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Abstract Extreme learning machine (ELM), as a new learning framework, draws increasing attractions in

the areas of large-scale computing, high-speed signal processing, artificial intelligence, and so on. ELM aims to

break the barriers between the conventional artificial learning techniques and biological learning mechanism and

represents a suite of machine learning techniques in which hidden neurons need not to be tuned. ELM theories

and algorithms argue that “random hidden neurons” capture the essence of some brain learning mechanisms as

well as the intuitive sense that the efficiency of brain learning need not rely on computing power of neurons.

Thus, compared with traditional neural networks and support vector machine, ELM offers significant advantages

such as fast learning speed, ease of implementation, and minimal human intervention. Due to its remarkable

generalization performance and implementation efficiency, ELM has been applied in various applications. In

this paper, we first provide an overview of newly derived ELM theories and approaches. On the other hand,

with the ongoing development of multilayer feature representation, some new trends on ELM-based hierarchical

learning are discussed. Moreover, we also present several interesting ELM applications to showcase the practical

advances on this subject.
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1 Introduction

Feedforward neural networks (NNs) [1–5] have been widely used in various areas of machine learning in

the past decades. NN theories [6–9] show that single hidden layer feedforward neural networks (SLFNs)

with additive or radial basis function (RBF) hidden nodes can work as universal approximators provided

that all the parameters of the networks are adjustable. Theoretically, SLFNs could approximate nonlinear

mappings from the input samples and establish models for a large amount of natural or artificial signals

that conventional techniques may fail to handle with. The most representative training method for SLFNs

is called “back propagation” (BP) algorithm, which calculates the gradient of a loss function with respect

to all the weights in the network and updates the weights for minimizing the loss function. However, the

parameter tuning of BP-based NNs is usually time consuming and cannot handle the overfitting problem.
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It is not surprising that the training process may take several hours/days or even more time using BP-like

gradient-based methods. Thus, SLFNs or BP-based NNs are feasible but usually “expensive and costly”.

Nowadays, we are entering the era of “big-data”, and as the development of high-speed signal process-

ing, fast and efficient feature learning and signal representation is becoming an emergent research topic.

Extreme learning machine (ELM) [10–12] is one of the leading trends for fast learning. Unlike the other

traditional learning algorithms, for example, BP-based NNs [1], or support vector machine (SVM) [13],

the parameters of hidden layers of ELM are randomly established and need not be tuned, thus the train-

ing of hidden nodes can be established before the inputs are acquired. Also, Huang et al. [14–16] have

proved that the SLFNs with randomly generated hidden neurons and output weights computed by ridgre

regression still maintain the universal approximation capability of SLFNs, even the input weights are

randomly assigned and prefixed.

Therefore, ELM stands out from other learning methods with the following unique characteristics:

extremely fast training, good generalization, and universal approximation capability. In other words,

ELM achieves stable solutions for the SLFNs and has been demonstrated to have excellent learning

accuracy and speed in various applications, such as ship detection [17], super resolution [18], image

quality assessment [19,20], and human action recognition [21].

Recently, ELM has been extended to different research fields and gained great progresses. An incre-

mental ELM (I-ELM) is proposed in [22], where the hidden nodes are incrementally constructed and the

output weights are determined accordingly. Another ELM variant has also been developed in the case of

online sequential learning [23,24], and the input data can be processed sequentially, that is, one-by-one

or chunk-by-chunk with fixed or varying chunk size. Huang et al. [25] extend ELM for both semisuper-

vised and unsupervised tasks based on the manifold regularization, and the unlabeled or partially labeled

samples are clustered using ELM.

However, the aforementioned works fail to avoid the shortcoming of SLFNs. That is, when dealing

with natural scenes (e.g., visual and acoustic signals) or practical applications (e.g., image classification,

voice recognition), the original ELM and/or its variants cannot achieve a satisfactory feature learning

performance, due to its inherent shallow architecture of SLFNs. A multilayer learning architecture using

ELM-based autoencoder as its building block is developed in [26]. The original inputs are decomposed

into multiple hidden layers, and the outputs of the previous layer are used as the inputs of the current

one. The autoencoders are stacked layer by layer in the hierarchical structure, and the encoded outputs

are fed into the last layer for decision making using the supervised least mean square optimization.

From the above-mentioned discussions, it is obvious that the theories and applications of ELM have

been extensively studied in the past few years, though ELM itself is still a new learning technique.

