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Abstract We consider the cooperation of rational parties in secret sharing. We present a new methodology

for rational secret sharing both in two-party and multi-party settings based on Bayesian game. Our approach

can resolve the impossible solutions to a rational secret sharing model. First, we analyze the 2-out-of-2 rational

secret sharing using Bayesian game, which makes us able to consider different classes of the protocol player (for

“good” and “bad” players) and model attributes such as any other parties’ preferences and beliefs that may

affect the outcome of the game. Thus, the new model makes us able to reason rational secret sharing from the

perspective of Bayesian rationality, a notion that may be in some scenarios more appropriate than that defined

as per pure rational. According to these analyses, we propose a Bayesian rational protocol of 2-out-of-2 secret

sharing. Also, our techniques can be extended to the case of t-out-of-n Bayesian rational secret sharing easily.

Our protocol is adopted only by the parties in their decision-making according to beliefs and Bayes rule, without

requiring simultaneous channels and can be run over asynchronous networks.
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1 Introduction

The well-known t-out-of-n secret sharing problem which was studied by Blakey [1] and Shamir [2] in

1979 independently is that a dealer who holds a secret distributes shares among n players such that any

group of size larger than t can recover the secret from their shares, while any group of size smaller than

t can not. The implicit assumption in the original primitive of the secret sharing is that each player

is either “good” or “bad”, and “good” players are all willing to cooperate when reconstruction of the

secret is desired. However, the “bad” players always cheat others in an arbitrary manner. No matter how

“smart” the “bad” parties are, they must pay a “price” to reach their deception purposes. Sometimes

the price is “high”. Starting from the work of Halpern and Teague [3], secret sharing schemes and other

cryptographic tasks were first revaluated in a game-theoretic perspective (see [4,5]). In this setting, none

of players is honest or corrupted, but the players are viewed as rational and are assumed (only) to act in

their own self-interest.

*Corresponding author (email: sci.cgpeng@gzu.edu.cn)
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1.1 Motivation

We will naturally pose the question as to how the introduction of rationality into secret sharing proto-

cols affects the analysis of these protocols based on the traditional assumptions. By defining a payoff

function for each rational party, the process of secret sharing is considered as a game among n players.

Unfortunately, as pointed out in [3], there is no rational party who would like to deliver his/her share in a

one-shot recovering process. Thus the reconstruction of the secret cannot be completed. By repeating the

recovering process many times and introducing punishments for deviants, this problem can be solved [6].

Intuitively, punishment rules serve as threats that make rational players not deviate from the protocol,

and thus the secret recovery can be finally achieved. However, some punishments turn out to be empty

threats [7]. So, every player behaves noncooperatively, that is, selfishly.

A group of people wishes to share the secrets in some practical situations in which some parties may

cooperate while others may not cooperate. Sometimes the noncooperative people may cooperate with

their opponents to maximize their utility. Therefore, their behavior is limited to always cooperate. It

would be informative to take beliefs about their behavior into consideration. This would allow us to

distinguish between a “good” party with highly “honest degree” (e.g., a 90% “good” party properly

cooperate) and a “bad” party with highly “dishonest degree”.

How should we deal with such a scenario generally arising in applications? Recently, game theory

has found a wide range of applications in economics, political science, biology, business, and computer

science. Certainly, it also provides us with a solid body of knowledge which is able to model features such

as those discussed above. In particular, the so-called games of Bayesian games are those in which some

parties do not know some parameters of the game they are playing. In this type of games, party’s beliefs

over other parties’ real nature, past experiences, reputation factors, and so on can be taken into account

when the optimal decision is made at any given point during the recovery phase of secret sharing. We

model this as a secret sharing game using Bayesian games. Thus, applying the Bayesian games (Bayes

rational action and Bayes rule), we extend the works of Halpern and Teague [3] and Maleka et al. [8] and

introduce the Bayesian rational secret sharing (BRSS) problem.

1.2 Related work

In their frequently quoted paper, Halpern and Teague [3] studied the Nash equilibrium in secret sharing

and secure multiparty computation, such as the Nash equilibrium surviving iterated deletion of weakly

dominated strategies. Later, it was pointed out that it cannot delete all bad strategies. Lysyanskaya

and Triandopoulos [9] studied a model with a mix parties between rational and malicious behaviors

with simultaneous broadcast channels and implementation type. Kol and Naor raised problems of the

strict Nash equilibrium [10] and the computational C-resilient equilibrium [11]. Allowing mistakes of the

other parties, Fuchsbauer et al. [12] presented computational Nash equilibrium stable with respect to

trembles. Maleka et al. [8] studied rational secret sharing scheme using repeated games. Some sequential

rationalities were required in [11]. Ong et al. [13] presented the subgame perfect equilibrium but with an

honest minority assumed.

