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Abstract Dexterous in-hand manipulation with multi-finger robotic hands is a hot topic in robotics. Recently

many famous multi-finger robotic hands have been developed. Though a lot of research has been done on

them; in-hand manipulation is still a challenge. One of its issues lies in the uncertainty of interaction states.

In this paper we research robot-object interaction from a novel angle called haptic exploration. This method

helps robots acquire the ability to explore the robot-object interaction. In in-hand manipulation tasks, haptic

exploration is a process where the robot pushes on in-hand objects slightly in different directions, and meanwhile

perceives the haptic feedback to estimate the interaction state. In this paper a new single finger push model is

proposed for analyzing the haptic feedback, which is similar to traditional impedance control of robot arm. In

this model the stiffness of fingers, the deformation on contact surface, and the change of object’s pos (position

and attitude) are considered. Furthermore, a push resistance is given to describe the haptic feedback acquired

from a slight push. Finally, real robotic experiments are conducted to verify the feasibility of proposed method.
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1 Introduction

Dexterous manipulation with multi-fingered robot hands are gaining increasing attention for its potential

applications. Recently, several famous anthropomorphic robotic hands have been developed, such as

Shadow hand [1], Robonaut hand [2] and DLR/HIT hand [3] etc. One of their well-known essential

anthroposophic skills is dexterous in-hand manipulation. The generally accepted conception of dexterous

in-hand manipulation is a capability of changing the position and orientation of the manipulated objects

from an initial configuration to a given one within one hand [4]. It enables the robotic hand not only to

hold objects with a firm grasp, but also to move and position objects with fingers’s actions.

The early robot hand research can be tracked back more then 30 years ago [5]. Lots of research have

been done in the past decades in this field [4,6,7]; however most of them are still far away from real

applications. Some dexterous manipulating tasks are still difficult to be carried out reliably even in

laboratory environment. One of the issues lies in the uncertainty of robot-object interaction states; in
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other words, there are still a lack of effective approaches that describe the interaction state between the

robot hand and objects.

In traditional robot hand control systems, when robots are controlled to manipulate grasp and re-

grasp objects, they should have complete knowledge about robot mechanics, target objects (geometry

and physic proprieties, location in environment), and physical laws relating to interaction [8]. Therefore,

in order to achieve a dexterous and skillful manipulation, the most intuitive methods are synthesize

operations. One of these most impressive results is the high-speed manipulation [9–11]. It analyzed the

robot-object interaction model to achieve the dynamic fast manipulations. In [12], Garcia and Parra

built a dynamic model precisely to roll a rigid dynamic circular object with a hemispherical deformable

fingertip. However synthetic operations are very labor intensive, and sometimes it is even impractical to

build a precise robot-object interaction model.

Instead of building precise interaction models, some other researchers solved these issues with artificial

intelligence methods [13,14]. Schaedle and Ertel [15] implemented hierarchal reinforcement learning

to solve the problems associated with a high dimensional manipulation task. Both in grasping and

in-hand manipulation, planning under contact conditions is usually impractical due to computational

complexity and the lack of precise dynamics models. Hence some researches let robots learn to deal with

these uncertainty problems. Kalakrishnan et al. [16] made their robot learn the force/torque compliance

controller with Path Integral algorithm (PI2). In [17,18], authors employed reinforcement learning to

help robots learn grasp skills. Gorce et al. [19] applied neural networks to deal with the insufficient

knowledge problems. In [20], several learning schemes have been proposed for dexterous hand grasping

and manipulation.

While some of these strategies can be used to improve the quality of interaction perception, the

intelligent robotic system still requires better perception methods for skillful tasks. Therefore, in this

paper a novel perception strategy called ‘haptic exploration’ is proposed to address the uncertainty

interaction perception problems; here haptic exploration helps the robot to better perceive the interaction

state with force feedback.

This paper is organized as follows: In Section 2, related works and research problems are discussed.

In Section 3, the research conception is discussed and haptic push models are proposed. Then in Sec-

tion 4, a dexterous in-hand manipulation system is introduced. Finally, in Section 5 a haptic exploration

experiment is carried out and its results show the feasibility of the proposed haptic exploration method.