Therefore, a systematic and up-to-date review of the ELM theoretical and practical developments will be

of great interest to the related research community. In this paper, we aim at a comprehensive overview

of the current research status in the area of ELM and introduce its new research trends, as well as the

state-of-the-art applications.

The rest of this paper is organized as follows. Section 2 introduces the current research status of ELM,

including the fundamental theories and implementations of ELM, and other enhanced ELM variants.

Section 3 describes the new leading trend in ELM: multilayer learning with meaningful representations.

Section 4 introduces several real-world applications incorporating ELM theories, while Section 5 concludes

this paper.

2 Current status: single layer no-propagating learning

Over the past few decades, conventional signal computing and artificial intelligence techniques meet some

inevitable bottlenecks in terms of algorithmic learning: (1) how to avoid the time-consuming computation

while the data dimension is increasing rapidly; and (2) how to establish an estimation before any mean-

ingful observations (like human does). As a newly emerging learning architecture, ELM provides fast

solutions and sheds some light upon the said issues that how to effectively deal with these computational

bottlenecks. It adopts a single layer scheme that no propagation is needed and can be solved by simple
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least square method. Also, its input weights are randomly assigned and fully independent of the input

samples.

To help others gain a better understanding of the concept and strategy of ELM, a review of the current

works on ELM is presented in this section. The original ELM is to be first introduced, which includes

the theory of universal approximation capability for randomly generated network and the implementa-

tion details of ELM. Then, its typical variants are discussed, including incremental learning, sequential

learning, and semisupervised/unsupervised learning.

2.1 Original ELM

Suppose that SLFNs with n hidden nodes can be represented by the following equation:

fn(x) =

n∑

i=1

Gi(x, ai, bi) ∗ βi, ai ∈ Rd, bi, βi ∈ R, (1)

where Gi(·) denotes the ith hidden node activation function, ai is the input weight vector connecting the

input layer to the ith hidden layer, bi is the bias weight of the ith hidden layer, and βi is the output

weight. For additive nodes with activation function g, Gi is defined as follows:

Gi(x, ai, bi) ∗ βi = g(ai × x+ bi), (2)

and for RBF nodes with activation function g, Gi is defined as

Gi(x, ai, bi) ∗ βi = g(bi‖x− ai‖). (3)

Huang et al. [14] have proved that the SLFNs are able to approximate any continuous target functions

over any compact subset X ∈ Rd with the above random initialized adaptive or RBF nodes. Let L2(X)

be a space of functions f on a compact subset X in the d-dimensional Euclidean space Rd such that |f |2
are integrable, that is,

∫
X |f(x)|2dx < ∞. For u, v ∈ L2(X), the inner product 〈u, v〉 is defined by

〈u, v〉 =
∫

X

u(x)v(x)dx. (4)

The norm in L2(X) space is denoted as ‖ · ‖, and the closeness between network function fn and the

target function f is measured by the L2(X) distance:

‖fL − f‖ =

(∫

X

|fn(x)− f(x)|2dx
)2

. (5)

Theorem 1. Given any bounded nonconstant piecewise continuous function g: R → R, if span {G(a, b, x):

(a, b) ∈ Rd×R} is dense in L2, for any target function f and any function sequence gL(x) = G(aL, bL, x)

randomly generated based on any continuous sampling distribution, limn→∞ ‖f − fn‖ = 0 holds with

probability one if the output weights βi are determined by ordinary least square to minimize ‖f(x) −∑L
i=1 βigi(x)‖.
The theorem above shows that randomly generated networks with the outputs being solved by least

mean square are able to maintain the universal approximation capability, if and only if the activation

function g is nonconstant piecewise and span {G(a, b, x) : (a, b) ∈ Rd ×R} is dense in L2.

Based on this theorem, ELM can be established for fast learning. Given a training setN = {(xi, ti)|xi ∈
Rn, ti ∈ Rm, i = 1, . . . , L}, where xi are the training data, ti represents the class label of each sample, and

L denotes the number of hidden nodes. The ELM training algorithm can be summarized as follows [11]:

(1) Randomly assign the hidden node parameters: the input weights wi and biases bi, i = 1, . . . , L.

(2) Calculate the hidden layer output matrix H .

(3) Obtain the output weight

β = H†T, (6)
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where T = [t1, . . . , tN ]T and H† is the Moore-Penrose (MP) generalized inverse of matrix H .