Besides, it can be found in the conclusion part of some work [3] or in some surveys [5]1) that there

remains much undone concerning subgame perfect equilibria and other solution concepts, especially in

the computational setting. Zhang and Liu [7] proposed the 2-out-of-2 rational secret sharing as an

extensive game with imperfect information, provided a strategy for achieving secret recovery in this game,

and proved the strategy is a sequential equilibrium. Then, in standard communication networks, they

presented information-theoretic secure rational secret sharing scheme [14]. Tian et al. [15] reviewed the

classical secure communication issues, which are always described as a set of interactive rules following a

specified sequence in the perspective of game theory. By introducing rational communication participants,

they model the secure communication process in the manner of game theory to capture the interactions

of distrusted communication parties.

1) Katz J. Ruminations on defining rational MPC. Talk given at SSoRC, Bertinoro, 2008.
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1.3 Intuition and contribution

Our intuition is that every party has a type which depends on its belief system. The type of an honest

party is a probability which is greater than 1/2. That is to say, for an honest party, the cooperative

probability could be greater than the noncooperative probability. The rational party has an incentive

to cooperate by sending its share in Bayesian game to get a maximizing expected utility and a good

reputation (denoted by prior probability). If a party does not cooperate by sending an invalid share or

not sending her/his share in the current round, other parties take the punishment strategy which updates

their “reputation” (certainly a“bad” reputation) according to the Bayes rules and do not cooperate with

him/her in the further rounds. Note that the reputation is by prior probability. For fear of not receiving

any share from others in the further rounds and having a bad reputation, a party will cooperate in the

current round. At the beginning of the game, we assume that parties expect to cooperate with each other

in order to get the secret and a good reputation, and they behave this way in every round. Thus, these

rules act as an incentive for a player to cooperate.

In the game-theoretic setting, simple secret sharing has been shown to be impossible. Meanwhile,

Maleka et al. [8] show that secret sharing is impossible if the secret sharing game is played only once and

secret sharing is possible in the finitely repeated rational secret sharing only if players are not aware of

the end of the game. To solve these problems, we introduce a Bayesian rational model for multiparty

protocols and give protocols for secret sharing. Our major work is that the Bayesian view introduces a

probability with which a player cooperates. Our contributions are as follows:

1. We present the first formal framework for BRSS with Bayesian dynamic game. We extend previous

results of rational secret sharing to mixed model where there can be different classes of protocol parties.

A BRSS is defined based on the perfect Bayesian equilibrium (PBE) with incomplete information.

2. In the framework, we propose the two-party or multiparty BRSS in nonsimultaneous channels and

prove the condition for reaching PBE. In the game (played only once or repeated multiple times), all

parties cooperate with each other using Bayes rule and obtain the maximizing expected utility. It also

naturally solves the fairness problem of secret sharing.

3. In our Bayesian schemes, a “bad” dealer (or party) will be detected since the signcryption scheme

is used among the dealer and each party. That is to say, we can also consider a rational dealer in this

scheme. This scheme does not require the availability of secure channels between the dealer and each

party individually.

1.4 Paper outline

The rest of the paper is organized in the following way. In Section 2, we give a brief introduction to

the rational secret sharing and the basics of dynamic game of incomplete information. In Section 3, we

analyze the 2-out-of-2 secret sharing using Bayesian game and prove that (C,C) is a PBE when there

exists a complete honest party. In Section 4, we propose a Bayesian protocol for the 2-out-of-2 secret

sharing. Section 5 extends the 2-out-of-2 Bayesian protocol to the case of t-out-of-n BRSS. Section 6

discusses some issues. In Section 7, we conclude the paper and give an insight on open problems in future.

2 Preliminaries

This section briefly reviews the concepts of rational secret sharing and Bayesian game.

2.1 Rational secret sharing protocol

Rational secret sharing protocol is to achieve the task of secret sharing a secret among n rational parties

(denoted by P). Each party Pi ∈ P has a payoff function ui : {0, 1}n → R, which is the possible outcome

of the reconstruction process. A outcome vector O = (o1; · · · ; on) ∈ {0, 1}n represents an outcome of

the recovery, where oi = 1 iff Pi finally obtains the secret. Here, for 1 � i � n, Pi’s payoff function ui

satisfies:
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Table 1 A strategic game of 2-out-of-2 secret sharing

P1 \ P2 C D

C (U, U) (U−−, U+)

D (U+, U−−) (U−, U−)

(a) For ∀ O,O′ ∈ {0, 1}n, if oi > o′i then ui(O) > ui(O
′).

(b) If oi = o′i and
∑n

i=1 oi <
∑n

i=1 o
′
i, then ui(O) > ui(O

′).
The above conditions (a) and (b) indicate that, on the one hand, party Pi always prefers to get the

secret in the recovering phase than not getting it; on the other hand, it prefers the fewer of the other

parties learning it, which would be better. The functionality of rational secret sharing is to achieve a

scheme so that it is in the rational party’s payoff to provide his/her share as indicated in the recovering

process, and such that any deviation for every party must cause a loss in his/her payoff.

Here, we give a simple example of case of 2-out-of-2 rational secret sharing, which regards the one-

shot recovering process and two-player strategic game. In this game, each party has two actions between

Cooperate(C) and Defect(D), where Cooperate(C) denotes sending share and Defect(D) stands for doing

nothing. This game can be stood for the table in Table 1 where P1’s actions are represented by rows

and P2’s by columns, where U+, U, U−, U−− ∈ R represents party’s payoff under the corresponding

action profile. The action profile (C,D) produces a game outcome (0, 1), which means party P2 obtains

the secret but party P1 does not. Based on these assumptions of the payoff functions, the definition

U+ > U > U− > U−− obviously holds.

