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Abstract In social networks, link prediction predicts missing links in current networks and new or dissolution

links in future networks, is important for mining and analyzing the evolution of social networks. In the past

decade, many works have been done about the link prediction in social networks. The goal of this paper is to

comprehensively review, analyze and discuss the state-of-the-art of the link prediction in social networks. A

systematical category for link prediction techniques and problems is presented. Then link prediction techniques

and problems are analyzed and discussed. Typical applications of link prediction are also addressed. Achieve-

ments and roadmaps of some active research groups are introduced. Finally, some future challenges of the link

prediction in social networks are discussed.
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1 Introduction

A social network is a social structure made up of a set of social actors and a set of the ties between

these actors. A social network can be visualized as a graph, where nodes represent actors/participants

(individuals, organizations, et al.) and edges (i.e. links) correspond to ties/interactions/relationships

between actors. With the rapid development of internet, communication and cooperation between people

have become more convenient. In recent years, online social networks such as Facebook, Twitter and

Weibo, have become an important part of our daily life and provide us platforms to exchange information

with each other. Since the huge amounts of data on social networks has some obvious characteristics such

as high quality, big data, semi-structure and direct reflection of real human society, many researchers

from different areas or disciplines pay more and more attention to social networks. However, mining

and analyzing social network data is a non-trivial task, which will face two challenges: incompletion and

dynamic. First, almost all obtained social network data is incomplete since only part of social information

can be collected from social network platforms. Second, social networks are highly dynamic, that might

lead the nodes and edges to appear or disappear in the future. Therefore, predicting the missing or
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Figure 1 Published papers related to link prediction problem on ACM, IEEE, and Elsevier libraries.

unobserved links in current social networks and newly added or deleted links in future social networks

is very important, not only for understanding the evolution of social networks, but also for completing

current social networks. This problem is commonly known as the Link Prediction. Being one of the link

mining and analyzing tasks [1], link prediction has many important applications. First, it can be applied

to recommender systems in information retrieval and e-commerce, which can help people to find new

friends [2] and potential collaborators [3,4], provide interesting items in online shopping [5], recommend

patent partners in enterprise social networks [4] and cross-domain partners [6], find experts or co-authors

in academic social networks [7,8], and predict cell phone contacts in large scale communication network [9].

Second, it also can be used to infer the complete networks based on partial observed networks [10,11],

understand the evolution of networks better [12–15], and predict hyper-links in heterogeneous social

networks [16]. Finally, the link prediction techniques can also be applied in bioinformatics and biology,

for example, in health care and gene expression networks [17], predicting specialists who are more likely to

receive future referrals, and finding protein-protein interactions. Even in other domains such as security

related domain, it can be used to identify abnormal communications [18].

In the past decade, many efforts have been made by psychologists, computer scientists, physicists

and economists to solve the link prediction problem in social networks. Figure 1 shows the number of

published papers with search keywords “link prediction social network” on three important computer

science libraries: ACM, IEEE, and Elsevier respectively from 2000 to 2013. It can be seen that more

and more works pay attention to the link prediction in social networks, especially in the past five years,

there are thousands papers related to this problem every year. Therefore, the research trend on this

topic is growing. This paper carefully selects about 130 papers from 2000 to 2014, and most of which are

published in the prominent journals (Nature, Physical Review, Physica A, TKDD, TWEB, DKE, JSS,

JMLR, Social Networks, Computer Networks, and so on) and conferences (WSDM, SDM, KDD, JCDL,

ICDM, CIKM, ICDM, WWW, ISWC, IJCAI, ICML, SIGCOMM, NIPS, ASONAM, et al.). Figure 2

shows the publication date of selected papers, which reveals that most papers are published in the past five

years. Figure 3 shows that these selected papers are mainly finished by 19 countries, and the researchers

from USA, China, Japan, France, Switzerland are more active in this problem. Table 1 lists the top-10

institutions ranking by the number of published papers on link prediction, and we can see that not only

academic institutions such as Stanford university and Cornell university, but also industrial companies

such as IBM and Yahoo, are active in this problem. These facts also reflect that the link prediction in

social network problem have attracted more and more attention from academic and industrial researchers
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Figure 2 Statistics of selected papers by publication date.
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Figure 3 Statistics of selected papers by countries.

Table 1 Top-10 institutions ranking by number of published papers

Institutions Number of published papers

Stanford University 11

Cornell University 10

University of Fribourg 8

University of Notre Dame 8

University of Electronic Science and Technology of China 7

Tsinghua University 7

Universit Pierre et Marie CURIE 5

National Institute of Informatics 5

IBM T. J. Watson Research Center 5

Yahoo! Research 5

CS:87%

Physics: 7%

Economics: 3%

Management: 1% Others:2%

Figure 4 Statistics of disciplines of authors.

CS+Physics:6

CS+Economics:3

CS+Others:5

Physics+Others:1

Figure 5 Statistics of cross-discipline papers.

all over the world in recent years. Another interesting phenomenon is that link prediction problem also

attracts the attentions from different disciplines. Figure 4 illustrates the disciplines of all authors in

the selected papers and it is found that 98% authors are from four disciplines: computer science (87%),

physics (7%), economics (3%), and management (1%). In particular, according to Figure 5, only 15

(about 10%) papers are finished by cross-discipline authors: authors of 6 papers are from computer

science and physics, authors of 3 papers are from computer science and economics, and 5 papers have

co-authors from computer science and other disciplines. Therefore, researchers from different disciplines

are still independent and lack cooperation on this problem.

There have already been several excellent survey works for the link prediction problem [19–21]. Liben-

Nowell and Kleinberg [19] provide useful information and insights for link prediction problem, with special

reference to some classical prediction measures based on topological information of networks. This is a

pioneering and influential work, but after 7 years, it is not able to cover the latest progress of the link
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prediction research. Lü and Zhou [21] summarize popular link prediction algorithms for complex networks.

However, they emphasize on the contributions from physical perspectives, instead of the perspectives of

computer scientists. In addition, a complex network is a more abstract model than a real-world social

network that we discuss in this paper. Therefore, although the link prediction algorithms summarized

by Lü and Zhou are general and valuable, it still needs a new link prediction survey which will focus

on social networks. Hasan and Zaki [20] review some representative link prediction methods for social

networks by categorizing them, especially, the survey mainly considers three types of models proposed in

recent years: binary classification model, probabilistic model and linear algebraic model. It involves some

new representative link prediction works, and it is more suitable for experts, but it is not comprehensive

enough for a beginner who wants to learn the link prediction systematically.

To fill up these gaps of existing survey works, this paper tries to provide a comprehensive and systematic

survey for link prediction in social networks covering both classical and latest link prediction techniques,

link prediction problems, link prediction applications, and active research groups. First, it gives the

link prediction statement including formal definition, general solution framework and evaluation metric,

especially, a new category of link prediction is proposed according to two perspectives: link prediction

techniques and problems. Then link prediction techniques are presented from four kinds of aspects:

node-based metrics, topology-based metrics, social-theory-based metrics and learning-based methods.

Topology-based metrics and learning-based methods contain a lot of classical and new link prediction

techniques. Based on the link prediction techniques, popular problems that link prediction often faces

are discussed. Typical link prediction applications are additionally described. Active research groups

are also presented to demonstrate the different solution perspectives and emphases of leading researchers

about link prediction problems. Finally, besides the current achievements, some future challenges are

also discussed.

The structure of this paper is organized as follows. In the next section, we present the link predic-

tion definition, general link prediction solution framework, especially the category for link prediction

techniques and problems. Section 3 will discuss the classical and emerging link prediction techniques.

Section 4 describes the solutions for different problems in link prediction. Section 5 describes applications

of link prediction in social networks. Section 6 consists of a summary of the work of some active research

groups. We outline some future challenges in Section 7 and present conclusion in Section 8.

2 Problem statement

Consider a social network G(V,E) at a particular time t, where V and E are sets of nodes and links,

respectively. The link prediction aims to predict new links or deleted links between nodes for a future time

t′ (t′ > t), or missing links or unobserved links, in current network. This problem can be explained by

a simple social network about five persons in Figure 6, in which solid links indicate interactions already

existed at time t, and dashed links indicate links that have newly appeared during the interval time

[t, t′]. At time t, Alice and Bob are friends, Alice and Nick are also friends. At time t′, maybe Alice has

introduced Bob to Nick, they become friends too. Analogously, Nick and Amy would become friends at

time t′. The goal of link prediction problem here is to predict the appearance of newly added friendship

between persons. In this paper, if there are no special declaration, the discussing link prediction work is

under an assumption: the nodes in different time are static. Obviously, this assumption does not hold in

real-world social networks, and it is one of the challenges in the future.

To solve the link prediction problem, it needs to determine the formation or dissolution possibilities of

links between all node pairs. Usually, such possibilities can be measured by similarities or relative ranks

between node pairs. We use a generic framework to illustrate the link prediction solution as shown in

Figure 7. For an initial social network, there are two ways to predict the link evolution: similarity-based

approaches and learning-based approaches. Here we take predicting the new/missing/unobserved links as

examples. A similarity-based approach is to compute the similarities on non-connected pairs of nodes in

a social network, namely, it is based on measures for analyzing the proximity of nodes. Every potential

node pair (x, y) would be assigned a score, where higher score means higher probability that x and y
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Figure 7 The generic link prediction framework.

will be linked in the future, and vice versa. Then a ranked list in decreasing order of scores is obtained

and links at the top of list are most likely to appear. A learning-based approach is treating the link

prediction problem as a binary classification task [22]. Therefore, some typical machine learning models

such as classifier and probabilistic model can be used for solving this problem. Each non-connected pair

of nodes corresponds to an instance with features describing nodes and the class label. If there is a

potential link connecting a pair of nodes, this pair is labeled as positive, otherwise it is negative. For

the learning-based approaches, the features consist of two parts: one is the similarity features from the

similarity-based approaches, another is the features derived from the social network, such as the textual

information of attributes and domain knowledge. Link prediction for deleting/disappearing links can be

solved analogously.

There are many link prediction works, that focus on general link prediction techniques, discuss special

link prediction problems, and employ existing link prediction techniques to deal with various applications.

For the sake of clearly arranging these existing works, this paper proposes a new link prediction category

with two perspectives: technique perspective and problem perspective. The category does not contain

link prediction applications, since they are based on link prediction techniques and problems, and will be

addressed independently. Figure 8 shows our category of link prediction techniques and link prediction

problems. For link prediction techniques, they can be divided into four levels from top to bottom:

(1) According to basic network information used in prediction, the first and highest level consists of

node, topology, and social theory. (2) In the second level, topology is further divided into neighbor,

path, and random walk; social theory is also divided into community, triad, structural hole, tie strength,

and homophily. (3) The third level includes popular basic link prediction techniques based on node,

neighbor, path, random walk, and social theory. (4) In the fourth level, basic prediction techniques

and external information, which includes weights, attributes and knowledge repository, provide features
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Figure 8 The category of link prediction techniques and link prediction problems.

for complicated learning-based techniques, such as feature-based classification, kernel-based learning,

probabilistic model and matrix factorization. All link prediction techniques are generic and can be used

for solving various link prediction problems and applications. From another perspective, link prediction

problems are arranged as three levels from bottom to top: (1) According to the object that link prediction

problems concern, the first and lowest level divides the link prediction problems into network and link,

the former concerns the global characteristic of network and the latter concerns link characteristic of

network. (2) In the second level, the network is divided into heterogeneous network, location network,

temporal network, and bipartite network; meanwhile; the link is also divided into multi-relation links,

active/unactive links, and disappearing links. (3) The third level is the link prediction problems that

are based on the link prediction techniques; consequently two perspectives join in here. Therefore, two

perspectives are closely related. Furthermore, we should highlight that the category in Figure 8 can be

extended with the progress of link prediction research.

For the evaluation metrics used in link prediction, they commonly can be divided into two types: fixed



Wang P, et al. Sci China Inf Sci January 2015 Vol. 58 011101:7

threshold metrics and threshold curves. The precision and recall on top-N predictions are typical fixed

threshold metrics. These measures often suffer from the limitation that they rely upon a reasonable

threshold. Another kind of metrics are the threshold curves, such as the receiver operating characteristic

(ROC) curves and precision-recall curves, are widely used in link prediction evaluation. Additionally the

AUC (Areas Under ROC) is viewed as a robust measure in the presence of imbalance [23]. AUC can

be interpreted as the probability that a randomly chosen missing link has higher score than a randomly

chosen nonexistent link. It is more difficult to specify and explain link prediction evaluation strategies

than with standard classification wherein it is sufficient to fully specify a dataset, therefore, new evaluation

methods or performance metrics are also to be proposed [24].