The orthogonal projection method [27] can be efficiently used for the calculation of MP inverse: H† =
(HTH)−1HT, if HTH is nonsingular; or H† = HT(HTH)−1, if HHT is nonsingular. According to the

ridge regression theory [28], it was suggested that a positive value 1/λ be added to the diagonal of HTH

or HHT in the calculation of the output weights β, and by doing so, the resultant solution is more stable

and has better generalization performance. That is, to improve the stability of ELM, we can have

β = HT

(
1

λ
+HHT

)−1

T, (7)

and the corresponding output function of ELM is:

f(x) = h(x)β = h(x)HT

(
1

λ
+HHT

)−1

T, (8)

or we can have

β =

(
1

λ
+HHT

)−1

HTT, (9)

and the corresponding output function of ELM is

f(x) = h(x)β = h(x)

(
1

λ
+HHT

)−1

HTT. (10)

Table 1 shows the performance comparison among SVM, LS-SVM [29], and ELM with Gaussian kernel

(please refer to [11] for more details). It can be seen that ELM achieves much better generalization

performance in multiclass classification cases than those of SVM and LS-SVM.

2.2 Incremental ELM (I-ELM)

An incremental version of ELM learning algorithm is proposed in [14], denoted as I-ELM. It adopts an

incremental construction method that the hidden nodes can be incrementally added (before the training

there is no node in the network).

The training of I-ELM uses an estimated parameter based on the training samples and the residual

error:

βn =
E ×HT

H ×HT
=

∑N
p=1 e(p)h(p)∑N
p=1 h

2(p)
, (11)

where h(p) is the output of new hidden node for the pth input training sample, and e(p) is the corre-

sponding residual error before this new hidden node is added. H = [h(1), . . . , h(N)]T is the activation

vector of the new node for the whole N samples, and E = [e(1), . . . , e(N)]T is the residual vector before

this new hidden node is added. Practically, a maximum number of hidden nodes are usually given rather

than reaching zero approximation error.

Based on the above estimation, the incremental constructive method for I-ELM can be summarized

as follows: Given a training set N = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, . . . , L} , activation function g(x),

maximum node number Ñmax, and expected learning accuracy ε.

Step 1 Initialization:

Let Ñ = 0 and residual error E = t.

Step 2 Incremental Learning: while Ñ < Ñmax and ‖E‖ > ε,

(a) increase the number of hidden nodes Ñ = Ñ + 1;

(b) assign random input weight aÑ and bias bÑ for the newly added hidden node;

(c) calculate the output weight βÑ for the new hidden nodes:

βÑ =
E ×HT

Ñ

HÑ ×HT
Ñ

; (12)

(d) update the corresponding residual error and go to Step 2(a):

E = E − βÑ ×HÑ . (13)
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2.3 Online sequential ELM (OS-ELM)

In some real-time applications, the input data need to be updated online. In this scenario, we need to

accordingly update the network with newly obtained samples. As the training data are grouped one-by-

one or chunk-by-chunk, online sequential ELM (OS-ELM) [23] is preferred and retraining is not required

whenever a new chunk of data are received. The sequential implementations of the least square solution

of OS-ELM are as follows:

Step 1 Initialization:

Initialize the training using a small chunk of initial data samples N0 = {(xi, ti)}N0

i=1 from the given

training set N = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, . . . , L}.
(a) Randomly generate the hidden node parameters (ai, bi), i = 1, . . . , L.

(b) Calculate the initial hidden layer output matrix H0.

(c) Estimate the initial output weight β(0) = P0H
T
0 T0, where P0 = (HT

0 H0)
−1 and T0 = [t1, . . . , tN0 ]

T.

(d) Set k = 0.

Step 2 Sequential Learning:

(a) Present the (k+1)th chunk of new observations: Nk+1 = {(xi, ti)}
∑k+1

j=0 Nj

i=
∑

k
j=0 Nj+1

, where Nk+1 denotes

the number of observations in the (k + 1)th chunk.

(b) Calculate the partial hidden layer output matrix Hk+1 for the (k + 1)th chunk of data Nk+1.

(c) Calculate the output weight β(k+1):

Pk+1 = Pk − PkH
T
k+1(I +Hk+1PkH

T
k+1)

−1Hk+1Pk, (14)

β(k+1) = β(k) + Pk+1H
T
k+1(Tk+1 −Hk+1β

(k)). (15)

(d) Set k = k + 1, go to Step 2(a).