2 Problem definition and related works

Psychological research on human touch has revealed that force can overcome object geometry cues in the

perception of shape during active touch [21], therefore this research is to perceive interaction from force

cues. In this paper the push perception concerns more about the contact force (contact pressure from

the sensors).

The term haptic exploration is very similar to ‘touch exploration’ and ‘active touch’ which are widely

used in robot recognition fields. In 1990, Kenneth used active touch to explore and recognize a 3D object

taken from a known set of models [22,23]. In [24,25], a real textured surface was detected with the active

touch of a rigid probe.

However most touch exploration research focus on the static object information (liking geometry sur-

face, texture etc.); very few of them pay attention on dynamic information during the interaction process.

Thus the method ‘haptic exploration’ is introduced to illustrate a dynamic interaction state during an

exploration process. For robotic dexterous manipulation, the haptic exploration is a process where the

robot controls its fingers to push objects slightly in different given directions, and perceives the interaction

state through its push feedback. Differently from pushing a box on the ground, in this paper the purpose

of slight pushes is to perceive the resistance force information instead of moving objects. Therefore all

the push presented in this paper is limited to a very small range. Further, the push feedback refers to

the information collected by sensors, such as object deformation, joints’ conditions, contact pressure and

so on. In the experiments, the contact pressure is adopted as the feedback.
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In earlier object force push interaction research, like [26], for 2D object push problems, precise analytical

models were developed to plan push actions. For dexterous object-robot interaction research, most current

researchers explore the interaction from modeling objects and robots separately, and combine the two

with physical laws [9,27]. In contrast, the conception proposed in this work treats the target objects and

their support as one black box system. In this paper, the support finger is the finger which is stationary

during manipulation. With the conception of trial and error, haptic exploration can be a general method

to help the robot collect enough knowledge for its interaction tasks. More importantly it makes the robot

system escape from complicated physical laws and describes the interaction state with its push feedback

directly.

3 Manipulation model

In order to simplify research problems, the following assumptions are considered:

(1) All robot actions are in workspace.

(2) The manipulating processes are quasi-static.

(3) The fingers and object are keep in contact.

(4) Every contact finger has only one contact point, which is located at the center of fingertip.

(5) The torque of joints is sufficient for all its push actions.

3.1 Equilibrium point control model for impedance

According to the equilibrium trajectory hypothesis, multi-joint arm movements are achieved by gradually

shifting the hand’s equilibrium positions defined by the neuromuscular [28,29]. In robotics, impedance

control is a widely adopted method for robot contact tasks. And the impedance control law can be

described as [30] (ignore the term G(q)):

τ = JT(q)(−Kc(x− xd)−Bcẋ), (1)

where the vector x and ẋ denote current position and velocity of end-effector respectively. The xd is

the desired position of end-effector. And the matrices Kc and Bc are stiffness and damping matrices in

Cartesian space. The τ is the joints’ torque generated by actuators. And the matrix J refers to Jacobin

matrix. All the manipulation processes are quasi-static, hence the damping matrix Bc is 0.

As introduced in [28,31,32], this impedance control can be considered as an equilibrium point control.

And hence the end-effector’s stiffness matrix can be represented graphically as an ellipse, which can be

described with 3 parameters (λ1, λ2, θ). As shown in Figure 1.

3.2 Push stiffness model

Generally, in an unknown environment it is hard to acquire the objects’ external stiffness. However in

robotic dexterous in-hand manipulation tasks, the object is supported by robotic fingers. Fortunately,

this makes it easier to analyze the push stiffness. As a result, a single finger push stiffness model to

estimate the stiffness of an object in Catesian space during robot-object interaction is proposed in this

section.

The push stiffness model is shown in Figure 2. An object is grasped by two independent fingers. The

upper finger is a push finger which is actuated to push in a vector Sp described with an angle θ; and the

down fingers are support fingers which are slave (uncontrolled) and have compliance properties. Both the

contact areas between fingers and the object are simplified as two fixed points: push point P and support

point Os. During push actions, the object rolls on the supported finger; and it rolls over an angle of γ.

In this research we assume the rolling center is located at the contact point Os.