3 Link prediction techniques

There are many generic, simple and basic link prediction metrics, which use information of nodes, topology

and social theory to calculate the similarities of node pairs. Moreover, learning-based link prediction

methods are more complex, but they are established on features provided by the basic metrics and

external information. In this section, we will present a systematic review for these link prediction metrics

and methods.

3.1 Node-based metrics

Computing the similarity between a node pair is an intuitive solution for link prediction. It is based on

the simple idea: the more similar the pair is, the more likelihood a link between them, and vice versa.

This is consistent with the fact that users tend to create relationships with people who are similar in

educations, religions, interests and locations. It can be measured by the similarity, in which each non-

connected pair of nodes (x, y) is assigned a score signifying similarity between x and y. A high score

indicates high probability that x and y will be linked in the future, while a low score also indicates high

probability that x and y will not be linked. Therefore, using the rank of similarity scores, we can predict

the appearing or disappearing links in the future or unseen links in current networks.

In a practical social network, a node usually has some attributes such as the profile in online social

networks, mail name in email networks, and publication record in academic social networks. These

information can be directly used for calculating the similarity between two nodes. Since in most cases the

node attribute values are textual forms, the text-based and string-based similarity metrics are usually

used here. Discussing classical text-based and string-based similarity measures is beyond the purpose of

this paper, and readers can refer to some surveys [25,26].

Bhattacharyya et al. [27] define a multiple categorization tree model to study the keywords of user

profiles, then they define distance between keywords to determine the similarity between a pair of users.

Their most important observation is that except for direct friends, similarity between users are approx-

imately equal, irrespective of the topological metrics. They also show that the increasing of number of

friends and keywords lowers the average similarity between the user and his friends.

Akcora et al. [28] found that most user profiles in current social networks are missing. To overcome

this limitation in similarity measure, they propose a method to infer a portion of the missing values of a

stranger profile before computing similarity. The key idea of this inferring method is based on the profile

information of mutual friends and majority voting schema.

Anderson et al. [29] use users’s interests overlap to measure the similarity. Users’s interests are repre-

sented by the actions they take, such as editing an article on Wikipedia and asking a question on Stack

Overflow. All actions of an user can be represented as a vector, then the similarity between two users is

the cosine between their respective action vectors.

In conclusion, node-based metrics mainly use the attributes and actions, which can reflect the personal

interests and social behaviors, to calculate the similarities between node pairs. Therefore, node-based

metrics are useful in link prediction if we can obtain users’s attributes and actions in social networks.
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3.2 Topology-based metrics

Even in a simple network without node or edge attributes, there are many metrics available for com-

puting the similarity of two nodes. Most metrics are based on the topological information, and called

topology-based metrics. Liben-Nowell and Kleinberg [19] have discussed several metrics based on the

graph structural features, after their work, many topology-based metrics were proposed. Here, we will

give a systematical explanation of popular topology-based metrics in link prediction. According to the

characteristics of these metrics, they can be divided into neighbor-based metrics, path-based metrics, and

random-walk-based metrics.

For clarity of following descriptions, we first give some standard notations. Let lowercase letters be

nodes in the social network and uppercase letters be adjacency matrix of the network. Let matrix A be

the adjacency matrix of a given social network. Let Γ (x) be the set of neighbors of node x, and let |Γ (x)|
be the number of neighbors of node x.

3.2.1 Neighbor-based metrics

In a social network, people tend to create new relationships with people that are closer to them. Neighbors

are the most close ones of a given user. Therefore, researchers design a lot of neighbor-based metrics for

link prediction.

Common Neighbors (CN): The CN metric is one of the most widespread measurements used in

link prediction problem mainly due to its simplicity [30]. For two nodes, x and y, the CN is defined as

the number of nodes that both x and y have a direct interaction with. A bigger number of the common

neighbors make it easier that a link between x and y will be created. This measure is defined as following

formula.

CN(x, y) = |Γ (x) ∩ Γ (y)|. (1)

Since CN metric is not normalized, it usually reflects the relative similarities between node pairs.

Therefore, some neighbor-based metrics consider how to normalize the CN metric reasonably.

Jaccard Coefficient (JC): Jaccard coefficient normalizes the size of common neighbors. It assumes

higher values for pairs of nodes which share a higher proportion of common neighbors relative to total

number of neighbors they have. This measure is defined as:

JC(x, y) =
|Γ (x) ∩ Γ (y)|
|Γ (x) ∪ Γ (y)| . (2)

Sørensen Index (SI): This metric is defined as formula (3). Besides considering the size of the

common neighbors, it also points out that lower degrees of nodes would have higher link likelihood.

SI(x, y) =
|Γ (x) ∩ Γ (y)|
|Γ (x)| + |Γ (y)| . (3)

Salton Cosine Similarity (SC): SC is a common cosine metric for measuring the similarity between

two nodes x and y. It is defined as:

SC(x, y) =
|Γ (x) ∩ Γ (y)|

√|Γ (x)| · |Γ (y)| . (4)

Hub Promoted (HP): HP defines the topological overlap of nodes x and y [31]. It is defined as

following formula (5). Obviously, the HP value is determined by the lower degree of nodes.

HP(x, y) =
|Γ (x) ∩ Γ (y)|

min(|Γ (x)|, |Γ (y)|) . (5)

Hub Depressed (HD): Zhou et al. [32] propose a similar metric to HP, but the value is determined

by the higher degrees of nodes.

HD(x, y) =
|Γ (x) ∩ Γ (y)|

max(|Γ (x)|, |Γ (y)|) . (6)
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Leicht-Holme-Nerman (LHN): This metric assigns high similarity to node pairs that have many

common neighbors compared not to the possible maximum, but to the expected number of such neigh-

bors [33].

LHN(x, y) =
|Γ (x) ∩ Γ (y)|
|Γ (x)| · |Γ (y)| . (7)

Parameter-Dependent (PD): To improve the accuracy for predicting both popular and unpopular

links, Zhu et al. [34] propose the PD metric as follows. Here λ is a free parameter. When λ = 0, PD

degenerates to CN. If λ = 0.5 and λ = 1, it degenerates to Salton and LHN metric, respectively.

PD(x, y) =
|Γ (x) ∩ Γ (y)|

(|Γ (x)| · |Γ (y)|)λ . (8)

Adamic-Adar Coefficient (AA): The AA metric was proposed by Adamic and Adar for computing

similarity between two web pages at first [35], subsequent to which it has been widely used in social

networks. The AA measure is formulated related to Jaccard’s coefficient. But here, common neighbors

which have fewer neighbors are weighted more heavily. It is defined as:

AA(x, y) =
∑

z∈Γ (x)∩Γ (y)

1

log |Γ (z)| . (9)

Preferential Attachment (PA): The PA metric indicates that new links will be more likely to

connect higher-degree nodes than lower ones [12]. It is defined as:

PA(x, y) = |Γ (x)| · |Γ (y)|. (10)

Resource Allocation (RA): This metric is proposed by Zhou et al. [32], and is motivated by the

physical processes of resource allocation. RA metric has a similar form like AA. They both suppress

the contribution of the high-degree common neighbors. However, RA metric punishes the high-degree

common neighbors more heavily than AA. Therefore, AA and RA have very close prediction results for

the networks with small average degrees, but RA performs better for the networks with high average

degrees. In addition, RA and AA not only use direct neighbors, but also consider neighbors of neighbors.

This is different with other metrics. RA is defined as:

RA(x, y) =
∑

z∈Γ (x)∩Γ (y)

1

|Γ (z)| . (11)

For the reason that neighbors can indirectly reflect users’s social behavior and directly affect users’s

social choice, many link prediction methods are based on neighbors. For example, Akcora et al. [28]

propose a new global network similarity, in which they first define the mutual friends graph (MFG) of

x and y. Edge count of the MFG can measure the strength of ties between x and y. To normalize the

similarity value, they also define the friendship graph (FG) of node x. The network similarity can be

measured through a comparison between the number of edges in MFG and the number of edges in FG.

Sarkar et al. [36] presented a theoretical justification of popular link prediction heuristics, to obtain

common empirical observations for neighbor-based metrics. They justified that the number of common

neighbors gives bounds on similarity of a node pair, therefore, some metrics would predict links with

maximum number of common neighbors. They also presented theoretical justification for that metrics

carefully using weighted count of common neighbors that often outperform the unweighted count. There-

fore, simple metrics of counting common neighbors often outperform more complicated link prediction

methods.

In Table 2, we compare the popular neighbor-based metrics in normalization, time complexity and

characteristic. Four metrics: CN, AA, PA and RA, are not normalized, that means the similarities under

these metrics only have the ranking meanings and are not easy be assembled with other normalized

metrics. Time complexity is also an important factor when we select metrics, especially for large scale

social networks. Assume that the average number of neighbors in a network is n, for two nodes x and y,
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Table 2 Comparison of neighbor-based metrics

Metric Normalization Time complexity Characteristic

CN No O(n2) Simple and intuitive

JC Yes O(2n2) Proportion of common neighbors relative to total number of neighbors

SI Yes O(n2) Lower degrees of nodes would have bigger link likelihood

SC Yes O(n2) Cosine metric

HP Yes O(n2) Link likelihood is determined by the lower degree of nodes

HD Yes O(n2) Link likelihood is determined by the higher degree of nodes

LHN Yes O(n2) Higher link likelihood to node pairs having many common neighbors

PD Yes O(n2) Improve the accuracy for predicting both popular and unpopular links

AA No O(2n2) Common neighbors having fewer neighbors are weighted more heavily

PA No O(2n) Simple and new links will be more likely to connect higher-degree nodes

RA No O(2n2) Similar to AA, but punishes high-degree common neighbors more heavily

the time complexity of finding all neighbors of a node is O(n), and the time complexity of calculating the

intersection or union of two sets is O(n2). CN, SI, SC, HP, HD, LHN, PD have O(n2) time complexity

because that they need to calculate an intersection of two sets. JC’s time complexity is O(2n2) because

it calculates an intersection and a union of two sets. AA and RA need to calculate an intersection of two

sets and find neighbors of common neighbors, therefore, their time complexities are O(2n2). PA only

needs to find neighbors of x and y, and its time complexity is O(2n). Characteristics of neighbor-based

metrics are also listed as discussed above. This comparison can help people to choose suitable metrics

for practical social networks.

Finally, we should draw attention to the fact that, although there are many existing neighbor-based

metrics, but in practical applications, one should choose right metrics according to the characteristics of

social networks, because many experiment evaluation results have shown that there is no an absolutely

dominating metric for different datasets [19].

3.2.2 Path-based metrics

Besides node and neighbor’s information, paths between two nodes can also be used for computing

similarities of node pairs, and we call such methods path-based metrics.

Local Path (LP): LP metric [37] makes use of information of local paths with length 2 and length

3. Unlike the metrics that only use the information of the nearest neighbors, it exploits some additional

information of the neighbors within length 3 distances to current node. Obviously, paths of length 2 are

more relevant than paths of length 3, so there is an adjustment factor α applied in the measure. α should

be a small number close to 0. The metric is defined as following formula (12). Here, A2 and A3 denote

adjacency matrices about the nodes having 2 length and 3 length distances, respectively. Therefore, LP

is also an adjacency matrix which describes the node pairs with length 2 and 3 distances.

LP = A2 + αA3. (12)

Katz: Katz metric [38] is based on the ensemble of all paths, and it counts all paths between two

nodes. The paths are exponential damped by length that can give more weights to the shorter paths.

This measure is defined as follows, where pathlx,y is the set of all paths from x to y with length l, β > 0

and the very small β will cause Katz metric much like CN metric because paths of long length contribute

very little to final similarities.