2.4 Semisupervised ELM (SS-ELM) and unsupervised ELM(US-ELM)

The original ELM and its aforementioned variants are primarily used for supervised learning tasks such

as classification and regression. However, for some other tasks, for example, information retrieval and

fault diagnosis, it may be time consuming and hard to collect large amount of labeled data. To tackle

this problem, semisupervised ELM (SS-ELM) and unsupervised ELM(US-ELM) [25] are developed to

deal with the cases that only few samples are labeled or the entire training set is unlabeled. In this

subsection, we briefly introduce the implementation details of SS-ELM and US-ELM and compare them

with relevant state-of-the-art approaches.

2.4.1 SS-ELM

In semisupervised case, we have few labeled data and plenty of unlabeled data. SS-ELM incorporates

the manifold regularization to leverage unlabeled data to improve the classification accuracy when the

labeled data are scarce. The SS-ELM algorithm is summarized as follows:

Given a training set that consists of labeled samples: Nl = {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, . . . , L}
and unlabeled samples: Nu = {(xi)|xi ∈ Rn, i = 1, . . . , U}.
Step 1 Construct the graph Laplacian L [30] from both Nl and Nu.

Step 2 Initiate an ELM with Nh hidden nodes with random input weights and biases and calculate the

output matrix H .

Step 3 Choose the hyperparameter C and λ.

Step 4 if the number of Nh is less than the number of Nl, compute the output weight β:

β = (HT(INh
+HTCH + λHTLH)−1HTCT, (16)

where I is an identity matrix of dimension Nh, H is the output weight of the hidden nodes, and T is the

label of the labeled samples Nl.
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Table 2 Comparison of proposed SS-ELM, pure supervised and state-of-the-art semisupervised algorithms

Data set Subset SVM ELM TSVM LapRLS LapSVM SS-ELM

μ 9.33±2.00 8.91±2.29 5.43±1.11 6.03±1.32 5.52±1.15 5.24±1.17

G50C ν 9.83±3.46 8.20±3.05 4.67±1.81 6.17±3.66 5.67±2.67 4.07±0.95

τ 10.06±2.80 9.20±2.07 4.96±1.37 6.54±2.11 5.51±1.65 4.96±1.53

μ 16.23±2.63 11.28±1.95 13.68±3.09 8.07±2.05 8.31±2.19 6.04±1.26

COIL20 (B) ν 18.54±6.20 11.30±2.29 12.25±3.99 7.92±3.96 8.13±4.01 5.95±1.68

τ 15.93±3.00 12.22±2.00 15.19±2.52 8.59±1.90 8.68±2.04 7.33±2.15

μ 17.00±2.74 17.49±2.44 22.75±2.68 8.87±1.88 8.84±2.20 9.24±2.79

USPST (B) ν 18.17±5.94 17.40±2.01 21.40±3.78 10.17±4.55 8.67±4.38 9.40±2.07

τ 17.10±3.21 17.98±2.86 22.06±2.52 9.42±2.51 9.68±2.48 10.98±2.99

μ 29.49±2.24 29.23±1.68 24.61±3.16 10.35±2.30 10.51±2.06 10.92±2.05

COIL20 ν 31.46±7.79 29.25±2.81 21.25±3.63 9.79±4.94 9.79±4.94 10.75±3.02

τ 28.98±2.74 29.19±3.61 23.83±3.61 11.30±2.17 11.44±2.39 11.16±1.97

μ 23.84±3.26 23.91±2.36 18.92±2.81 15.12±2.90 14.36±2.55 13.51±1.89

USPST ν 24.67±4.54 24.00±2.33 17.53±4.29 14.67±3.94 15.17±4.04 13.47±2.65

τ 23.60±2.32 23.85±2.71 18.92±3.19 16.44±3.53 14.91±2.83 13.85±2.41

else compute the output weight β:

β = HT(INu+Nl
+ CHHT + λLHHT)−1CT, (17)

where the identity matrix I is now with dimension equal to the whole number of samples (L+ U).