Like the Prisoner’s dilemma, there is a crucial problem that arises in the above game, that is. no

matter what action his/her opponent adopts, a party adopting action D can obtains as much as possible

and sometimes even higher payoff than choosing action C. Thus, none of rational parties have incentive

to sending his/her share in such game with one-shot recovery. There also exists the same problem in the

t-out-of-n secret sharing. Here, we will use the theory of Bayesian games to resolve this problem.

2.2 Bayesion game

This section briefly introduces some concepts of player’s type, player’s beliefs, and PBE in Bayesian

games [6].

Definition 1 (Party’s type and type space). Assume that party Pi ∈ P has a type Ti ∈ Ti with Ti
being the type space for party Pi.

Definition 2 (Type profile). A type profile is a tuple of types T = (T1, . . . , Tn), one for each party, which

univocally determines the type of every party involved in a specific game. Note that T = T1 × · · · × Tn.
Here, we can assign a type Ti ∈ [0, 1] to each party Pi , which can be counted as his/her reputation.

We formalize the following definition of the party’s belief system. Let Δ(X) be the space of probability

distribution over the set X .

Definition 3 (Belief system). The belief that a party has the type of Pj ∈ P is denoted by a probability

distribution over party Pj ’s type-space Δ(Tj). Let each belief be denoted by Greek letters α(·), β(·), . . . ,
and ρ denotes the set of all beliefs.

Fudenberg and Tirole [16] formally defined the notion of PBE for Bayesian games in 1991, which is

defined as pairing of strategy–believe profile (S; ρ) such that:

(1) The profile (S; ρ) is not only a Bayesian Nash equilibrium in each of the continuation subgames,

but also a Bayesian Nash equilibrium in the whole game. In other words, from every information set, the

moving party’s strategy maximizes its expected utility of the remainder of the game, taking into account

his/her beliefs and all party’s strategies.

(2) On-the-equilibrium path, believes are determined by the Bayes rule and equilibrium strategies. An

information set will be attained with positive probability if and only if the game is played based on the

equilibrium strategies. That is, this information set is on-the-equilibrium path.
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Dealer Round 0

Round 1

Round 2

P1                                                                 P1

P2                     P2                                             P2                         P2

D       C                                         C         D

C          D                            C         D

p                       1−p

(U−,U−)                                                                    (U−,U−)

(U,U)                (U−−,U+)          (U,U)                (U−−,U+)

Figure 1 A game tree of 2-out-of-2 secret sharing.

(3) Off-the-equilibrium path, beliefs where possible are determined by the Bayes rule and equilibrium

strategies. A defection from the equilibrium path, dose not increase the chance that others will play

irrationally.

The profile (S; ρ) would interpret a set of strategies such that given his/her beliefs in set Ii, Pi’s

strategy is his/her best response for each party Pi ∈ P and each information set Ii ∈ Ii. Before we

formally give the notion of the PBE, it is necessary that we define a series of requirements.

Definition 4 (Bayes requirement 1). Given S (i.e., a strategy profile), it is required that, for ∀Pi ∈ P
and at each for Ii ∈ Ii, Pi has beliefs ρ(Ii) ∈ Δ(Ii) about the node at which he/she is located, conditional

upon being notified that party has attained Ii.

Definition 5 (Bayes requirement 2). Assume that the continuation game is defined by Ii ∈ Ii of some

party Pi and ρi(Ii). The constraint for (S; ρ) must be a Nash equilibrium of this game beginning with Ii.

Definition 6 (Bayes requirement 3). The strategy profile based on Bayes’ rule determines the beliefs

at any on-the-equilibrium path information sets. That is to say, if Ii ∈ Ii is an information set of party

Pi which achieved with positive probability following the strategy profile S, then S according to Bayes

rule must compute ρ(Ii) ∈ Δ(Ii).

Definition 7 (Bayes requirement 4). The strategy profile S in terms of Bayes rule whenever possible

must determine the beliefs at any off-the-equilibrium path information set.

Definition 8 (PBE). Given S and ρ (i.e., strategy profile and a set of beliefs), (S; ρ) forms a PBE if

and only if the strategy–belief profile (S; ρ) satisfies Bayes requirements 1–4.

3 Bayesian analysis of 2-out-of-2 secret sharing

This section analyzes 2-out-of-2 secret sharing in a richer set of environmental hypotheses and only

considers the simplest scenario: let party P1 be either “good” or “bad”, but P2 is always “good”. The

game is shown in Figure 1.

3.1 Player and types

Assume that the player set P = {P1, P2} and the dealer is always “good”. Denote T = TP1 × TP2 by

the type–profile space with TP1 = {P h
1 , P

d
1 } and TP2 = {P h

2 } being the type spaces of parties P1 and P2.

Superscript h represents a “good” party, while d denotes a “bad” one. Assume that the dealer is always

honest (“good”).