Katz(x, y) =

∞∑

l=1

βl · |pathlx,y| = βA + β2A2 + β3A3 + · · · . (13)

Relation Strength Similarity (RSS): RSS [39] is an asymmetric metric that can be used for the

weighted social networks. It is calculated based on relation strength R(x, y), a normalized link weighting
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score defining the relative degree of similarity between neighboring nodes. Assuming that there are L

simple paths p1, p2, . . . , pL shorter than r from x to y, and path pl is formed by K nodes z1, z2, . . . , zk−1

and zk. Then the RSS from x to y is defined as:

RSS(x, y) =
L∑

l=1

R∗
pl
(x, y), (14)

R∗
pl
(x, y) =

{∏K
k=1 R(zk, zk+1), K � r,

0, otherwise.
(15)

FriendLink (FL): FL metric [40] is a similarity between node x and y, by traversing all paths of a

bounded length. It can provide more accurate and faster link prediction. FL assumes that persons in a

social network can use all the paths between them, proportionally to the path lengths. The similarity

between x and y is defined as counts of paths of varying length l from x to y:

FL(x, y) =

l∑

i=1

1

i− 1
· |pathsix,y|
∏i

j=2(n− j)
, (16)

where n is the number of vertices in network, l is the length of a path between x and y (excluding path

with cycles), pathsix,y is the set of all length− i paths from x to y. However, it does not mean a higher l

will produce higher precision. In fact, precision will follow a degraded performance for higher l.

Vertex Collocation Profile (VCP): VCP is proposed for link analysis and prediction based on

a restrictive representation of the local topological embedding of two nodes [41,42]. Formally, a VCP,

written as VCPn,r
x,y, is a vector describing the relationship between two nodes x and y, in terms of their

common membership in all possible subgraphs of n vertices over r relations. Obviously, VCP cannot

produce similarities between nodes, but it can be the classification feature vector for supervised learning

methods that will be discussed in later section. For the reason that a subgraph in VCP can be seen as

the combination of multiple paths, we categorize VCP as a path-based metric.

Different from the link prediction models compressing a selection of simple information in theoretically

or empirically guided ways, VCP approach preserves as much topological information as possible about the

embedding of node pairs. It also extends naturally to multi-relational networks and can thereby encode

a variety of additional information such as edge directionality. It even can encode continuous quantities

such as edge weights by binning into relational categories, such as high activity and low activity. However,

the number of subgraphs of VCP depends on n and r, that grows exponentially. For example, VCP4,1

has 32 subgraphs and VCP5,2 has 524,288 subgraphs. Therefore, it would fail to return results within a

reasonable time for large scale networks.

Some link prediction methods use local network information, and others use global network information.

The former has computing superiority, and the latter exhibits higher accuracy but cannot handle the

large networks due to high time complexity. For example, to maintain relatively high accuracy and

simultaneously to take less computing effort, Hu et al. [43] proposed a trade-off method called semi-local

similarity index by introducing the resource allocation process into the local path index.

Feng et al. [44] investigated the impact of the network structure on the performance of link prediction

methods in the view of clustering. The experimental results show that as the clustering grows, the

precision of link prediction could be improved remarkably, while for the sparse and weakly clustered

network, they perform poorly. This phenomenon is due to the distinguishment between the distribution

of positive and negative instances caused by the variation of clustering. This would be helpful for choosing

right link prediction methods when we meet real world networks with various clusterings.

Compared with node-based and neighbor-based metrics, which only use local topological information,

path-based metrics consider more topological information: not only local neighbors, but also a kind of

important global information, namely, paths between node pairs. Time complexity of path-based metrics

is higher than neighbor-based ones. However, longer paths are not always more useful than shorter paths.

In the theoretical justification of popular link prediction heuristics by Sarkar et al. [36], it shows that
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metrics considering longer paths is useful only if shorter paths are not numerous enough. Therefore,

path-based metrics can optimize their performances by removing too long paths if networks have enough

shorter paths.

3.2.3 Random walk based metrics

Social interactions between nodes in social networks can also be modeled by random walk, which uses

transition probabilities from a node to its neighbors to denote the destination of a random walker from

current node. There exists some link prediction metrics which calculate similarities between nodes based

on random walk.

Hitting Time (HT): HT(x, y) is the expected number of steps required for a random walk from node

x to node y. Let P = D−1
A A, where diagonal matrix DA of A has value (DA)i,i =

∑
j Ai,j and Pi,j is the

probability of stepping on node j from node i. It is defined as follows [45]:

HT(x, y) = 1 +
∑

ω∈Γ (x)

Px,ωHT(ω, y). (17)

Commute Time (CT): Since the hitting time metric is not symmetric, commute time is used to

count the expected steps both from x to y and from y to x. It can be obtained as follows:

CT(x, y) = HT(x, y) + HT(y, x) = m(L†
x,x + L†

y,y − 2L†
x,y), (18)

where L† is the pseudo-inverse of matrix L = DA −A, m is the number of edges in a social network.

Cosine Similarity Time (CST): The cosine similarity time metric is based on L† by calculating

similarity of two vectors, and it can be defined as follows:

CST(x, y) =
L†
x,y√

L†
x,xL

†
y,y

. (19)

SimRank: SimRank metric [46] is defined in a self-consistent way, according to the assumption that

two nodes are similar if they are connected to similar nodes. There is a parameter γ that controls how

fast the weight of connected nodes decrease as they get farther away from the original nodes.

simRank(x, y) =

{
1, x = y,

γ ·
∑

a∈Γ (x)

∑
b∈Γ (y) simRank(a,b)

|Γ (x)|·|Γ (y)| , otherwise.
(20)

The SimRank score can be explained in terms of the random surfer-pairs model: simRank(x, y) measures

how soon two random surfers are expected to meet at the same vertex if they individually start at vertices

x and y, and randomly walk through edges on the reverse graph.

The computation complexity of SimRank is O(n4) at the worst time where n is the number of vertices.

Such a high computation cost limits its wide usage for large scale networks.

Rooted PageRank (RPR): Rooted PageRank [19] is a modification of PageRank, which is the core

algorithm used by search engine to rank search results. The rank of a node in graph is proportional to

the probability that the node will be reached through a random walk on the graph. In addition, there is

a factor ε that specifies how likely the algorithm is to visit the node’s neighbors than starting over. Let

D be a diagonal matrix with Di,i =
∑

j Ai,j . The measure is defined as:

RPR = (1− ε)(I − εD−1A)−1. (21)

PropFlow: PropFlow metric [47] is similar to Rooted PageRank, but it is more localized. It is

proportional to the probability that a restricted random walk starting at x and ending at y in no more

than l steps. The restricted walk selects links based on weights and terminates when it reaches y or

revisits any nodes. This produces a score that can serve as an estimation of the probability of new links.
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If x and y are directly linked, their PropFlow PF(x, y) can be calculated by follows:

PF(x, y) = PF(a, x)
wxy∑

k∈Γ (x) wxk
, (22)

where k is x’s neighbor whose depth is greater than the depth of x from the staring node, wxy denotes

the weight of the link between nodes x and y, and a is the previous node of x on a random walk path. If

x is the staring node, PF(a, x) = 1.

If x and y are indirectly linked, PF(x, y) is the sum of PropFlow through all the shortest paths from

x to y.

Unlike rooted PageRank, the computation of PropFlow does not require walk restarts or convergence

but simply employs a modified breadth-first search restricted to height l. Therefore, it is a faster metric

than rooted PageRank and simRank.

Symeonidis et al. [48] proposed SepctralLink, which enhances the multi-way spectral clustering method

by introducing new ways to capture node proximity. The new enhanced method uses information ob-

tained from the top few eigenvectors of the normalized Laplacian matrix. As a result, it produces a

less noisy matrix, which is smaller and more compact than the original one. In this way, it can provide

faster and more accurate link predictions. Moreover, this model is based on the well-known BrayCur-

tis coefficient to measure proximity between two nodes. Compared to traditional clustering algorithms,

which assume globular (convex) regions in Euclidean space, this approach is more flexible in capturing

the non-connected components of a social graph and a wider range of cluster geometries. Symeonidis

et al. [49] also extend SepctralLink for social networks with positive and negative links. Compared to

metrics based on local network information such as neighbors and paths with length 2, the SepctralLink

captures the global network structure by exploiting the normalized Laplacian matrix of the graph, thus

improving the prediction accuracy. Compared to metrics based on global network information such as

random walk, the SepctralLink is more efficient since that it is based on the top few eigenvectors and

eigenvalues of the normalized Laplacian matrix, and needs less time and space complexity than global

metrics such as Katz and SimRank.

3.3 Social theory based metrics

In recent years, more and more works have employed classical social theories, such as community, triadic

closure, strong and weak ties, homophily, and structural balance, to solve the social network mining

and analyzing problems. Different to previous metrics, which only use node and topology, the link

prediction metrics based on social theory can improve the performance by capturing useful additional

social interaction information, especially for large scale social networks.

Valverde-Rebaza and Lopes [50] combined topology with community information by considering users’s

interest and behaviors, then predict future links in Twitter. It shows that this method can efficiently

improve the link prediction performance in the directed and asymmetric large scale social networks.

Liu et al. [51] proposed a link prediction model based on weak ties and three node centralities of

common neighbors: degree, closeness and betweeness centrality. Each common neighbor plays a different

role to the node connection likelihood according to their centralities. The weak tie is considered for

improving the prediction accuracy. This model can be defined as follows:

LCW(x, y) =
∑

z

(w(z) · f(z))β, f(z) =

{
1, z ∈ Γ (x) ∩ Γ (y),

0, otherwise,
(23)

where w(z) denotes the weight of node centrality, f(z) is the switch function, and β can adjust the

contributions of each common neighbor to the connection likelihood of two nodes. When β is greater

than 1, it makes the larger centrality more significant than the lower centrality. When β is less than

0, it restrains the large centrality more than the lower centrality. When β is in range (0, 1), it equally

restrains all nodes.

Li et al. pointed out that the centrality of nodes is also important for link prediction, namely, nodes

in a network not only prefer to link to similar nodes, but also prefer to link to the central nodes. They
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propose a set of link prediction methods based on maximal entropy random walk, which can capture the

centrality of nodes [52]. These new methods outperform all the older ones without centrality.

Qiu et al. [53] proposed a behavior evolution-aware event-driven locality and attachedness based model

to capture the growth dynamics in social networks. This model can better characterize the growing process

and simulate important network structures observed in real networks. Then node behavior is used to

improve the link prediction accuracy [54].

In interest networks, homophily is also exploited to predict not only links between a user and his

interested services, but also links between users who have common interests [55]. In addition, degree dis-

tribution, social balance and microscopic mechanism are useful for finding social patterns across different

social networks [56]. These patterns can be used to devise complicated link prediction methods.

3.4 Learning-based methods

Based on the features provided by previous basic link prediction metrics, internal attributes, and external

information, many learning-based link prediction methods are proposed in recent years. These learning-

based methods can be divided into feature-based classification, probabilistic graph model and matrix

factorization.

3.4.1 Feature-based classification

Let x, y ∈ V be nodes in the graph G(V,E) and l(x,y) be the label of the node pair instance (x, y). In

link prediction, each non-connected pair of nodes corresponds to an instance includes the class label and

features describing the pair of nodes. Therefore, a pair of nodes can be labeled as positive if there is a

link connecting the nodes, otherwise, the pair is labeled as negative. The label of x and y is defined as

follows:

l(x,y) =

{
+1, if (x, y) ∈ E,

−1, if (x, y) /∈ E.
(24)

This is a typical binary classification problem and many supervised classification learning models can be

used to solve it. For instance, decision tree, support vector machines, näıve Bayes, and so on.

In order to build an efficient classifier for link prediction, it is crucial to define and extract a set of

appropriate features from social networks. The features provided by node-based, topology-based and

social theory based metrics are popular and important for classification learning models. For example,

the VCP metric can be seen as a kind of special feature which describes local topology information [41].

In addition, many studies show that using attributes of nodes and links (such as users’ ages, interests,

characteristics and friends) can significantly improve the link prediction performance. Li et al. [57]

presented a graph kernel-based learning method and used features such as age, education level, book title,

keywords and introduction to predict user-item link in a bipartite network. Scellato et al. [58] considered

social features, place features and global features in location-based social networks for link prediction

based on a supervised learning framework. The co-authorship social network is one of the most popular

networks in link prediction. Ichise et al. [7,8] introduced a semantic approach using abstract information,

research titles and event information to improve the link prediction in a co-authorship social network.