The performance comparison of different semisupervised methods is shown in Table 2. It is obvious that

SS-ELM outperforms the supervised SVMs and ELMs consistently on all data sets, which demonstrates

that SS-ELM is able to explore the unlabeled data effectively to achieve significantly better performance

than pure supervised learning algorithms. We can also observe that SS-ELM yielded comparable accuracy

with the three state-of-the-art semisupervised learning algorithms.

2.4.2 US-ELM

In the unsupervised setting, the entire training data are unlabeled, and our target is to find the underlying

structure of the original data. Theoretically, the formation of US-ELM is similar to that of SS-ELM,

which can be presented as follows:

Given an unlabeled training sample set: Nu = {(xi)|xi ∈ Rn, i = 1, . . . , U} and the expected output

dimension is No.

Step 1 Construct the graph Laplacian L from Nu.

Step 2 Initiate an ELM with Nh hidden nodes with random input weights and biases and calculate

the output matrix H .

Step 3 if the number of Nh is less than the number of training sample U , find the generalized

eigenvector v2, v3, . . . , vNo+1 through the No + 1 smallest eigenvalues by the following equation:

(INh
+ λHTLH)v = γHTHv. (18)

Let β = [ṽ2, ṽ3, . . . , ṽNo+1], where ṽi = vi/‖Hvi‖, i = 2, . . . , No + 1.

else find the generalized eigenvector u2, u3, . . . , uNo+1 through the No + 1 smallest eigenvalues by the

following equation:

(INu + λLHHT)u = γHHTu. (19)

Let β = HT[ũ2, ũ3, . . . , ũNo+1], where ũi = ui/‖HHTui‖, i = 2, . . . , No + 1.
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Table 3 Performance comparison of the proposed US-ELM

Data set Accuracy k-means DA SC LE USELM

IRIS
Average 82.28±13.93 89.69±14.01 76.16±8.92 80.85±13.82 86.06±15.92

Best 89.33 97.33 84.00 89.33 97.33

WINE
Average 94.47±3.85 95.24±0.48 93.32±11.36 96.63±0 96.63±0

Best 96.63 95.51 96.63 96.63 96.63

SEGMENT
Average 60.53±5.86 59.06±4.03 65.64±4.72 62.39±5.03 64.22±5.64

Best 67.10 62.21 77.10 68.27 74.50

COIL20
Average 57.92±5.44 41.43±1.15 42.21±4.88 64.76±7.82 87.58±3.47

Best 70.56 44.86 55.21 80.00 90.35

USPST
Average 65.42±3.22 69.04±4.81 69.37±10.39 72.44±6.20 75.78±5.90

Best 72.45 80.57 84.00 81.32 87.39

YALEB
Average 38.46±3.74 32.24±1.70 42.32±3.37 41.96±3.52 44.08±3.24

Best 47.27 35.76 47.27 49.09 50.91

ORL
Average 50.86±3.03 35.06±1.36 52.53±2.74 52.94±3.20 59.26±3.54

Best 58.75 38.00 57.25 61.75 67.50

The average and the best clustering accuracies of these algorithms are reported in Table 3. From the

results, we can conclude that US-ELM has obtained satisfying results on all the data sets. Considering

the criterion of best clustering accuracy, US-ELM yielded the best results among the five algorithms on

six out of the seven data sets.

3 New trend: multilayer learning with high level representations

Feature learning is currently one of the most attractive leading trends in machine learning. Learning

meaningful representations of the input data helps to extract useful information when building classifiers

or other predictors. In the case of probabilistic models, a good representation can capture the posterior

distribution of the observed inputs and is expected to significantly improve the learning performance.

In the existing works, ELM is also extended to a multilayer hierarchical structure, which is based on

an unsupervised learning method, i.e., ELM autoencoder (ELM-AE). In this section, we introduce the

autoencoder in detail and give an overview of the ELM multilayer framework.

3.1 ELM autoencoder (ELM-AE)

Mathematically, an autoencoder maps the input data x ∈ [0, 1]d into a higher level representation, and

then uses latent representation y ∈ [0, 1]d
′
through a deterministic mapping y = hθ(x) = g(Wx + b),

parameterized by θ = {W, b}, where g(·) is the activation function, W is a d′ × d weight matrix, and b

is a bias vector. The resulting latent representation y is then mapped back to a reconstructed vector

z ∈ [0, 1]d in the input space z = hθ′(y) = g(W ′y + b) with θ′ = {W ′, b′}.
The autoencoder performs as feature extractor in a multilayer learning framework. It uses the en-

coded outputs to approximate the original input by minimizing the reconstruction errors. Unlike the

original autoencoder, the ELM-based autoencoder [26] randomly maps the input data though nonlinear

transformation and then searchs the path back to the original data with optimization method.

