ = δ4[1 3 2 1] and Ĥ = δ2[1 1 2 1]. Moreover,

one can easily see that the attractor set of the system (27) has a fixed point δ14 and a cycle with length 2:

{δ24 , δ
3
4}. A simple calculation gives O(Ĥδ14) = {δ14 , δ

2
4} and Ô({δ24 , δ

3
4}) = {δ12 , δ

2
2}.

For the fixed point δ14 , setting S = {δ14} ⊆ O(Ĥδ14), one can easily obtain that S ⊆ R1(S) and

R2(S) = ∆4. For the cycle {δ24 , δ
3
4}, it follows from

HM =

[
1 1 1 1

1 1 1 1

]
,

that both δ12 and δ22 are 1-output-reachable from ∆4. Thus, all the conditions of Theorem 4 hold. By

Theorem 4, the output regulation problem is solvable for this example.

According to Algorithm 2, we can obtain 16 state feedback gain matrices as follows:

G = δ2[1 1 2 v4 1 1 2 v8 1 1 2 v12 2 2 1 v16],

where vi ∈ {1, 2}, i = 4, 8, 12, 16.
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5 Conclusion

In this paper, we have studied the output reachability and output regulation control design of Boolean

control networks by using the semi-tensor product method. We have proposed the concept of output

reachability for BCNs, and presented some necessary and sufficient conditions for the verification of

output reachability. We have proposed an attractor-driven method for the control design of the output

regulation problem based on the output reachability of BCNs and the attractor set of the reference

Boolean network. The study of an illustrative example has shown that the new results obtained in this

paper are very effective.

It should be pointed out that Theorem 4 only presents a sufficient condition for the controller design

of the output regulation problem. One possible way of getting a necessary and sufficient condition is to

use the classical augmented system method [2].
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