Table 3 shows some commonly used features in a co-authorship network, and it contains node features,

network features, topological features and non-topological features. The advantage of non-topological

features is that it can improve the performance of link prediction problem. However, they are not always

available and may be difficult to collect. More importantly, most non-topological features are domain

related. It requires good domain knowledge to identify and discover them. Therefore, for a general

link prediction learning model, it usually only considers the generic features including node, network

and topological features, but for a practical link prediction application, non-topological features should

also be considered. Finally, like many learning problems, feature selection in link prediction learning is

the key task. Fortunately, a lot of feature selection work in machine learning area can be used. For

example, Scripps et al. [59] proposed a discriminative learning technique for link prediction based on

the matrix alignment. The advantage of this method is that it can automatically determine the most
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Table 3 Common features in a co-authorship network

Type Feature

Node in degree, out degree

Network
number of vertices, number of edges, average clustering coefficient

mean degree, number of strongly-connected components (SCC), largest SCC

Topological

common neighbors, Jaccard Coefficient, Adamic-Adar, Preferential Attachment

Resource Allocation, Local path, Katz, Rooted PageRank, SimRank

PropFlow, Relation Strength Similarity, Max Flow, shortest paths

Non-topological

co-authors, number of neighbors, keyword counts, keywords match count

clustering index, community alignment, publish date

paper title, author affiliation, paper venue

predictive attributes and topological features by aligning the adjacency matrix of a network with weighted

similarity matrices computed from node attributes and neighborhood topological features .

Usually, people would think that the weight is also an important feature for link prediction learning.

However, the relevance of weights for unsupervised link prediction methods is not always verified, in

some cases, even the performance is harmed. For supervised link prediction methods, there are few works

show that weights would improve the prediction results [60]. But there are also some works believe that

weights are useless for unsupervised link prediction [61]. Therefore, it still needs comprehensive analysis

on more datasets and applications in theory and evaluation study to determine the influence of weights.

Based on the transformation of a graph’s algebraic spectrum, Kunegis and Lommatzsch [62] presented a

unified framework for learning both link prediction and edge weight prediction functions. This framework

generalizes graph kernels and dimensionality reduction methods and estimates the parameters efficiently.

First it derives variants that apply to undirected, weighted, unweighted, unipartite and bipartite graphs,

then generalizes existing link prediction functions to a common form. And then it provides a way to

reduce the high-dimensional problem of learning the various kernels’s parameters to a one-dimensional

curve fitting problem.

Pujari and Kanawati [63] proposed a new dyadic topological link prediction approach applying su-

pervised social choice algorithm. They used these data to learn weights to associate to each computed

feature based on the ability of each attribute to predict observed links. These weights were then used

within weighted/supervised computational social choice algorithms to predict new links. They introduced

weighted social choice rules by modifying classical voting approaches, and then combined the prediction

power of individual topological measures by applying computational social choice algorithms (or what is

also known as rank aggregation methods). Rank aggregation can be defined as a process of combining a

number of ranked lists or rankings of candidates or elements to get a single list and with least possible

disagreement with the all the experts or voters who provide these lists. It is a part of social choice theory

and has been applied to political and election related problems. Expressing the link prediction problem

in terms of a vote is straightforward: candidates are examples (pairs of unconnected nodes), while voters

are topological measures computed for these pairs of unlinked nodes.

In signed networks, signed links reflect social attitudes of the users towards each other such as friend-

ship, hostile or trust. Wang et al. [64] showed that social imbalance in a network can be used to derive a

link prediction method. A supervised learning based link prediction method is proposed and uses features

derived from longer cycles in a network. After investigating a kind of signed networks, whose relation-

ships can be either positive (indicating relations such as friendship) or negative (indicating relations such

as opposition or antagonism), Leskovec et al. [65] found that the signs of links in such social networks

can be predicted with high accuracy by using models that provide insight into some of the fundamental

principles that drive the formation of signed links. It is consistent with social balance theory and social

psychology status. It also means that social attitude of one user toward another can be estimated from

evidence provided by their relationships with other members of the surrounding social network.
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Figure 9 Three stages of the interactive learning framework.

Cao et al. [66] discussed the data sparsity problem in link prediction by jointly considering multiple

link prediction tasks from heterogeneous domains such as predicting links between users and different

types of items, which is referred to as the collective link prediction problem. They proposed a transfer

learning idea to solve the problem by a nonparametric Bayesian framework, which allows knowledge to

be adaptively transferred across heterogeneous tasks while taking into account the similarities between

tasks.

To utilize the auxiliary social networks or available proximity networks, Lu et al. [67] proposed a

supervised learning framework that can effectively and efficiently learn the dynamics of social networks

in the presence of auxiliary networks, then construct a rich variety of path-based features using multiple

source for link prediction.

Wu et al. [4] proposed an interactive learning framework to formulate link prediction into a factor

graph model. As Figure 9 shows, it consists of three stages : (1) Perform similarity measures to generate

candidate nodes based on various features such as homophily, referral chaining and recency. (2) Perform

a ranking factor graph (RankFG) model to refine the ranking. The model integrates two types of factor

functions, pairwise factor function and correlation factor function, to capture characteristics of node pairs

and correlations between suggested results. (3) User can provide feedback to the suggested relationships.

An interactive learning algorithm RankFG+ is designed to adjust the ranking model incrementally based

on the user’s feedback.

Besides the supervised classification model, the semi-supervised models can also be used to solve the

link prediction problem.

Kashima et al. [69] proposed link propagation as a new semi-supervised learning method for link

prediction problems, where the task was to predict unknown parts of the network structure by using

auxiliary information such as node similarities. Since the proposed method can fill in missing parts

of tensors, it is applicable to multi-relational domains, allowing us to handle multiple types of links

simultaneously. This method applies the label propagation method to link prediction, and it is the

first method for tensor completion using auxiliary information. It can handle not only strength of links

among pairs of nodes, but also various types of links. Despite its efficiency and effectiveness compared to

other methods, its applications were still limited due to the computational time and space constraints.

A fast and scalable algorithm is proposed for the Link Propagation by introducing efficient procedures

to solve large linear equations that appear in the method [15]. In particular, it shows how to obtain

a compact representation of the solution to the linear equations by using a non-trivial combination of

techniques in linear algebra to construct algorithms that are also effective for link prediction on dynamic

graphs. Brouard et al. [68] also addressed link prediction as an output kernel learning task through

semi-supervised output kernel regression.

By comparing some feature-based learning methods as shown in Table 4, we can obtain following

observations: (1) Link prediction methods usually directly employ basic classification models or modify

other well-known models [69]. It means that classification models are not the key points in link prediction

learning. (2) Actually, feature selection or construction is the core task in link prediction learning, and it

is the main difference between these link prediction learning methods. The general learning framework-

s mainly use topological and node features, but for handling domain-specific link prediction problems,

domain-specific features should be constructed and used [4,58]. (3) The supervised link prediction meth-

ods can improve the prediction performance, especially the prediction precision. Meanwhile, it would
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Table 4 Comparison of feature-based classification methods

Methods Features Learning models Network types Strength or weakness

VCP [41]
Vertex collocation

profile

Classification models in

WEKA, HPLP

supervised link

prediction framework

Directed, weighted,

temporal,

multi-relational

networks

Preserves as much topological

information as possible; low

performance in featuring and

training

Generic

kernel-based

machine

learning [57]

Topological features:

random walk paths;

node features: reflecting

users’ decisions

One-class SVM kernel

machine

User-item bipartite

network

Do not require explicit

feature generation;

performance is highly

dependent on kernel functions

Scellato et

al. [58]

Place features, social

features, global features

Classifiers in WEKA:

J48, Näıve Bayes, model

trees, random forests

Location-based social

networks
Achieve high precision

Ichise et

al. [7,8]

Topological features,

semantic and

event-based features

SVM, decision trees,

J48, decision stump,

boosting

Co-authorship

networks

Performance is dependent on

classification models

Scripps et

al. [59]

Node attributes,

neighborhood

topological features

Discriminative

classifiers
General networks

Flexible framework that

automatically determines the

most predictive features

Sá and

Pru-dêncio [60]

Features of

topology-based metrics

J48, Näıve Bayes, IBk,

libSVM, LibLinear
Weighted networks

Using weights can improve

supervised link prediction

Spectral graph

transforma-

tions [62]

Adjacency matrix,

number and length of

paths

Laplacian Kernels

Undirected, weighted,

unweighted,

unipartite and

bipartite large

networks

General graph kernels and

dimensionality reduction;

runtime only depends on the

chosen reduced rank, and is

independent of the original

graph size

Pujari and

Kanawati [63]
Topological features

Supervised rank

aggregation, decision

tree, näıve Bayes, kNN

General networks

Aggregate features as many

as possible; high time

complexity

Chiang et

al. [64]

Features from longer

cycles
Logistic regression Signed networks

Not only achieves good

accuracy for sign prediction

but is also effective in

lowering the false positive

rate

Leskovec et

al. [65]

Degrees of the nodes,

triad
Logistic regression Signed networks

Signs of links can be

predicted with high accuracy

Collective link

prediction [66]

No specific features

restricted

Nonparametric

Bayesian model,

transfer learning

Large user-item

networks

Transfer learning could help

boost the performance

Penalized

output kernel

regression [68]

No specific features

restricted

Output kernel

regression
General networks

Uses the unlabeled data to

improve performances for a

low percentage of known links

Lu et al. [67] Path-based features Logistic regression

Social networks with

multiple auxiliary

networks

Prediction accuracy is

improved; do not consider

other features

Wu et al. [4]

Statistics of

co-inventors, link

homophily, interest

homophily, and

correlation

Ranking factor graph

model; interactive

learning

Enterprise social

networks

Significantly improves the

performance for

recommending co-invention

relationships

Link

propagation

[69]

Node features:

Kronecker sum

similarity, Kronecker

product similarity

Link propagation
Multi-relational

networks

Handles strength and types of

links; high computational

time and space

Fast and

scalable link

propagation

[15]

Node features:

Kronecker sum and

product

Link propagation;

matrix factorization

and approximation

Large dynamic

networks

Less computational cost while

maintaining accuracy



Wang P, et al. Sci China Inf Sci January 2015 Vol. 58 011101:18

a cb d e

1

0.3

0.6

1

Figure 10 A dendrogram of a network.

also cause the high computing cost in feature selection and model training [41,63].

3.4.2 Probabilistic graph model

In a social network, a link between each node pair can be assigned a probability value such as a topological

similarity or transition probability in random walk. It is a probabilistic graph. There are many learning-

based link prediction methods that have been proposed by exploiting the probabilistic graph model.

Studies suggest that many networks exhibit hierarchical structure, where nodes divide into groups

that can further subdivide into groups of groups, and so forth over multiple scale. Clauset et al. [70]

proposed a model to infer hierarchical structure from network and apply it to solve the link prediction

problem. As shown in Figure 10, a hierarchical network is represented by a dendrogram called hierarchical

random graph, where N leaves corresponding to nodes of network and each of the N − 1 internal nodes

corresponds to a probability pr. The connecting probability of a pair of nodes equals to pr where r is the

lowest common ancestor of the two nodes. For example, according to the dendrogram in Figure 10, the

connecting probability of node a and node c is 0.6, and the connecting probability of node b and node

d is 0.3. Then the goal is to find the dendrogram that fits the observed network best. Given a network

G and a dendrogram D, let Er be the number of edges where r is the lowest common ancestor of two

nodes, and let Lr and Rr be the numbers of leaves in the left and right subtrees rooted at r. Then the

likelihood of the network is:

L(D, {Pr}) =
∏

r

pEr
r (1− pr)

LrRr−Er . (25)

The probability of internal nodes is easy to determine by maximizing L(D, {Pr}). To predict whether a

pair of non-connected nodes x and y are connected, it first samples a set of dendrograms with probability

proportional to their likelihood, then computes the mean probability pxy over the sample dendrograms by

averaging the corresponding probability pxy. Compared to the basic metrics such as common neighbor,

the hierarchical random graph model is able to express assortative and disassortative structure and obtain

accurate predictions for a wide range of networks. However, it takes a lot of computing time and usually

is applied to deal with networks within thousands of nodes.