We consider the following probability distributions θP1 and θP2 over TP1 and TP2 , respectively:

θhP1
= Pr(P h

1 |P2), θdP1
= Pr(P d

1 |P2), s.t. θhP1
+ θdP1

= 1, (1)
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and

θhP2
= Pr(P h

2 |P1) = 1, θdP2
= Pr(P d

2 |P1) = 0. (2)

3.2 Strategies and beliefs

Every player can adopt a special action quit at anytime. Hence, the set of actions that are available to

parties is A = AP1 ∪ AP2 , where AP1 = {C,D, quitP1} and AP2 = {C, quitP2} are the sets of actions for

players P1 and P2, respectively. So, players P1 has three possible pure strategies and P2 has two.

There are two possible pure strategies for player P2. A pure strategy for player P2 is sP2 ∈ SP2 =

{(s1, s3)}. Alternatively, a pure strategy for player P1 is a tuple: sP1 ∈ SP1 = {(s1, s3)h, (s2, s3)d}, where
s1 ∈ {C}, s2 ∈ {D}, and s3 ∈ {quitP1 , quitP2}. The first component stands for a strategy for type P1

“good” and the second one for P1 “bad”.

In the new Bayesian game, a strategy profile of one for each party is a vector s = (sP1 , sP2) of

individual strategies. The outcome of the game is univocally determined by a strategy profile. The

following probability distributions denote, at each particular stage of the protocol, the set of beliefs

which each party holds over the opponent’s set of actions.

At round 2 of the Bayesion game, let the following probability distribution functions, over party P2’s

set of actions, denote party P2’s beliefs:

αh, αd : TP1 −→ Δ(AP1 ), s.t. αh(C) +αh(D) +αh(quitP1) = 1, αd(C) +αd(D) +αd(quitP1) = 1, (3)

and P2 believes that

PrP2 [quitP1 |P h
1 ] + PrP2 [C|P h

1 ] = 1, PrP2 [D|P h
1 ] = 0, (4)

PrP2 [quitP1 |P d
1 ] + PrP2 [D|P d

1 ] = 1, PrP2 [C|P d
1 ] = 0. (5)

Note that party P2 also has the following beliefs which represent the fact that when party P1 has

defected, she/he will always take the action quitP1 or D in this game. Therefore, we have

PrP2 [quitP1 |P h
2 ] + PrP2 [D|P h

2 ] = 1, PrP2 [C|P h
2 ] = 0, (6)

PrP2 [quitP1 |P d
2 ] + PrP2 [D|P d

2 ] = 1, PrP2 [C|P h
2 ] = 0. (7)

By contrast, in round 1 of the game, P1 has analog results.

β : TP2 −→ Δ(AP2), s.t. β(C) + β(quitP2) = 1. (8)

3.3 Utility functions

One of the crucial points for a game is each type of party being associated with a possibly different utility

function. Definition of payoff functions is as follows:

Ui : Πi∈{P1,P2}Ti ×Πi∈{P1,P2}Ai −→ R. (9)

So, for every branch in the game tree, we define a utility value as the total outcome parties P1

and P2 obtained, when selecting such a game path (see Figure 1). Obviously, Ui ∈ {λ1U
+ + λ2U +

λ3U
−λ4U

−−|λi � 0 ∧
∑4

i=1 λi = 1}.

3.4 Expected utilities

We denote the expected payoff for player Pi as EU(Pi, sPi) with following the strategy sPi . We first discuss

the expected utilities when parties take pure strategies. For each strategy profile sP1 = ((s2, s3)d, (s1, s3)h)

of party P1, the expected payoff value is

EU(P1
h, sP1) = β(C)[UP1 ((s1, s3)h, s1) + (1− β(C))[UP1 ((s1, s3)h, s3), (10)

EU(P1
d, sP1) = β(C)[UP1((s2, s3)d, s1) + (1− β(C))[UP1 ((s2, s3)h, s3). (11)
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Round 0

Round 1

Round 2

(U+,U−−)   (U−,U−)     (U,U)     (U−,U−)    (U,U)     (U−,U−)     (U+,U−−)   (U−,U−)

S1         S3               S1         S3                    S1         S3                  S1            S3

(U−,U−) (U−,U−)

P2                       P2                       P2                                 P2                        P2                       P2 

S3         S2           S1                                                     S1         S2           S3

β β

P1                                                                                          P1

αh                                                                                       αd

N

θP1

Figure 2 Bayesian game of 2-out-of-2 secret sharing.

In the case, if P2 selects the action: s3 ∈ {quitP2}, then P2 has the following expected utility value:

EU(P2, s3) = U−. (12)

Otherwise, the expected utility is

EU(P2, s1) = θhP1
[αh(s1) · U + αh(s3) · U−] + (1− θhP1

)[αd(s2) · U−− + αd(s3) · U−]

= θhP1
[αh(s1) · U − αd(s2) · U−− + (αh(s3)− αd(s3)) · U−] + αd(s2) · U−− + αd(s3) · U−

= L1 · θhP1
+ L2, (13)

where

L1 = αh(s1) · U − αd(s2) · U−− + (αh(s3)− αd(s3)) · U−, L2 = αd(s2) · U−− + αd(s3) · U−. (14)

Proposition 1. Under the mean utility criterion in the game, if θhP1
� (U− − L2)�L1, then party P2

always selects the action s1(C). Otherwise, he will select the action s3(quitP2).