3.1.1 Solution of nonorthogonal problem: ridge regression

The nonorthogonal model introduced in Section 2 could be easily adopted in ELM-AE proposed in [26].

Using randomly mapped outputs as latent representation, we could directly use the ridge regression as
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optimization method to obtain the new basis through random mapping.

The output weights β of ELM-AE are responsible for learning the transformation from the feature

space to the input data. When the hidden nodes are less than the input dimension, the ELM-AE

tends to achieve compressed representations, and the output weights β are calculated by the following

equation [26]:

β =

(
1

λ
+HTH

)−1

HTX, (20)

where H = [h(1), . . . , h(N)]T is the hidden layer output vector and X = [x(1), . . . , x(N)]T is the original

input data.

For the equal-dimension ELM-AE representations, the output β turns to be the solution of orthogonal

projection:

β = H−1X, (21)

βTβ = I. (22)

However, due to the use of �2 penalty in the original ELM, the extracted features by the ELM-AE

in [26] tend to be dense and may have redundancy. In this case, a more sparse solution is preferred.

3.1.2 Sparse representations: fast iterative shrinkage-thresholding algorithm (FISTA)

To generate more sparse and compact features of the inputs, an �1 optimization is performed for the

establishment of ELM-AE in [31], termed as recovery-based ELM (R-ELM). R-ELM uses the random

mapped data as the corrupted version of the original ones and adopts �1 optimization to recover it. Then,

the recovered data are finally utilized for the layer-wise unsupervised training.

The optimization model of R-ELM sparse autoencoder can be denoted as the following equation.

Oβ = argmin
β

{‖Hβ −X‖2 + ‖β‖�1
}
, (23)

where X represents the input data, H denotes the random mapping output, and β are the hidden

layer weights to be obtained. Note that in the existing deep learning (DL) algorithms, X are usually

the encoding outputs of the bases β, which need to be adjusted during the iterations of optimization.

However, in the R-ELM, as we are to use random mapping for hidden layer feature representation, X are

the original data and H is the random initialized output which need not be optimized [13]. Furthermore,

the experiments in the next section will show that it would not only help to improve the training time

but also the learning accuracy.

Hereinafter, we will describe the optimization algorithm for the �1 optimization problem. For clear

representation, we rewrite the object function in (23) as

Oβ = f(β) + g(β), (24)

where f(β) = ‖Hβ −X‖2, and g(β) = ‖β‖�1 is the �1 penalty term of the training model.

A fast iterative shrinkage-thresholding algorithm (FISTA) [32] is adopted to solve the problem in (24).

FISTA minimizes a smooth convex function with complexity of O(1/k2), where k denotes the iteration

times. The implementation details of FISTA are as follows [31]:

(1) Calculate the Lipschitz constant of the gradient of smooth convex function ∇f .

(2) Begin the iteration by taking y1 = β0 ∈ Rn, t1 = 1 as the initial points. Then, for k (k � 1):

(a) βk = pL(yk), where pL is given by

pL = argmin
β

{
L

2
‖β − (βk−1 − 1

L
∇f(βk−1)||2 + g(β)

}
. (25)

(b) tk+1 =
1+

√
1+4tk2

2 .

(c) yk+1 = βk + ( tk−1
tk+1

)(βk − βk−1).
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Figure 1 Architecture of ML-ELM framework.

By computing the iterative steps above, we could manage to perfectly recover the data from the

corrupted ones. Using the resultant bases β as the weights of the proposed autoencoder, the inner

product of the inputs and learned features would reflect the compact representations of the original data.

And as the autoencoder is adopted as the building block of the R-ELM, higher level feature represen-

tations can be generated by layer-wise comparison. Also, compared with the ELM-AE which uses the

inputs as outputs with traditional ridge regression method, the �1 optimization has been proved [32,33]

to be a better solution for data recovery and other applications. It will help to reduce the number of

neural nodes and thus further improve the testing time.