In stochastic block model, nodes in the network are divided into several groups and nodes in the same

group have same status [71]. That is to say, whether two nodes will connect depends on the group to

which they belong. A stochastic block model M = (P,Q) consists of two parts: a method of partition P

and a probability matrix Q of two nodes in two different groups. Let Qαβ be the connecting probability

between group α and group β, and A be the observed network. Then the likelihood of the network

structure is:

p(A|P,Q) =
∏

α�β

Q
lαβ

αβ (1−Qαβ)
γαβ−lαβ , (26)

where lαβ is the number of the existing links between group α and β and rαβ is the number of possible

maximum links between group α and β. Let Ω be the set of all possible partitions. The reliability of a
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Figure 11 Local probabilistic model.

particular link (x, y) can be calculated according to the Bayes’ Theorem:

p(Axy=1 = 1|A) = 1

z

∑

p∈Ω

∫ 1

0

|Q|p(Axy=1 = 1|P,Q)p(A|P,Q)p(P,Q)dQ, (27)

where Z is a normalization factor which can be represented as Z =
∑

p∈Ω exp[−H(P )], and H(P ) is a

function of the partition. This model is able to identify both missing and spurious links in noisy network

observations and renders better prediction than hierarchical random graph model. However, it also takes

huge computation time and lacks the ability to capture the possible overlapping or hierarchical structure.

The marginalized denoising model proposed by Chen and Zhang [72] could overcome this shortcomings.

It treats the link prediction as a problem of matrix denoising, and the key point of this method is learning

a mapping function that can map the matrix of current network with observed links to a new matrix of

future network with unobserved links.

Wang et al. [73] proposed a method which utilized three types of features, namely, co-occurrence

probability features, topology features and semantic features, to solve the link prediction problem. This

method is described in Figure 11. To derive co-occurrence probability (the link probability between two

nodes), a local probabilistic graph model using Markov Random Fields (MRF) is proposed. To predict

whether two nodes x and y will be linked, there are three steps: (1) Use topological information to

identify the central neighborhood set of x and y. (2) Select itemsets that lie entirely within this set and

use them as training data to train a local probabilistic model. Here, the training process is translated to

a maximum entropy optimization problem. (3) Estimate the co-occurrence probability features through

inference over the local model. Then Logistic Regression is used as a classifier to train the data which

combines the above three types of features.

Kashima et al. [74] proposed a parameterized probabilistic model of network evolution to predict

whether an edge between two nodes exists or not. In this model, the structure of a network changes

probabilistically over time, namely, the edge label function φ changes over time. An edge label φ(x, y)

indicates the probability that an edge exist between x and y. φ(t) denotes label function at time t. The

model is assumed to be a Markov model in which φ(t+1) depends only on φ(t). Assume that node x

has a strong influence on y and there is a link between x and z, so there will likely be a link between

y and z. In the model, there are two ways for φ(t)(x, y) to assume a particular label. One way is

that node k has copied an edge label to node x or node y. The other is that φ(t)(x, y) = φ(t+1)(x, y),

namely, nothing has happened. Then based on the assumption that the current network is a stationary

state of the network evolution, an Expectation Maximization (EM)-type transductive learning approach

is employed to estimate parameters of the model for predicting the existence of links. Therefore, the

basic idea behind this model is: if you have a friend who has a strong influence on you, your association

will be highly affected by the friend’s association. This approach is based on the topological features of

network structures and not on the node features. It differs from these earlier works in that the existence

of tunable parameters within the network model naturally gives rise to a learning algorithm for link

prediction, leading to improved accuracy of prediction. This model can be easily generalized to the

scenario in which there are more than two edge labels.
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Figure 12 Link prediction based on supervised random walks.

Yang et al. [55] pointed that the information contained in interest networks and friendship networks

is highly correlated and mutually helpful. Based on homophily, a friendship-interest propagation frame-

work is proposed for linking a user to interested services and connecting different users with common

interests. The framework devises a factor-based random walk model to explain friendship connections,

and simultaneously it uses a coupled latent factor model to uncover interest interactions .

Backstrom and Leskovec [75] proposed an algorithm for link prediction based on supervised random

walks. Unlike traditional PageRank assumes the same transition probabilities of all links, supervised

random walks learn a function to assign different transition probability for each link so that the random

walk is more likely to visit target nodes than other nodes of the network. The function (edge strength)

is computed based on the attributes of node x and y, as well as the attributes of the link between x and

y. In this way, the approach can combine structural information of the network with the attributes of

nodes and links for link prediction. As Figure 12 shows, to predict new edges of a given source node s,

there are three steps: (1) Using edge strength function to calculate the edge strengths of all edges. (2) A

random walk with restarts is run from s, and the stationary distribution of the random walk assigns each

node a probability. (3) A rank of nodes is generated by the order of this probability and the top ranked

nodes are then predicted as destinations of future link links. Compared to supervised machine learning

methods, this approach does not require complex network features and domain related knowledge.

The structural information is useful for link prediction in a hybrid network [76]. Link prediction

can also be solved by mining graph evolution rules [14]. The real-world network is usually incompletely

observed. To predict which of the possible unobserved links are actually present in the network, Marchette

and Priebe apply a constrained random dot product graph to rank the potential edges according to the

probability that they are in fact present, and then utilize covariates to improve the link prediction [10].

In link prediction, if the network itself is totally missing, namely, without the knowledge of an existing

link structure, while some other information regarding the nodes is available such as interest group and

tags, it is called the cold start link prediction problem. Leroy et al. [77] discussed this problem and

proposed a two-phase solution based on the bootstrap probabilistic graph. The first phase generates an

implicit social network under the form of a probabilistic graph. The second phase applies probabilistic

graphs-based measures to produce the final prediction.

For the reason of privacy, not all social networks provide labeled data such as “who like a restaurant”.

Especially in anonymous social networks like Foursquare and Secret App, only the aggregative statistics

information like “how many people like this restaurant” is available. To predict the opinion holder in

such heterogeneous social network without labeled data, Kuo et al. [78] generalized it to a link prediction

with aggregative statistics problem and proposed an unsupervised probabilistic graphical model to solve

it. First, a factor graph model with three layers of random variables infers the existence of unseen-type

links. Then three types of potential functions integrate diverse information into the factor graph model. A

ranked-margin learning algorithm tunes the parameters using aggregative statistics. Finally, a two-stage

inference algorithm updates potential functions and optimizes the results.

Table 5 shows the comparison of some probabilistic graph models in link prediction. It can be seen that

most methods use or modify existing probabilistic graph models such as random walk and factor graph

model. Moreover, though most methods are suitable for general networks, some methods are devised for

special networks such as hierarchical networks and incomplete networks. Like other kinds of learning-
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Table 5 Comparison of probabilistic graph models

Methods Graph models Network types Characteristics

Clauset et al. [70]

Hierarchical random graph,

maximum likelihood, Monte

Carlo sampling

Hierarchical networks

Accurately predict missing links; performs

poorly for networks have no hierarchical

structure

Guimeràa and

Sales-Pardo [71]
Stochastic block model Noisy networks

Outperforms at identifying both missing

links and spurious links; high computation

time

Chen and

Zhang [72]

Marginalized denoising

model

General large

networks

Models the dense and smooth affinity

matrices; is scalable to large networks

Wang et al. [73]
Maximum entropy Markov

random fields

Co-authorship

networks

Co-occurrence probability feature is effective

for link prediction, and combining with

topology features and semantic features can

improve the performance

Kashima and

Abe [74]

Parameterized probabilistic

model, incremental learning
Dynamic networks

Achieves better performance than basic

topology-based metrics

Yang et al. [55]

Friendship-interest

propagation framework

devises a factor-based

random walk model

Interest networks,

friendship networks

Bridges collaborative filtering in

recommendation systems and random walk

Backstrom and

Leskovec [75]
Supervised random walks General networks

Combines network structure with the

attributes of nodes and links; requires no

network feature generation

Marchette and

Priebe [10]

Constrained random dot

product graph
Incomplete networks

Predicts the possible unobserved links that

actually present in the network

Leroy et al. [77]
Bootstrap probabilistic

graph

Networks without the

initial status and

with other

information

Handle the cold start link prediction:

predicting the structure of a social network

when the network itself is totally missing

while some other information regarding the

nodes is available

Kuo et al. [78] Factor graph model

Networks with

aggregative statistics

of links

Link prediction with aggregative statistics

problem

based methods, probabilistic graph models achieve better performance than basic topology-based metrics,

especially improve the prediction accuracy. Finally, since the probabilistic graph models exploit global

network information, some methods are scalable to large scale networks.

3.4.3 Matrix factorization

Menon et al. [79] treated link prediction as matrix completion problem and extend matrix factorization

method to solve the link prediction problem. They factorize the graph G ≈ L(U ∧ UT) for U ∈ R
n×k,

∧ ∈ R
k×k and link function L(·), where n is the number of nodes and k is the number of latent features.

Each node x has a corresponding latent vector ux ∈ R
k. Then the model’s predicted score for the pair

(x, y) is L(uT
x ∧uy). This model combines latent features with explicit features for nodes and links in the

graph via a bilinear regression model. The latent features can be also combined with the results of any

other link prediction models. The model optimizes for AUC directly in order to overcome the imbalance

problem, which refers to the phenomenon of positive links account for a very small percentage of all link

instances but negative links account for most of link instances.

3.5 Datasets and tools

Almost all link prediction works need to verify their methods on the collected datasets. The datasets

are important for fairly reproducing and comparing different link prediction methods. Constructing and

collecting the datasets is a time-consuming and labor-intensive work. However, not all datasets are public

and available. During surveying the link prediction works, we summarize some popular datasets used
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Table 6 Popular open datasets used in link prediction

Data source Description
Size

Sites of datasets
Nodes Edges

DBLP

Co-authorship network 317080 1049866 snap.stanford.edu/data/com-DBLP.html

Paper citation network 324339 812740 arnetminer.org/citation

Heterogeneous

bibliographic network

28702

authors;

28569

documents

103201 www.cs.uiuc.edu/ hbdeng/data/kdd2011.htm

Arxiv
High energy physics

paper citation network
34546 421578

snap.stanford.edu/data/cit-HepPh.html

snap.stanford.edu/data/cit-HepTh.html

NIPS 1-17
Co-authorship

networks in NIPS
2865 4733 ai.stanford.edu/ gal/data.html

Enron email
Email communication

network

28000 250000 www.cs.cmu.edu/ enron/

36692 183831 snap.stanford.edu/data/email-Enron.html

Patents citation
Citation network

among US patents
3774768 16518948 snap.stanford.edu/data/cit-Patents.html

Facebook
Interactions between

users on Facebook

4039 88234 snap.stanford.edu/data/egonets-Facebook.html

60290 1545686 socialnetworks.mpi-sws.org/datasets.html

3694 13692 delab.csd.auth.gr/ symeon/facebook.txt

Twitter
Interactions between

users on Twitter

81306 1768149 snap.stanford.edu/data/egonets-Twitter.html

124501 22169689 lsir.epfl.ch/aberer/

Foursquare
Location-based social

network
269279 1101504 www.csie.ntu.edu.tw/ d97944007/aggregative/

MovieLens Movie rating network
72000 users;

10000 movies

10000000

ratings
grouplens.org/datasets/movielens/

Book-Crossing Book ratings network
278858 users;

271379 books

1149780

ratings
www2.informatik.uni-freiburg.de/ cziegler/BX/

Wikipedia Vote network 7115 103689 snap.stanford.edu/data/wiki-Vote.html

Epinions Trust social network 131828 841372 snap.stanford.edu/data/soc-sign-epinions.html

Slashdot Signed network 82140 549202
snap.stanford.edu/data/soc-sign-

Slashdot090221.html

Plurk
Micro-blog social

network
543329 3660507 www.csie.ntu.edu.tw/ d97944007/diffusion/

in link prediction, which are shown in Table 6. Especially, all the datasets are open, public, available

and real-world. Online social network platforms (such as Twitter and Facebook) and public bibliography

libraries (such as DBLP and Arxiv), are among the most popular sources of datasets. We notice that

some datasets are well maintained by Stanford University. This would be an important reason that many

researchers prefer to use these datasets. However, we have to point out some disadvantages of current

datasets for link prediction. First, some datasets have noise, that must be cleaned before they are used.