Proof. For an honest party P2, according to (12) and (13), if θhP1
� (U− − L2)�L1, then EU(P2, s3) �

EU(P2, s1). Thus, P2 prefers s1 to s3. Otherwise, the action s3 is the best strategy of P2.

3.5 PBE candidates

Candidates to be PBE in the 2-out-of-2 secret sharing game will be (S; ρ) with S = (sP1 , sP2), sP1 ∈ SP1 ,

sP2 ∈ SP2 and ρ = (θP1 , θP2 , αh, αd, β) is a tuple which has the probability distribution functions denoting

the set of beliefs depicted above. A given strategy–believe profile (S∗; ρ∗) represents a PBE if it defines

a strategy set such that, for ∀Pi and ∀Ii, the strategy of Pi is his/her best response to the opponent’s

action strategy, given his/her belifs in the information set Ii.
We will give the following (S∗; ρ∗) as the first candidate to PBE of the Bayesian game in Figure 2.

(S∗; ρ∗) = ({(s1)h, (s1)d}, {(s1)}; (θ∗P1
, θ∗P2

, α∗
h, α

∗
d, β

∗)), with θh
∗

P1
� (U− − L∗

2)/L
∗
1, where Eq. (14)

contains the definitions of L∗
1 and L∗

2. Note that the PBE candidate interprets the party P1’s intention

to succeed in recovery phase.

The next candidate for PBE to be considered stands for the set of P1’s strategies and P2’s strategies

when P2 thinks that P1 is wants to noncooperation at round 1. Then, P2’s strategy for the best response

is to quit the game:

(So; ρo) = ({(s3)h, (s2)d}, {(s3)}; (θoP1
, θoP2

, αo
h, α

o
d, β

o)), with θh
o

P1
< (U− − Lo

2)/L
o
1, where Lo

1 and Lo
2

will be defined as in (14).

Next, we commence with the case of (S∗; ρ∗) which is a PBE of the secret sharing game of the 2-out-of-2

case, as (So; ρo) can be inferred from the following steps trivially.
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Theorem 1. The profile (S∗; ρ∗) is a PBE in 2-out-of-2 secret sharing game.

Proof. A PBE requires that (S∗; ρ∗) should satisfy Bayes requirements 1–4.

First, we show that the profile (S∗; ρ∗) satisfies Bayes requirement 1. Requirement 1 requests that

each player for P1 and P2 allocates a distribution of probability over each of nodes in every information

set Ii ∈ Ii. At the first round of the Bayesion game, player P1 learns his/her type and θhP1
+ θdP1

= 1 (see

(1)). At round 2, regarding ρ∗, player P2 defines the probability distributions α∗
h, as well as α∗

d satisfy

α∗
h(s1)+α∗

h(s3) = 1 α∗
d(s2)+α∗

d(s3) = 1 according to (3)–(5). Then, we have θP1
∗

h ·α∗
h(s1)+θP1

∗
h ·α∗

h(s3)+

θP1
∗

d · α∗
d(s2) + θP1

∗
d · α∗

d(s3) = 1. Therefore, (S∗; ρ∗) satisfies Bayes requirement 1.

Second, rational P2 behaves based on his/her beliefs. Once the Bayesion game is over, player P2

achieved the information set IP2 . Assume that SG is the continuation game beginning with the same

IP2 ∈ IP2 , as well as ρ∗(IP1 ) are the assumption belief at IP1 . Then, we know that (S∗; ρ∗(IP1 )) is an

equilibrium of the SG.

In the light of θh
∗

P1
� (U− − L∗

2)/L
∗
1 and Proposition 1, we have EU(P2, s3, SG) � EU(P2, s1, SG).

Hence, a rational party P2 cannot deviate from the rule based on its belief system.

Therefore, (S∗; ρ∗) satisfies Bayes Requirement 2 since the profile strategy, given by (S∗; ρ∗(IP2 )),

forms an equilibrium in this SG.

Third, at the on-equilibrium path information set IP2 , requirement 3 requests P2 for establishing

sensible beliefs. The strategy profile based on the Bayes rule can determine these sets of beliefs. Thus,

party P2 has to find distributions α∗
h, as well as α

∗
d according to the different action strategies that party

P1 can adopt at the first round of the game.

According to (3)–(5), if P2 believes that a “good” player P1 would take the action s1 with probability

γh, the action s2 with δh as well as the action s3 with (1 − γh − δh), then α∗
h(s1) and α∗

h(s3) must take

the following values:

α∗
h(s1) =

γh
γh + δh

, α∗
h(s3) =

δh
γh + δh

.

Likewise, as for a “bad” player P1, player P2 is demanded to define

α∗
d(s2) =

γd
γd + δd

, α∗
d(s3) =

δd
γd + δd

.