Therefore, after a slight push, the position of the push point changes along the vector Sp. As shown

in Figure 2, the back vector Sp is decomposed orthogonally into Spt and Spn. Spt = Sp cos(θ), Spn =

Sp sin(θ). This movement Sp of push point P consists mainly of three parts: deformation in contact
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Figure 1 Graphical stiffness ellipse in Cartesian space. The parameters λ1, λ2 represent the length of major axis and

minor axis respectively. And the angle θ denotes the orientation of the ellipse.
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Figure 3 Push stiffness mode in dexterous manipulation tasks.

surface, object’s rolling on the support finger, and compliance of the support finger. Hence the terms Spt

and Spn can be expressed as:

Spt = Sst + Sdt + Srt, (2)

Spn = Ssn + Sdn, (3)

where the vectors Sst, Ssn denote the change of the support finger’s position along orthogonal directions;

the vectors Sdt, Sdn refer to the change of the push point’s position for the deformation on contact

surface; and the term Srt is the change of the push point’s position for object’s rolling on the support

finger. Obviously, compared to the rolling term Srt, the term Sdt from deformation is considered to be

much smaller. Hence we assume Sdt = 0.

3.3 Dexterous manipulation model

After a finger push, the change in push force is gained from the system’s deformation. The force state is

shown in Figure 3. Also the push force is orthogonally decomposed into two components Fpn, Fpt. And

according to the equilibrium conditions, the push force can be expressed as:

Fpt = Fst = Fdt = T/L, (4)
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Fpn = Fsn = Fdn, (5)

where the terms Fdt, Fdn are deformation forces which causes the deformation on object-fingers contact

surface; the terms Fst, Fsn denote the compliance force produced by the support finger; the term T ,

L refer to the rolling torque and the length between two contact points P , Os respectively. For the

complexity of elastic objects, the relationship between the deformation on contact surface and contact

force is very complex. It relates to many factors such as material of object and surface, shape of contact

area, contact force applied on object etc. [33]. In this paper, these are just simplified to be Fdn = KdnSdn,

where the Kdn is a special elasticity coefficient.

As introduced in Subsection 3.1, the stiffness ellipse model is adopted to describe compliance stiffness

on the support finger. Fst = KstSst, Fsn = KsnSsn. And the term Ksn, Kst are the stiffness acquired

from the stiffness ellipse model.

Therefore the normal component of push force Fpn can be expressed with Ppn:

Fpn =
KsnKdn

Ksn +Kdn
Sp sin(θ). (6)

3.4 Two rolling cases

Two cases are under consideration depending on whether the object is rolled or unrolled during the thumb

push actions.

3.4.1 Rolled case

The rolled case is when the object rolls on the support finger. In this case, since the object rolls on the

finger, the displacement Srt is much larger than the term Sdt which is produced by deformation. Hence

in this case we assume Sdt = 0 and the toque T is rolling friction which can be calculated from:

T = CrrFpnL, (7)

where the Crr is the rolling friction coefficient. Therefore, from the (4), (6), (7) the tangential component

of push force Fpt can be expressed with Pp:

Fpt =
KsnKdn

Ksn +Kdn
CrrSp sin(θ). (8)

3.4.2 Unrolled case

On the other hand, in the unrolled case the object does not roll on the support finger. In this case, the

rolling torque T is produced from the surface deformation. Here the relation between rolling torque and

deformed angle γ is simplified with a linear model:

T = Cdγ, (9)

where the Cd refers to the linear coefficient for deformation. Therefore from (2), (9), the tangential

component of push force Fpt can be expressed with Pp:

Fpt =
KstCd

L2Kst + Cd
Sp cos(θ). (10)

3.4.3 Critical conditions

The critical condition between these two cases is (8) = (10); that is

θc = arctan
1

Kdn

Kst

Ksn

Cd

Crr

Ksn +Kdn

L2Kst + Cd
. (11)

It is worth noting that, actually, the θc is not a precise angle value. For reason that in the rolling case,

both deformation and rolling exist. Thus the shift between these two cases can be more continuous and

smooth.
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Figure 4 Shadow hand.
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Figure 5 Software system.

3.5 Push resistance

Similar to impedance, the push resistance is introduced in this section. The push resistance is used to

measure the impedance state and its practical effect while a finger pushes in a specific direction. Hence

a simple way to express the push resistance Pr is:

Pr =
Fp

Sp
. (12)

With limited accuracy of our robot hand, it is impossible to change the term Sp with different small

values. Thus in this paper we just assume that the term Sp is a constant.