For example, all bibliographic networks are faced with the author name disambiguation problem, which

will cause a lot of noise and make the networks inconsistent to the real-world networks. Second, these

datasets are not rich and diverse enough in term of the size and network types. For some new and special

link problems or applications, it may be unable to find existing datasets. Finally, when same metrics

are compared on different datasets, their performance ranks are usually not consistent or even various

greatly. However, current datasets are not enough for analyzing the strength and weakness of a link

prediction metric or method. This would lead to misusing the link prediction methods. Therefore, it is

necessary to build and maintain the benchmark datasets for link prediction problems.

Although there are many link prediction metrics and methods proposed, only very few works open

their source codes. People have to re-implement some complicate methods, and that is a time-consuming

process. Only few public tools try to integrate these metrics and methods. It is very important for
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selecting the appropriate metrics or methods for a link prediction task. For example, LPmade, which is a

cross-platform software solution, provides multi-core link prediction and related tasks and analysis [80].

First, it is a scalable library which implements most commonly used unsupervised link prediction metrics,

especially, all implementations have high performances. Second, it supports automatic link prediction

processes including prediction, evaluation, and network analysis. If we have the benchmark datasets

for link prediction, we could implement an open link prediction API with standard datasets loading,

formatted results and automatic evaluation. It would also greatly reduce the evaluation work.

4 Link prediction problems

There are many works focused on solving special link prediction problems, which can be divided into six

categories: temporal link prediction, active/unactive link prediction, link prediction in bipartite networks,

link prediction in heterogeneous networks, unfollow or disappearing link prediction, and link prediction

scalability.

4.1 Temporal link prediction

In recent years, the research on link prediction has evolved over various aspects. One is to consider the

time in the model, which can be named as temporal link prediction [81,82] . A social network with time

can be organized as a third-order tensor, or multi-dimensional array. A tensor Z of size M ×N × T can

be defined as

Z(i, j, t) =

{
1, if vertex i links to vertex j at time t,

0, otherwise.
(28)

It can answer specific questions such as “Who is most likely to publish at ICDM next year”. Given social

network for times 1 through T , it needs to predict the links at time T + 1.

Dunlavy et al. [81] proposed a novel method for temporal link prediction by combining matrix-based

and tensor-based techniques, and this method is showed in Figure 13. For the matrix-based part, it first

collapses the network data into a single matrix. The collapsed tensor (CT) is produced by collapsing

the network into a single matrix through summing all the entries across time. The improved collapsed

tensor considers the weight when sum the slices in the time, and it is called the collapsed weighted tensor

(CWT). CWT can give greater weight to more recent links. Then a matrix of scores for link prediction

can be calculated by truncated SVD, and an extended Katz metric to the case of bipartite graphs and

its relationship to the matrix SVD is also derived. Using the truncated SVD, this method is salable

for calculating a truncated Katz score. However, there is no matrix-based method fully leverages and

exposes the temporal information.

Tensor factorizations are higher-order extensions of matrix factorizations that capture patterns in

multi-way datasets and have proved to be successful in diverse disciplines. Based on the classical tensor

model CP, heuristic-based and forecasting-based prediction methods are proposed by using the temporal

information extracted by CP. For the heuristic-based method, it defines the similarity score for vertex

x and y using a K-component CP model. The forecasting-based prediction method provides a more

sophisticated use of time, and it uses the temporal profiles computed by CP as a basic for predicting the

scores in future. It is an automatic method which only requires the data and the expected period. The

advantage of this tensor-based method is that it can better capture and exploit temporal patterns. The

drawback of the tensor-based approach is its higher computational cost.

Gao et al. [83] proposed a novel unified model based on latent matrix factorization method and graph

regularization technique which integrates content and structure information to capture the time evolving

patterns of links in the networks. This method makes use of an efficient alternating iterative algorithm

for learning the latent factors of nodes in the network, and it provides the possibility for handling large

scale networks.

Tylenda et al. [84] developed graph-based link prediction techniques that incorporates the temporal

information contained in evolving social networks. They extended the predict model to include time
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Figure 13 The matrix and tensor-based temporal link prediction.

awareness, and show how to incorporate edge weights which derived from temporal features into the

state-of-the-art link prediction methods. Huang et al. [18] investigate hybrid link prediction methods

that combine the power of the time-series model in predicting repeated link occurrences with the ability

of static graph link prediction methods to identify new link occurrences. Soares et al. [85] built time

series for each pair of non-connected nodes by calculating their similarity scores at different past times.

Subsequently, they designed a forecasting model based on time series to obtain final link prediction scores

of the pairs. However, according to above works, only links in identical time frames are considered in

temporal link prediction. Oyama et al. [86] proposed the cross-temporal link prediction method, in which

the links among nodes in different time frames are inferred, and a dimension reduction approach makes

high dimensional data to be mapped to a low-dimensional latent feature space.

Munasinghe and Ichise [87] focused on the temporal behavior of the link strength, particularly the rela-

tionship between the time stamps of interactions or links and the temporal behavior of link strength and

how link strength affects future link evolution. Most previous studies have neither sufficiently discussed

the impact of time stamps of the interactions nor time stamps of the links on link evolution. It believes

that the strength of a link varies over time. The nodes that do not interact with each other for a long time

will cause the links become weaker. So higher scores are assigned to node pairs which have interacted

with their common neighbors recently. In other words, if the difference between the time stamps of the

most recent interactions of common neighbors having the node pair is small, then this difference has a

greater effect on future links. Combining the above considerations, a new feature called time score (TS)

is introduced, to take into account the time awareness for link prediction. Time score for the node pair

x and y that has n common neighbors is defined as follows:

TS(x, y) =
∑

Ci∈Γ (x)∩Γ (y)

Hi
mβki

|ti1 − ti2|+ 1
, (29)

where ci is the common neighbors of x and y, ti1 is the most recent time stamp of the interactions between

x and ci, t
i
2 is the most recent time stamp of the interactions between y and ci, β is a damping factor

(0 < β < 1), ki is the difference between current time tc and the most recent time stamp form ti1 and ti2,

and ki is defined as: ki = tc −max(ti1 − ti2). Hi
m is the harmonic mean of the cooccurence frequencies

of x and y with the common neighbor ci. The effectiveness can be affected for time score with different

parameter settings for different network datasets, and the time score is sensitive to different networks

and different time measures. It can be seen that time score incorporates the impact of the time stamps

of the interactions and the gap between the current time and the time stamps. Time score feature can

be used in the supervised machine learning methods for predicting links.

Juszczyszyn et al. defined the Triad Transition Matrix (TTM) containing the probabilities of transitions

between 64 triads found in the network, and proposed its application for link prediction with an algorithm

(called TTM-predictor) which shows good performance, especially for sparse networks analyzed in short

time scales [13]. Since the TTM is based on the temporal network to calculate the transition probabilities

of triads, it can be seen as a kind of temporal link prediction method.

Soares and Prudêncio [88] proposed a link prediction measure based on temporal events. The event-
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based score is updated along time by rewarding the temporal events observed between the pair of nodes

under analysis and their neighborhood. The dynamics of links as the network evolves is used to update

representative scores to pairs of nodes, rewarding pairs that formed or preserved a link and penalizing

the ones that are no longer connected.

Richard et al. [89] investigated the links of the graph and its topological features that have been

evolving over time may also be useful to predict future links. Their work lies in the observation that

a few graph features that can capture the dynamics of the graph evolution and provide information for

predicting future links. The main idea is to learn over time the evolution of well-chosen local features

(at the level of the vertices) of the graph, and then uses the predicted value of these features on the next

time period to discover the missing links.

Jahanbakhsh et al. [90] exploited time-spatial properties of contact graphs as well as the popularity and

social information of mobile nodes to propose a method for reconstructing the missing parts of contact

graphs in mobile social networks.

4.2 Link prediction in heterogeneous networks

Most of the existing link prediction works focus on homogeneous networks, in which only one type of

nodes or links exists. However, many social networks contain different link types and different kinds

of nodes, which may have different typologies or link formation mechanisms and influence each other.

Moreover, most of the networks in real world are heterogeneous and complete attribute values of nodes

are often difficult to obtain. Therefore, link prediction on such heterogeneous social networks is also a

non-trivial task.

Heterogeneous relationships such as friendship, family, and colleague are often modeled as indistinct

in social networks. Several new multi-relational link prediction (MRLP) methods for heterogeneous

information networks are proposed to overcome shortcomings of traditional prediction methods [47,91,92].

The key component of the MRLP is an appropriate weighting scheme for different edge type combinations.

The weights are determined by counting the occurrence of each unique triad census with three nodes. The

triad census also provides the probability of each structure, which further translates to the probability

that a partial triad is closed by respective edge type. Specifically, for three nodes (s, n, t) and an edge type

x, it first counts all triads with the same pattern as (s, n, t), then counts all triads with the same pattern

with x added between s and t. P (x ∈ edge type(s, t)|pattern(s, n, t)) is determined by dividing the first

count by the second count. This probability assumes that the observed pattern is correct except for the

potential absence of type x, which simplifies the calculation. Rather there is no unsupervised method that

consistently performs well and MRLP outperforms AA metric in most cases. The supervised framework

is more consistent in its performance, generally achieving higher scores than unsupervised methods.

Sun et al. [93,94] considered a heterogeneous bibliographic network, which is different from the tra-

ditional co-author network and contains multiple types of objects, such as authors, venues, topics and

papers, as well as multiple types of links denoting different relations among these objects, such as “write”

and “written by” relations between authors and paper, “cite” and “cited by” relations between papers,

and so on. To predict the relationship building time between two objects, namely, whether or when a

relationship between two objects will be built, target relation and topological features are encoded in a

meta-path, then a generalized linear model based supervised framework is used to model the relationship

building time. Sun et al. [95] also proposed a new topological feature called multi-relational influence

propagation to capture the correlation between different types of links and then proposed temporal fea-

tures in heterogeneous networks to achieve better link prediction accuracy.

Davis et al. [96] proposed a novel MRLP method for heterogeneous information networks to predict

the location and type of new edge. The key idea of this method is an appropriate weighting scheme

for different edge type combinations. The weights are determined by counting the occurrence of each

unique triad census in networks. The triad census provides the probability of each structure. This MRLP

method can be seen as a weighted extension of the neighborhood methods.

Since that people in different social networks would interact thus predicting links across heterogeneous

social networks is also an interesting problem. Dong et al. [56] investigated the link formation over
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different social networks and find some interesting general social patterns in triad relationships according

to social theories including degree distribution, social balance and microscopic mechanism. Then they

defined social pattern-based features and proposed a transfer-based ranking factor graph model for the

link prediction across heterogeneous networks.

Link prediction in heterogeneous networks is still an open problem, and a lot of issues need to be

discussed. Ströele et al. [97] proposed a composite metric based on three basic metrics: node degree,

common neighbors and Katz metric, to predict new relationships in scientific social networks. Other

researchers have also discussed the scalability of link prediction in heterogeneous social networks [98].

Wang et al. found that human mobility could indeed serve as a good predictor for the formation of new

links, yielding comparable predictive power to traditional network-based measures. By combining both

mobility and network measures, they showed that the prediction accuracy can be significantly improved

in supervised learning [99].

4.3 Link prediction with active and unactive links

Munasinghe and Ichise [100] gave an assumption that if a node pair interacts recently, then the link

between them becomes active. The time stamp of the last interaction is a vital information in deciding

the activeness of a link. Hence, the most recent time stamps of the interactions between nodes is used

in link prediction computations. T Flow based on the PropFlow metric is proposed. It considers link

weight as well as link activeness to compute transition probabilities. T Flow imports a decaying function

to describe the decay of information. For two adjacent nodes x and y, the decaying function is defined

as d(x, y) = (1 − α)|tx−ty|, 0 < α < 1. Therefore, the T Flow from node x to y via direct link can be

calculated as follows:

T Flow(x, y) = T Flow(a, x) · wxy∑
k∈Γ (x) wxk

· d(x, y). (30)

If nodes x and y are indirectly linked, it computes the T Flow through all the shortest paths from node

x to y recursively and takes the summation. The total flow between two nodes is regarded as the T Flow

for the node pair. T Flow outperforms the PropFlow in social networks with active and unactive links.