Finally, at any off-the-equilibrium path information set, requirement 4 claims P2 to establish sensible

beliefs. Requirement 4 is trivially satisfied for there being no information sets off the Nash equilibrium

path.

So, (S∗; ρ∗) is a PBE in 2-out-of-2 secret sharing game by Definition 8.

3.6 A numerical instance

Note that Theorem 1 shows that the strategy S∗ is an equilibrium depending on the condition of θh
∗

P1
�

(U− − L∗
2)/L

∗
1 and beliefs of each party. Next, we give an example in which a set of parameter values

reached equilibrium when both parties behave rationally, as well as achieve a successful reconstruction

protocol in the secret sharing scheme (see Table 2).

Let us suppose the payoffs U+ = 5, U = 3, U− = 1, and U−− = 0 in the game. Assume that party P1

can make sure that P2 is always honest by past experience and reputation, and that party P2 has reasons

to think that P1 is not always “good”. P2 evaluates P1 to be “good” with probability θhP1
= 0.6. Assume

that party P2 does also have enough evidence to evaluate that when P1 is “good”, his/her misbehaving

probability at the step of this game is very low, where αh(C) = 0.6, αh(D) = 0.1, and αh(quitP1) = 0.3.

Likewise, αd(C) = 0.1, αd(D) = 0.7, and αd(quitP1) = 0.2. According to the results in Table 2, we know

that P2 had better respond to s1 (i.e., P2 had better choose cooperation). By contrast, P2 will quit the

game since θhP1
� L when U− = 2.05. In general, we here assume that U � (U+ + U−)/2.
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Table 2 A numerical example

U+ = 5 U = 3 U− = 1 U−− = 0

Beliefs
θhP1

= 0.6 αh(C) = 0.6 αh(D) = 0.1 αh(quitP1
) = 0.3

θdP1
= 0.4 αd(C) = 0.1 αd(D) = 0.7 αd(quitP1

) = 0.2

Results L1 = 1.8 L2 = 0.2 L = U−−L2
L1

= −4.5 θhP1
� L

Table 3 The 2-out-of-2 secret sharing protocol
∏

2,2

Bayesian secret sharing
∏

2,2

Let (Gen,SC,UNSC) be signcryption scheme. Assume that the player set is N = {P1;P2} and there exists a dealer

distributing shares in the sharing phase. Let s denote the secret and s = s1⊕ s2 for simplicity. Protocol
∏

2,2 is defined

as follows:

Sharing phase

The phase consists of three steps:

1. The dealer first computes (pkd, skd) ← Gen(1k). Next party P1 and P2 do (pk1, sk1) ← Gen(1k) and (pk2, sk2) ←
Gen(1k), respectively.

2. Then the dealer computes: C0 := C(s), share1 := SCspd,pk1
(s1), and share2 := SCspd,pk2

(s2), where C(·) is a

public one-way function.

3. Finally, the dealer gives P1 the share1 and C0, gives P2 the share2 and C0. When P1 and P2 receive the share1 and

share2, respectively, every Pi can verify valid share and get the si by UNSCpkd,ski
(sharei).

Reconstruction phase

When it is time for recovery, player P1 and P2, with Pi’s type being θi ∈ [0, 1], simultaneously choose the actions

sP1
∈ {C,D, quitP1

}, as well as sP2
∈ {C,D, quitP2

} in terms of their beliefs as well as Bayes rules, respectively. In

each round of the game r = 1, 2, . . . , the players do as followings:

Pi sends message to Pj(�= Pi): Pi

1. estimates θh
(r)

j := PrPi
(θ

(r−1)
i |θj), θd

(r)

j := 1− θh
(r)

j . (we assume that θh
(0)

j > 1/2).

2. computes α
(r)
h (C) := PrPj

(C|θh(r)

j ), α
(r)
h (D) := PrPj

(D|θh(r)

j ), and α
(r)
h (quitPj

) := PrPj
(quitPj

|θh(r)

j ). Likewise,

α
(r)
d (C), α

(r)
d (D), and α

(r)
d (quitPj

).

3. computes its expected utility maximization using results of the above steps, where denoted the optimal strategy by

os
(r)
i ∈ {C,D, quiti}.

4. If os
(r)
i = C, then Pi sends SC

(r)
i := SC

(r)
pkj ,ski

(si) to Pj . Else if os
(r)
i = D, then Pi sends SC

(r)
i := SC

(r)
pkj ,ski

(s′i) to

Pj , where s′i(�= si) is an invalid share. Otherwise, Pi quit the game.

Pi receives message from Pj(�= Pi):Pi

1. receives SC
(r)
j from Pj . If share SC

(r)
j passes verification of the UNSCpkj ,ski

(SC
(r)
j ) whether C0 = C(si ⊕ sj), then

Pi updates the Pj ’s reputation θ
(r)
j := PrPj

(θ
(r)
j |C) and halts. Else θ

(r)
j := PrPj

(θ
(r)
j |D) and halts.

2. updates the Pj ’s reputation θ
(r)
j := PrPj

(θ
(r)
j |quitj) and halts without Pj sending anything.

4 Bayesian 2-out-of-2 secret sharing

This section describes Bayesian secret sharing protocol of the 2-out-of-2 case based on the above analysis.