3.2 Multilayer ELM (ML-ELM)

Based on the principles of ELM-AE, the original ELM can be extended to a multilayer framework [26],

as shown in Figure 1. Unlike the commonly used greedy layer-wise training in traditional DL methods

[34–39], the ML-ELM training architecture is structurally divided into two separate phases: unsupervised

hierarchical feature representation and supervised regression. It could also be seen that after unsupervised

hierarchical training in the ML-ELM, the resultant outputs of the Nth layer are viewed as the high-level

features extracted from the input data.

Before unsupervised feature learning, the input raw data will be transformed into random feature space,

which can help to exploit hidden information among training samples. Then, a N -layer unsupervised

learning is performed to obtain the high-level sparse features. Mathematically, the output of each hidden

layer can be represented as

Hi = g(Hi−1 × β), (26)

where Hi is the output of the ith layer (i ∈ [1, N ]), Hi−1 is the output of (i − 1)th layer, g(·) denotes

the activation function of the hidden layers, and β represents the weighting parameter. Note that here

each hidden layer of ML-ELM is an independent module and functions as a separated feature extractor.

As the layers increasing, the resulting feature becomes more compact. Once the feature of the previous

hidden layer is extracted, the weights or parameters of the current hidden layer will be fixed and need not

to be fine-tuned. This is totally different from the existing DL frameworks [34,35], where all the hidden

layers are put together as a whole system, with unsupervised initialization. The whole system needs to

be retrained iteratively using BP-based NNs. Thus, the training of ML-ELM would be much faster than

that of the DL.

The comparisons of different multilayer learning algorithms are presented in Table 4, and one can see

that ELM-based ones achieve better learning accuracies with much faster learning speed. Furthermore,

it is worth noting that the ML-ELM frameworks (R-ELM and ELM-AE) outperform the original single

layer ELM [11] in both learning accuracy and training time. And the reason may be that hierarchical

architecture captures more sparse and meaningful feature representations and less nodes are needed.
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Table 4 Performance comparison of different methods

Method Accuracy (%) Training time (s)

R-ELM [31] 99.12 281.37

ELM-AE [26] 99.01 444.655

DBN [34] 98.89 20580

DBM [39] 99.05 68246

ELM [11] 97.39 790.96

Table 5 Detection performance of different methods

Method MF-SVM [40] SA-SVM [41] SDA-SVM SDA-ELM

Accuracy (%) 94.57 91.63 96.45 97.58

Missing ratio (%) 5.43 8.37 3.55 2.42

False ratio (%) 3.32 5.64 2.03 1.44

Error ratio (%) 8.75 14.01 5.58 3.86

4 Applications

In practical applications, the training and implementation time of machine learning algorithms is usually

under certain limitations. In this case, traditional time-consuming learning frameworks (e.g., NNs, SVM,

and DL) face severe bottleneck, especially for real-time and high-speed tasks. To address this issue, ELM

could provid an accurate prediction of various input data with relatively high computational efficiency.

In this section, we will introduce different applications using ELM, and it should be noted that they share

some common characteristics: accurate and stable solution with extremely fast learning speed.

4.1 Ship detection

Ship detection with remote sensing images is of vital importance for maritime security and other applica-

tions, for example, traffic surveillance, protection against illegal fisheries, and sea pollution monitoring.

Vessel monitoring from satellite images provides a wide visual field and covers large sea area, and thus

achieves a continuous monitoring of vessels’ locations and movements. However, ship detection in optical

spaceborne images usually suffer from two main issues [40]: (1) weather conditions like clouds, mists,

ocean waves result in more pseudo-targets for ship detection. (2) optical spaceborne images with higher

resolution naturally lead to larger data quantity than other remote sensing images, and thus optical

spaceborne images are more difficult to be tackled for real-time applications.

To tackle these issues, a compressed domain ship detection framework using ELM for optical spaceborne

images is proposed in [17]. Compared with the previous works, this approach achieves faster and better

classification with its ELM-based multilayer feature representation model in compressed domain. The

overall architecture could be seen in Figure 2. Once ship candidates are extracted with traditional

threshold-based coarse segmentation, the feature extraction will be conducted. The singularities of the

low frequency component of wavelet decomposition are detected to train the first autoencoder SDA1 [37].

Then, the combination of high frequency components is used to train the second autoencoder SDA2.