Chen et al. [101] observed an interesting phenomenon in FOAF social networks: “younger links seem

to be more influential in future link prediction”. It implies that recent links are more important than

older ones in link prediction. To verify this observation, a new relation strength similarity (RSS) metric

is applied on a co-authorship network to study the power of recency. RSS metric is one of the few

similarity measures designed for weighted networks and easily models FOAF networks. By assigning

different weights to the links according to authors’ coauthoring history, it shows that recency is helpful

in predicting new links. The new relation strength considering both the number of coauthored papers

and the recency factor between vi and vj is defined as

R(vi, vj) =
ni,j(tnow)∑

∀k∈Γ (vi)
ni,k(tnow)

, (31)

where ni,j(tnow) is the edge weight at time tnow. Then the general relation strength from vi and vj can be

calculated by RSS metric. Chen et al. [102] also applied a supervised learning approach to study link age

as a factor for link prediction. Unlike those that suggest a relatively ad-hoc aging model, here they apply

logistic regression to quantify the relative importance of old links and young links. The experiments on

several real world datasets show that younger links are more informative than older ones in predicting

the formation of new links. Since older links become less useful, it might be appropriate to remove them

when studying network evolution.

4.4 Link prediction in bipartite networks

Many social networks are bipartite networks such as the user-product networks in e-commerce area. How-

ever, the link prediction problem is usually defined on unipartite graphs, where common link prediction

methods make several assumptions: (1) triangle closing: new edges tend to form triangles; (2) clustering:
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nodes tend to form well-connected clusters in the graph. But in bipartite graphs these assumptions are

not true, since triangle and larger cliques cannot appear. While a unipartite link prediction method ap-

plies to bipartite graphs, it will not perform well. Fortunately, there are some researchers pay attention

to this issue.

Kunegis et al. [103] found that for the simple local link prediction methods, only the preferential

attachment model can be used in bipartite networks. Algebraic link prediction methods can be used

instead, by restricting spectral transformations to odd functions, leading to the matrix hyperbolic sine

as a link prediction function, and an odd variant of the von Neumann kernel.

Some researchers extend the classical link prediction methods such as common neighbors, Jaccard

coefficient, Adamic Adar, and Preferential Attachment metrics to bipartite networks [104,105]. The

key idea is using neighbors’s neighbors to replace the direct neighbors. Xia et al. [104] studied the

link prediction in bipartite social networks, and then proposed two measures of structural holes for link

prediction in bipartite networks: one is absent links, another is minimum description length. Allia et

al. [106] transformed bipartite graphs into classical graphs by projection, then introduce internal links

in bipartite graphs for link prediction. Liu and Deng [107] discussed the link prediction in user-object

network, which is a more abstract bipartite network. Based on the resource allocation method, they

proposed a time-weighted network to model the evolution of the user-object network. It shows that both

time attenuation and diversion delay play key roles in link prediction in a user-object network.

4.5 Link prediction for unfollow or disappearing links

The formation and dissolution of link are two fundamental processes of link change and evolution in

dynamic networks. Links in social networks could be appeared or disappeared. For example, user

A in Twitter breaks the relationship with another user B. In social networks, we call this behavior

“unfollow”. To the best of our knowledge, numerous efforts have been made in studying link formation

for predicting new links in future, but only few attentions are paid to link dissolution, namely, predicting

the disappearing link in future.

Kwak et al. [108] analyzed the unfollow behavior in Twitter, including the characteristics of the unfollow

behavior and the reasons why people unfollow each other. They found Twitter users frequently unfollow,

and discover some major unfollow factors including the reciprocity of the relationships, the duration

of a relationship, the followees’s informativeness and the overlap of the relationships. They also took

other factors into consideration [109], including individual, dyadic and triadic properties between ego

and alter of the link, and use these factors to build a logistic regression model. From the fitted model,

they found some structural and actional factors can significantly explain the unfollow behavior. Later,

the same research group used actor-oriented modeling (SIENA) to examine the impacts of reciprocity,

status, embeddedness, homophily, and imformativeness on the unfollow behavior [110]. The results show

mutual following relationship and common followees reduce the likelihood of the unfollow behavior.

Kivran-Swaine et al. [111] explored network structure alone can significantly influence link dissolution

in Twitter. They use social theory, such as link strength, embeddedness, power and status, to study the

unfollow behavior. Quercia et al. considered factors that study in sociology (age, gender, and personality

traits) to study the unfollow behavior in Facebook. They found that the link is more likely to break if

it is not embedded in the network, if it is between two people whose ages differ, and if one of the two is

neurotic or introvert [112].

4.6 Link prediction scalability

The scalability and effectiveness are both important for massive real world social networks. Sarkar

et al. [113] proposed a nonparametric link prediction for dynamic networks in which their model can

accommodate regions with very different evolution profiles, otherwise impossible by the link prediction

metric or heuristic. It also enables learning based on both topological as well as other externally available

features. They also adapted the locality sensitive hashing algorithm to solve the scalability for link

prediction in large networks and long time sequences. Song et al. develop two novel methods to efficiently
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and accurately approximate a large family of proximity measures, which is a challenge for massive scale

and dynamic online social networks. Then the proposed proximity estimation is used for link prediction,

and obtains high link prediction accuracy by combining multiple proximity measures [114]. A novel

incremental update algorithm is proposed to enable near real-time link prediction in highly dynamic

social networks.

To handle the link prediction in massive evolving networks with sparse connectivities and nonlinear

transitional patterns, Li et al. [115] proposed a deep learning framework called conditional temporal

restricted Boltzmann machine, which predicts links based on individual transition variance and influence

introduced by local neighbors. It is robust to noise and has the exponential capability to capture nonlinear

variance. Besides the computational benefits, this method devises two types of directed connections to the

hidden variables: temporal connections and neighbor connections, which fit two well known assumptions:

each node has a unique transitional pattern and a node’s behavior is influenced by its local neighbors.

5 Link prediction applications

In social networks, link prediction can be used for various applications; here we will address some typical

applications, such as recommendation in social networks, network completion, and social ties prediction.

5.1 Recommendation in social network

Recommending partners, friends, followees and followers is a typical application for link prediction. Wu et

al. [4] proposed a novel interactive learning framework to formulate the problem of recommending patent

partners into a factor graph model. Wu et al. [56] also developed a transfer-based factor graph model

that combines them with network structure information for link recommendation across heterogeneous

social networks. Armentano and Godoy [116] proposed a followee recommender system based on both the

analysis of the content of microblogs to detect users’s interests and in the exploration of the topology of the

network to find candidate users for recommendation. They found that user-generated content available

in the network is a rich source of information for profiling users and finding like-minded people. Sadilek

et al. [117] infered social ties by considering patterns in friendship formation, the content of people’s

messages, and user location. They first employed text similarity between users’s tweets, co-location and

neighbor-based graph structure as features, then use a Markov random field model to learn and inference

friendship prediction. Huang et al. [118] viewed user-item interactions in recommender system as graphs

and employ link prediction approaches for making collaborative filtering recommendations. They adopted

some common similarity-based link prediction methods and find these methods can achieve significantly

better performance than standard collaborative filtering methods. Rowe et al. [119] predicted follower

edges within a directed social network by exploiting concept graphs and different behaviors that users

exhibit. Their method significantly outperforms a random baseline and models that rely solely on network

topology information. Link prediction can also improve the quality of behavioral recommender [120].

5.2 Reciprocal relationship prediction

In social networks, a two-way (also called reciprocal) relationship, usually developed from a one-way

(parasocial) relationship, represents a more trustful relationship between people. Understanding the

formation of two-way relationships can provide us insights into the micro-level dynamics of the social

network, such as the underlying community structure and users’s influence on each other. Hopcroft

et al. [121] studied the extent to which the formation of a two-way relationship can be predicted in a

dynamic social network. A semi-supervised learning framework is proposed to formulate the problem of

reciprocal relationship prediction into a Triad Factor Graph model, which incorporates social theories.

A large Twitter network is used to verify this framework. The method can accurately infer 90% of

reciprocal relationships in a dynamic network. In addition, it provides strong evidence of the existence

of the structural balance among reciprocal relationships. More importantly, the results have potential

implications such as how social structures can be inferred from individuals’ behaviors.
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5.3 Network completion problem

Usually, the collected social network data is incomplete with nodes and edges missing. Since that only

a part of the network can be observed or collected, it needs to infer the unobserved part of the network.

This is the network completion problem, wherein, given a network with missing nodes and edges, one has

to complete the missing part. Tang et al. used the Expectation Maximization (EM) framework to model

the social network completion problem, where the observed part of the network is used to fit a model of

network structure, and then estimates the missing part of the network using the model, re-estimate the

parameters and so on. They combined the EM with the Kronecker graphs model and devised a scalable

Metropolized Gibbs sampling for the estimation of the model parameters and the inference about missing

nodes and edges of the network [6]. This method can effectively recover the network even half of the

nodes in the network are missing. Especially, this method can easily scale to large scale networks.

5.4 Finding experts and collaborations in academic social network

Academic social networks contain massive amounts of experts in various disciplines and it is difficult for

the individual researcher to decide which experts will match his own expertise best. Pavlov and Ichise [7]

propose a method for building link predictors in academic social networks, where nodes can represent

researchers and links represent collaborations. It uses a supervised learning method for building link

predictors from structural attributes of the underlying network. In a network of researchers, where a

link represents a collaboration, such predictors could be useful in suggesting unrealized collaborations

and thus help in building and maintaining strong research teams. Then an improved method extracts

structural attributes from the graph of past collaborations along with semantic and event-based features,

and uses them to train a set of predictors using supervised learning algorithms [8]. These predictors can

then be used to predict future links between existing nodes in the graph.

Interdisciplinary collaborations are valuable in human society. Establish cross-domain collaborations is

difficult for some reasons: (1) cross-domain collaborations are rare; (2) cross-domain collaborators often

have different expertise and interest; (3) cross-domain collaboration focus on a sub-topics. Therefore,

cross-domain collaborations have different patterns compared to traditional collaborations in the same

domain. Through analyzing the cross-domain collaboration networks, Tang et al. [6] proposed the Cross-

domain Topic Learning (CTL) model to solve above challenges: (1) for handling sparse connections,

CTL consolidates the existing cross-domain collaborations through topic layers instead of at author

layers, which alleviates the sparseness issue; (2) for handling complementary expertise, CTL models

topic distributions from source and target domains separately, as well as the correlation across domains;

(3) for handling topic skewness, CTL only models relevant topics to the cross-domain collaboration.

Link prediction between co-authors is a frequently studied problem. Sun et al. [93] studied the problem

of co-author relationship prediction in the heterogeneous bibliographic network, and a new methodology

called PathPredict based on meta path relationship prediction model was proposed to solve this problem.

First, meta path-based topological features are systematically extracted from the network. Then, a

supervised model is used to learn the best weights associated with different topological features in deciding

the co-author relationships. On the other hand, the focus of traditional link prediction tasks is on the fact

about whether a link will happen in the future, e.g., whether two people will become friends. However,

in many applications, it may be more interesting to predict when the link will be built. Sun et al. [94]

proposed a new method to handle the problems such as “what is the probability that two authors will

co-write a paper within 5 years?”.

5.5 Social tie prediction

When a social network dynamically changes, the social ties would change over time. The social-tie

strengths are different one another even though they are in the same group. Zhang and Dantu [122]

investigated the evolution of person-to-person social relationships, quantify and predict social tie strengths

based on call-detail records of mobile phones. They propose an affinity model for quantifying social-tie

strengths in which a reciprocity index is integrated to measure the level of reciprocity between users
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and their communication partners. Some works focus on the relationship strength in social networks,

such as predicting tie strength with social media [123] and modeling relationship strength in online social

networks [124]. Though these works do not directly relate to the link prediction, however, their results

and conclusions can be extended to new link prediction methods.

6 Active research groups

Numerous efforts have been made by researchers from different institutions. This section will briefly

address some works of research groups and their primary contributions on the link prediction problem.

• Stanford University. Leskovec et al. [75] developed a concept of supervised random walks. It

combines the network structure with the features of nodes and edges of the network into a unified link

prediction algorithm. Then they develop a method based on it. The method learns to segregate a

PageRank-like random walk on the network in a supervised way, so that it is more likely to visit nodes

to which new links will be create in the future. Relationship can be either positive (friendship) or

negative (opposition) in social networks, a model incorporating theories of balance and status from social

psychology is used to predict the signs of relationships in social networks [65]. To combine the analysis of

signed networks with machine learning techniques, two categories of features are used. One is based on

the degree of nodes and another is based on the principle from social psychology. Also, they investigate

the network completion problem where nodes and edges in networks are both missing. They also develop

KronEM, an EM approach combined with the Kronecker graphs model, to estimate the missing part of

the network [11]. Moreover, Leskovec et al. collected and constructed a lot of social network datasets

which are public for other researchers. These datasets have been used in many link prediction works.