We give the formal specification in Table 3. Our protocol has two phases: the sharing phase and the

reconstruction phase.

Sharing phase. In this phase, a dealer distributes shares to both parties. We assume that the dealer

is also rational rather than honest or dishonest, and the dealer can distribute the shares successfully. We

do not discuss the rational dealer problem in this paper. The rational dealer case is shown in [17]. The

dealer first commits the secret s using a public one-way function C(·) and then generates a ciphertext σi

using the algorithm SC, which signcrypts si with dealer’s private key as well as Pi’s public key. Following

the dealer sends the ciphertext σi to party Pi and broadcasts C. Finally, by receiving σi, Pi can verify

the validity of the share and get si by the algorithm UNSC.

Reconstruction phase. The recovery phase is done in a series of rounds, each round constituting

one message which is sent by each player. No private channel is needed between two parties since

the message is signcrypted by each sender using a signcryption scheme. There is no need to assume
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simultaneous communication, although messages could be simultaneously sent, since every party makes

decision based on his/her beliefs and types.

Theorem 2. The protocol in Table 3 induces a PBE (C,C) if there exists a completely honest player

(i.e., ∃Pi, s.t. θ
h
i = 1), and if there exists a completely dishonest player (i.e., ∃Pj , s.t. θ

d
j = 1), no rational

player will cooperate with each other.

Proof. A complete honest player Pi always adopts either the action C or the special action quitPi.

For the other party Pj , according to Table 3, it is best to respond to action C by the expected payoff

maximization rules. Otherwise, his/her payoff will be less. When he/she chooses C, the best action of a

complete honest player is also the action C by Proposition 1. Hence, the rational entities will cooperate

with each other. According to Theorem 1, the strategic profile (C,C) is a PBE in this case.

On the other hand, for a completely dishonest player, then (D,D) is a PBE too. So, they will not

cooperate.

5 Bayesian t-out-of-n secret sharing

This section will describe extensions of the above protocol to the t-out-of-n case, denoted by
∏

t,n.

Assumping that t parties being active during the recovery, the protocol
∏

t,n can be resilient to coalitions

of up to t − 1 players. Assume that communication can be over a synchronous peer-to-peer network

without simultaneity. The formal specification is given in Table 4.

As in the 2-out-of-2 case, the protocol
∏

t,n has two phases: the sharing phase as well as the recon-

struction phase. In the sharing phase, the dealer chooses a random polynomial F (x) of (t − 1)-degree

subject to the restraint F (0) = s, as well as gives the signcryption sharei of F (i) combined with the

public information C to player Pi (for i = 1, . . . , n). In the reconstruction phase, every party Pi makes

decision in terms of its beliefs and the reputation of its opponents P−i to maximize its expected utility.

Any party Pi who has t valid shares can recover F (x) (and hence s) by interpolating the polynomial.

Furthermore, a party who gets fewer than t shares cannot deduce any information about s. See Table 4

for details.

Theorem 3. Under the protocol
∏

t,n in Table 4, all active rational parties cooperate together if they

believe that there exist at least (t∗ − t+ 1) parties whose θhj > 1/2, and they will not cooperate if there

are (t∗ − t+ 1) parties whose θhj < 1/2, where t∗ stands for the number of the active parties during the

reconstruction phase.

Proofs are omitted due to space limitations, as well as the proof is exactly analogous to the proof of

Theorem 2.

6 Discussion

In this section, some further issues will be considered to fulfill this work of secret sharing from Bayesian

rationality in game theory setting.

6.1 Asynchronous networks

Many previous rational secret sharing schemes [3,7,9,18,19] rely on the existence of simultaneous broadcast

channel. The proposed protocol
∏

t,n can be used even when players communicate over an asynchronous

point-to-point network. Under the circumstances, players cannot make out an abortion which derives

from a delayed message. Therefore, the protocol is modified as follows: each player continues doing the

next round as soon as he/she gets t − 1 valid messages which are derived from the previous round, as

well as only quits if he/she receives an invalid message derived from someone as in the case of [12]. Every

party easily verifies the share validity by signcryption scheme in our protocol. Our protocols in Tables 3

and 4 can run over asynchronous networks if every party makes decision according to its expected utility

maximization and Bayes rule.
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Table 4 The t-out-of-n secret sharing protocol
∏

t,n

Bayesian secret sharing
∏

t,n

The protocol of secret sharing for the t-out-of-n case consists of two phases: sharing phase and reconstruction phase.

Sharing phase

In order to share a secret s ∈ {0, 1}l among P = {P1, . . . , Pn}, the dealer and all parties do the following:

1. Dealer generates (pkd, skd)← Gen(1k) and party Pi do (pki, ski)← Gen(1k), for all Pi ∈ P.
2. Dealer chooses random (t − 1)-degree polynomials F ∈ F2l [x] subject to F (0) = s.

3. Dealer computes si := F (i),Ci = C(si), for all i ∈ {1, . . . , n} and C0 = C(s), where C(·) is the one-way function,

denoted by C = {C0, C1, . . . , Cn}.
4. Dealer sends sharei and C to Pi, where sharei := SCspd,pki

(si), for all Pi ∈ P.
5. When every Pi receives sharei and C from dealer, it can verify valid share and get the si by UNSCpkd,ski

(sharei).