The two autoencoders are viewed as feature extractors to obtain high-level features both in time and

space domains, and the resultant features are fused by ELM to make the final decision. As introduced

in above sections, the ELM learns extremely fast and could achieve better generalization than other

traditional learning algorithms. The results in Table 5 demonstrate that ELM-based scheme outperforms

the state-of-the-art methods in terms of both the detection accuracy.
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4.2 Image quality assessment

Numerous state-of-the-art perceptual image quality assessment (IQA) [42] algorithms share a common

two-stage process: distortion description/feature extraction followed by distortion effects pooling/feature

mapping. As for feature extraction, the widely used descriptors include pixel-based ones (e.g., lumi-

nance, contrast, gradient) and transformed ones (e.g., singular value decomposition (SVD), wavelet

transform). However, most of them seem to have some limitations and not constantly consistent with

human perception.

Nonnegative matrix factorization (NMF) [43,44] is capable of generating parts-based representations of

objects, which creates possibilities to reflect high-level parts-based visual processing in human brain [45,

46]. The well-known NNs and SVM have been applied in a number of IQA models [47–51]. However, they

both suffer from high computational complexity, overfitting, which influences the evaluation performance.

In [52], with NMF for extracting image features and ELM for feature mapping, a perceptual full-reference

IQA metric is proposed in Figure 3. The input reference and distorted images are first decomposed by

NMF, which finally results in similarity vectors. ELM then pools the similarity vectors into quality scores.

Table 6 shows the performance comparison of proposed metric and state-of-the-art existing full-reference

methods, including CD-MMF [51], SVDR [50], VGS [53], IGM [54], FSIM [55], ADM [56], GSIM [57],

and IW-SSIM [58]. The best performances of each criterion are highlighted in boldface.
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Table 6 Performance comparison of IQA metrics on TID database

DB Criteria NMF-ELM CD-MMF SVDR VGS IGM FSIM ADM GSIM IW-SSIM

SRCC 0.9465 0.9422 0.7771 0.9022 0.8902 0.8805 0.8617 0.8554 0.8559

TID KRCC 0.8913 0.8864 0.5841 0.8467 0.7104 0.6946 0.6842 0.6651 0.6636

(1700) PLCC 0.9511 0.9476 0.7889 0.9095 0.8858 0.8738 0.8690 0.8462 0.8579

RMSE 0.4188 0.4289 0.8246 0.5577 0.6228 0.6525 0.6620 0.7151 0.6895
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Figure 4 Comparison of tracking location errors on different data sets: (a) David Indoor and (b) Trellis.

4.3 Online visual tracking

Online incremental tracking refers to the tracking method which aims to learn and adapt a represen-

tation to reflect the appearance changes of the target. The appearance changes of the specified target

include pose variation and shape deformation. Apart from these, extrinsic illumination change, camera

motion, viewpoint, and occlusions inevitably cause large appearance variation. Modeling such appearance

variation is always one of the nature problems of tracking [59].

Based on the ML-ELM, a novel incremental tracking method is built in [60]. Unlike the conventional

online tracking method, more robust features are extracted using ML-ELM, and the classification per-

formance is far better compared with the probability models used in the conventional methods. Also,

as demonstrated in the previous section, the training time of ML-ELM is much less than other DL

architectures, and this ensures that ML-ELM has obvious advantages in the case of real-time tracking.

In the ML-ELM based tracking framework, as the training is incremental and needs to be online

updated, OS-ELM is applied for feature classification and updating. Note that the same sampling scheme

is adopted as that in compressive tracking (CT) [61], which is a popular real-time online tracking approach.

For ML-ELM tracking, the same initial position is labeled in the first frame, and the tracking results are

obtained from the maximum values of the classification responses. In the simulations, we compared the

feature extraction, feature updating, and classification performances of the ML-ELM and CT under the

same conditions.

The well-used David and Trellis video sequences are tested. The tracking location errors of ML-

ELM and CT are presented in Figure 4, and one can see that the error of ML-ELM (denoted as H-

ELM in Figure 4) is lower than that of the CT, and the tracking results of ML-ELM are with less

fluctuations among different frames. Besides, ML-ELM achieves real-time tracking (over 15 frames with

used sequences), by the advantages of fast training of ML-ELM framework.
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5 Conclusion

In this paper, an overview and comparison of a new learning technique, i.e., ELM, has been provided.

Specifically, we have highlighted the new trends of multilayer learning with ELM; those related to newly

emerged ELM-based methods have also been discussed in a more detailed way. Also, several state-of-the-

art ELM-based applications have been introduced.
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