• Tsinghua University. Hopcroft and Tang’s team [121] studies the novel problem of reciprocal

relationship prediction to predict who will follow you back in directed social networks. They proposed

a Triad Factor Graph (TriFG) model, which incorporated social theories (such as structural balance

and homophily) over triads into the semi-supervised machine learning model. Tang’s team [125] also

formulated prediction problem to predict the existence and the type of links between a pair of nodes.

They proposed a partially-labeled pairwise factor graph model (PLP-FGM) and two active learning

strategies (Influence-Maximization Selection and Belief-Maximization Selection) to capture the inter-

relationship influence [126]. They also extended the above model for the problem of inferring social

ties across heterogeneous networks [127]. The model incorporates social theories into a semi-supervised

learning framework, which can be used to transfer supervised information from a source network to help

infer social ties in a target network. For the inventor social network where the link between inventors

is the co-invention relationships. They also incorporate users’s interactions into a factor graph model

for recommending patent partners [4]. This method shows good prediction accuracy and efficiency, so it

could be beneficial for existing recommendation models based on users’s feedback.

• IBM Research. Based on the topological features of network structure, Kashima et al. [74] presented

a parameterized probabilistic model of network evolution for supervised link prediction. In this model,

the existence of links are modeled by a “copy-and-paste” mechanism. Then a link prediction algorithm

is proposed based on the assumption that the network structure is in a stationary state of the network.

Later, Kashima et al. [69] develop a semi-supervised learning model for link prediction problem by

applying label propagation to link prediction. Label propagation is originally intended for use in node

classification. They apply the idea of label propagation to pairs of nodes with multiple link types and

predict the relationship among nodes. Besides link strengths, the model also can handle various types

of links. And they utilized the matrix factorization techniques to solve the problem of computational

time and space constraints here in [15]. The new method can be regarded as node information-based

prediction that utilizes fast and scalable techniques in topological-based prediction. They also extended

link prediction to a more general form called cross-temporal link prediction in which the links among

nodes in different time frames are inferred [86]. They adopted a dimension reduction approach where

data objects in different time frames are mapped into a low-dimensional latent feature space.

• University of Notre Dame. Lichtenwalter et al. [47] presented a flow-based predicting algorithm
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PropFlow, which is proportional to the probability based on a restricted random walk. It is similar

to Rooted PageRank, but it is more localized and does not need walk restarts or convergence. Due

to heterogeneous links and complicated dependency structures in complex networks, they introduce a

probabilistically weighted extension of Adamic-Adar coefficient for heterogeneous networks to model the

influences between heterogeneous links and distinguish the formation mechanisms of each link type [96].

Also, they point out that the current methods of link prediction evaluation are inadequate and may

lead to wrong conclusion about practical performance, so they propose a fairer framework and provide

some guidelines for link prediction evaluation in [24]. Due to the extreme imbalance of link prediction,

they argue for the use of threshold curves, such as precision-recall and AUC, rather than fixed-threshold

metrics. Lichtenwalter and Chawla [41,42] also proposed the concept of vertex collocation profile (VCP),

which is used in supervised models to discriminate potential new links. They also developed LPmade,

which is a complete cross-platform software solution for multi-core link prediction [80].

• UESTC. Researchers in University of Electronic Science and Technology of China (UESTC) present

some link prediction metrics based on topological information for the abstract complex network.

RA metric [32], which is motivated by the resource allocation process taking place on networks, is

proposed and shown to have a similar form with AA metric. But it weights common neighbors differently.

LP metric [37], which is based on local paths, also exploits information of the next nearest neighbors and

can enhance the prediction accuracy compared to CN metric. Especially, LP metric is efficient in the

hug network. To handle the sparsity and huge size of the network, they propose two similarity metrics

for link prediction based on local random walk [128]: LRW (Local Random Walk) and SRW (Superposed

Random Walk), which can give competitively good prediction and low computation complexity.

They also proposed a probabilistic model called local näıve Bayes (LNB) based on the Bayes theo-

ry [129]. Different to traditional methods in which each common neighbor contributes equally to the link

likelihood, LNB considers that different common neighbors may play different roles in link prediction.

The characteristic of the model is that two node pairs with same number of common neighbors could

have different connection likelihoods.

They developed the weighted version of some similarity measures and find the weighted version perform

worse. The experimental study shows that the weak ties play a significant role in the link prediction

problem, especially for remarkably enhance the predicting accuracy [61]. However, most of their works

only consider the link prediction problem in static networks.

Usually, in link prediction, the dataset is randomly divided into two parts: the training set and the

probe set. It seems a fair method without statistical bias. They pointed out that such a straightforward

and standard method may lead to bias, since missing links (the existed yet unknown links) are more

likely to be links connecting low-degree nodes. Then they divided the dataset into two parts and make

the links in the probe set less popular than the links in the training set. The experimental results show

that the Leicht-Holme-Newman (LHN) [33] metric performs the best although it was known to be one of

the worst metric if the probe set is a random sampling of all links. They further proposed a parameter-

dependent metric to improve the prediction accuracy considerably [34], namely, a similarity index with

a free parameter λ, which depends on the average link popularity of the probe set. Through tuning λ,

this metric can degenerate to CN metric, SI metric and the LHN metric.

• UIUC. Yin et al. [130] in University of Illinois at Urbana-Champaign (UIUC) proposed a random

walk framework named LINKREC on an augmented social graph using both user attributes and structural

information to predict links in social networks. Besides person nodes, the augmented social graph contains

additional nodes called attribute nodes. For every attribute of a person, a corresponding link between

the person node and the attribute node is created. Then, they studied the problem of link prediction in

heterogeneous network where contains multiple types of objects and links [93]. In heterogeneous networks,

different paths between the same nodes may represent different relations and have different meanings. So

they proposed a meta path-based relationship prediction model called PathPredict to solve the problem.

In [94], they extended the above problem from “whether it will happen” to “when it will happen” and

proposed a generalized linear model based supervised framework to solve the relationship building time

prediction problem. The building time is treated as independent variables and their expectation is
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modeled as a function of topological features according to several reasonable distributions.

• NII. The research group in National Institute of Informatics (NII) of Japan tried to find experts

by link prediction in co-authorship network using supervised learning algorithm. In [7], they used struc-

tural attributes extracted from the graph of past collaboration to train a set of predictors. Considering

researchers’s semantic descriptions might be helpful, besides the structure of the graph, they also add a

semantic and event based features to improve the accuracy [8]. The feature named keywords matching

counting (KMC) represents the number of words in common between titles of their previous papers. And

later, they made use of the fact that researchers tend to work in dense communities, and use community

alignment information to further improve the accuracy of link prediction [131]. Focus on the temporal

behavior of link strength, they proposed a new time-aware feature called time score for link prediction.

The feature incorporates the effectiveness of common neighbors and their temporality by assigning higher

score to node pairs which interact with their common neighbors within more recent time [87]. They also

extend this study, which is limited to nodes pairs having common neighbors, to any node pair in a net-

work by considering the link activeness [100]. They introduced T Flow that captures the importance of

information flow via active links in social networks. T Flow, which uses the same settings as in PropFlow

for random walk, considers link weight as well as link activeness when computing transition probabilities.

7 Future directions and challenges

Although numerous efforts have been made in link prediction, there are still many potential future

challenges, and some new open problems require further study. Here, we address some possible future

research challenges on the link prediction problem.

• Disappearing link prediction. Most existing link prediction works focus on links that will appear

in the future, only a few works discuss the prediction of links that will disappear in the future [17]. We

argue that predicting links that may disappear in the future is also very important. This problem has been

considered by some researchers. However, it is not easy to solve this problem. Predicting disappearing

links is not the inverse problem of predicting appearing or missing links. The main reason is that the

mechanism of the link dissolution is not same to the mechanism of the link formation. Therefore, we

cannot directly apply the current link prediction methods to predict the disappearing links. For example,

finding the node pairs with low similarities would not work for this new problem. The key of solving this

problem should be understand the mechanism of the link dissolution, then reasonable approaches could

be designed.

• Link prediction under dynamic nodes. Most current link prediction works have a default

assumption: the nodes of social networks are known and will not change in the future. However, in

most practical cases, this assumption cannot be satisfied. Social networks are highly dynamic, and a

node may join or leave the network. Therefore, link prediction under dynamic nodes is an interesting

challenge. Current link prediction methods also cannot work well for this problem. In social networks

such as Twitter and Sina Weibo, many users are never active after a period of time, these users should not

be considered in link prediction because they have actually left the social networks. A more complicated

issue is that there are a lot of fake users controlled by malicious programs, and these users are not real

but their social activities are similar to real users, so the link prediction methods should consider the

negative influence by fake users.

• Overcoming imbalance. Link prediction problem always suffers from extreme imbalance, namely,

the number of links known to be present is often much less than the number of links known to be

absent. This imbalance hampers the effectiveness of many link prediction methods, and it is necessary

to overcome this problem in the future work. In addition, a reason of the link prediction being hard lies

in the fact of most interesting linked datasets are very sparse. Therefore, it is difficult to build statistical

models for link prediction because that the prior probability of a link is typically quite small. Then it

causes difficulty both in model evaluation and, more importantly, in quantifying the level of confidence in

the predictions. Current link prediction experimental results are usually in very low evaluation metrics

values, so the link prediction performances have enough space for improvement.
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• Incorporating social theories. A large number of methods for link prediction in social networks

consider only topological features and attributes, few works take social theory features into consideration.

Therefore, they are still traditional data mining and learning solutions, and are independent to the social

networks. The social theories are useful for explaining the mechanisms of social activities. Incorporating

social theories into the link prediction methods would be promising. For example, social theories would

provide reasonable features for learning-based link prediction methods. However, some new social theory

works could not be noticed by researchers from computer science field. Fortunately, some works that

incorporating existing social theories into the link prediction methods have shown that the prediction

accuracy can be improved. More comprehensive works should follow these positive results.

• Link prediction in heterogeneous social networks. A lot of traditional link prediction methods

are limited to homogeneous networks with single-type edges and nodes, but practical social networks

usually have multiple relation types and node types. For example, a heterogeneous bibliographic network

contains nodes such as publications, authors and venues, and edges such as co-author, cite and work-in.

In addition, it needs to predict links across networks in social network applications. Some works have

drawn attention to this problem. For example, the probabilistic latent tensor factorization model [91,92] is

proposed to solve this problem. However, most of these solutions are too complicated and have high time

complexities, or are designed for special applications. Therefore, it deserves further study for designing

more elegant and generalized methods for solving the link prediction problem in heterogeneous social

networks.

• Fair evaluation and benchmark datasets. Up to now, numerous methods have been proposed

to solve the link prediction problem. However, the corresponding evaluations are inadequate, which

may lead to inappropriate conclusions about the performances of link prediction methods. So more fair

evaluation for link prediction is very necessary. On the other hand, there is no a benchmark dataset for

link prediction. Almost all works need to collect experimental datasets, besides the time-consumed for

dataset collection process, other drawback is that these datasets would vary largely in network size and

network features. Therefore, it is difficult to fairly and systematically compare the performances between

new methods and previous ones. As a result, the performance of a model would be good in some datasets

but also would be unsatisfactory in others. Researchers would select specific datasets to support their

works, that would hide the limitation of their link prediction methods. In fact, for many problems in

computer science, people have built a lot of benchmark datasets, which are very helpful to promote the

research development on these problems.

8 Conclusion

The link prediction is not a new problem in link mining and analysis. New link prediction techniques,

problems and applications are emerging quickly in recent years. This paper attempts to systematically

summarize all typical works on the link prediction in social networks. A category of link prediction

techniques and link prediction problems is proposed. Link prediction techniques are discussed, especially

the topology-based metrics and learning-based methods. Link prediction problems and applications are

also presented. Active research groups are also introduced. Finally, future directions and challenges are

addressed.
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