Reconstruction phase

When it is time for recovery, assume that I is the indices of the t active parties, party Pi selects actions sPi
∈

{C,D, quitPi
} at the same time, according to their beliefs and Bayes rules, with Pi’s type being θi ∈ [0, 1] for i ∈ I.

denoted by P−i = P(i∈I)\Pi. In each round r = 1, 2, . . . , the players do:

Pi sends message to P−i: For all Pj ∈ P−i, Pi

1. estimates θh
(r)

j := PrPi
(θ

(r−1)
i |θj), θd(r)j := 1− θh

(r)

j . (assume that θh
(0)

j > 1/2).

2. computes α
(r)
h (C) := PrPj

(C|θh(r)

j ), α
(r)
h (D) := PrPj

(D|θh(r)

j ) and α
(r)
h (quitPj

) := PrPj
(quitPj

|θh(r)

j ). Likewise,

α
(r)
d (C), α

(r)
d (D) and α

(r)
d (quitPj

).

3. computes its expected utility maximization using results of the above steps, where the optimal strategy is denoted

by os
(r)
i ∈ {C,D, quiti}.

4. If os
(r)
i = C, then Pi sends SC

(r)
i := SC

(r)
pkj ,ski

(si) to Pj . Else if os
(r)
i = D, then Pi sends SC

(r)
i := SC

(r)
pkj ,ski

(s′i) to

Pj , where s′i(�= si) is a invalid share. Otherwise, Pi quits the game.

Pi receives message from Pj(�= Pi):

1. Pi receives SC
(r)
j from Pj . If share SC

(r)
j passes verification of the UNSCpkj ,ski

(SC
(r)
j ) whether Cj = C(sj), then

Pi updates the Pj ’s reputation θ
(r)
j := PrPj

(θ
(r)
j |C) and halts. Else θ

(r)
j := PrPj

(θ
(r)
j |D) and halts.

2. If Pj does not send anything, then Pi updates the Pj ’s reputation θ
(r)
j := PrPj

(θ
(r)
j |quitj) and halts.

6.2 Computational PBE

An important issue is that we should consider computational Perfect Bayesian Equilibrium (CPBE)

in cryptographic protocols. Since verification of the receiving messages, in our model depends on a

signcryption algorithm SC(·) and the one-way function C(·), we had better consider computational issues

when defining PBE. Based on the concepts of computational equilibria proposed in the quote references,

we can define an efficient strategy to be Bayes rationality in the computational setting. That is, if after

any information sets, any resultful defections of a single party can produce a earnings of at most ε(k),

with ε(k) being a negligible function. It is required that these strategies satisfy Bayes requirements

1–4. In the computational setting, Katz1) gave the further consideration for the definition of subgame

perfect equilibrium. He presented that the probability, a history happens, should be contained in this

definition, while the required rationality after any history. Zhang [7] believes that the rational setting is

very complicated, as well as the bounded rationality maybe frequently results in unexpected outcomes. It

is difficult to define the Bayes rationality of rational secret sharing properly in the computational setting,

as well as there is still a long way to go.

Another important issue is that we need to define the k-resilient PBE to take into account the rational

secret sharing for the t-out-of-n case in Bayesian game. In Section 5, we only designed a very simple

Bayesian t-out-of-n secret sharing scheme without further considering k-resilient PBE. Intuitively, after

any information sets all parties should persist in the original strategies except that a group of k parties

collaborate to defect, but the payoff of any one of the k defectors cannot be increased. To use our proposed

t-out-of-n game model, a possible solution is that all parties jointly decide a random order on the k bad

reputation parties, as well as in the next round, the k parties are asked for sending messages based on

this order first. If none of these parties defects, then the remainder of parties are demanded to send their

share simultaneously, otherwise the rest of parties quit this game or select action D. Here, referring to
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the concepts of k-resilient equilibria which are proposed in previous work [14], we can analogously define

k-resilient PBE. In fact, both Table 3 and Table 4 are 1-resilient. When there exists a bad reputation

party who chooses action D, other parties will select the action D or quit according to its maximizing

expected utility.

7 Conclusion

We have modeled the secret sharing as a dynamic game of incomplete information (or Bayesian dynamic

game). We first analyze the 2-out-of-2 secret sharing with Bayesian game and prove that both parties

cooperate in the presence of a complete honest party, which is a PBE. Based on these results, we propose

the two-party and the multiparty setting Bayesian secret sharing. The main advantage of introducing

the Bayesian games is that the parties will select the strategy, which is mutually beneficial according to

party’s beliefs and type. Thus, a long-term cooperative relation would be maintained among the parties

to gain more benefits. Our techniques can certainly be extended to the multi-party secure computation.

We hope that the notion of Bayesian games can be introduced to other cryptographic primitives as well

as distributed computing problems, where these parties are of different types (for honest or malicious

parties). We should enhance the scope for problem–solving strategies in asynchronous networks.
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