For the rolled case the push resistance Prr is:

Prr =
KsnKdn

Ksn +Kdn
|Crr sin(θ)i + sin(θ)j|, (13)

where the i, j denote the unit vectors of axes x, y respectively. And for the rolled case the push resistance

Pru is:

Pru =

∣
∣
∣
∣

KstCr

L2Kst + Cr
cos(θ)i +

KsnKdn

Ksn +Kdn
sin(θ)j

∣
∣
∣
∣
. (14)

Although there are many parameters used to describe the robot push force, many of them mainly relate

to the robot itself. Therefore, it is more practical to estimate these parameters before manipulation tasks.

4 Dexterous manipulation system

A multi-fingered robotic hand system is built for dexterous manipulation. Generally, it can be divided

into two parts: hardware and software.

4.1 Hardware

In Figure 4 the multi-fingered hand and sensors are shown. In this system the robot hand is shadow

hand1). It takes a truly anthropomorphic approach to robot manipulation, totaling 20 degrees of freedom.

The tactile sensors mounted on this hand are BioTac2), which have the force, vibration and temperature

sensing capabilities by mimicking human fingertips. In this paper the direct pressure is adopted to

estimate the push force between fingertips and the object.

1) Shadow dexterous hand: http://www.shadowrobot.com.
2) Biotac: http://www.syntouchllc.com/.
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Figure 6 In-hand manipulation experiment.
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4.2 Software

A specifical robot control software is developed under ROS3). The software architecture is shown in

Figure 5. In this system there are three main nodes: algorithm node, position node, and touch node.

The algorithm node is to plan the actions of robotic fingers. The control node is for executing the

finger actions. And the touch node collects all the fingertip tactile sensation, joints’ torque and position

information and does some preliminary data processing.

5 Experiments

In order to verify the manipulation method and model, the push manipulation experiments were conduct-

ed on a real shadow hand. The task of these experiments was making the thumb push a cubic object in

different directions, and observing the tactile feedback. With the observed tactile data, the spatial push

resistance can be estimated, which can be used in robotic dexterous manipulation control. The object

used in these experiments is a foam rectangle box with the dimension of 160 mm× 70 mm× 40 mm, as

shown in Figure 6. We chose it for three reasons. First, in these push experiments, the object should

be neither too hard nor too soft for protecting our robot hand. Second as described in Subsection 3.4,

the contact surface is the flatter the better to meet the rolling case. At last, in the proposed model the

gravity is ignored, thus the object should be light.

In the push stiffness model section, only two fingers are discussed but in these experiments the three

fingers’ grasp is adopted. There are two reasons. One reason is that the three fingers grasp is more stable

than that of two. It ensures the reproducibility of the experiments. The other reason is that the two

fingers’ grasping does not easily reflect the advantage of haptic exploration. Three fingers’ grasp makes

the push resistance different with the different parameter α in Figure 7, and its result is as shown in

Figure 8.

5.1 Object push directions

In Figure 7, a cubic object is grasped by 3 fingers. The 3 red dots refer to the 3 contact points (A,B,O)

located on the surface of the object. The two fingers behind the box are support fingers which are fixed

without any active movement during the push manipulations. The finger in front of the object is the

push finger, which can be controlled actively to push objects in given directions. A push frame is fixed

on the push contact point O with its origin located at the point O. Its axis x is parallel to the support

contact line AB; its axis y is perpendicular to the plane ABO. The red vector OP denotes a specifical

push vector. Therefore, the thumb push vector OP can be described with three parameters: θ, α, and d.

The parameter θ refers to the angle between the push vector OP and the plane XOY ; the parameter α

refers to the angle between axis x and the projected vector OC which is the projected vector of OP in

3) Ros: http://wiki.ros.org.
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Figure 8 The push results when the thumb pushes in

different angle α = 0◦ to 120◦ with the angle θ = 15◦.
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Figure 9 Raw data of push feedback, where the the angle

α = 90◦ and the thumb pushes in different directions with

the angle θ = −60◦ to 60◦.

plane XOY ; and the parameter d refers to the length of push vector OP . In this experiment, the push

actions are conducted in two steps, first forward push and then backwards push. In the forward push

process, the push finger pushes along the vector OP . In the backwards push process, the push finger

moves back to origin O along the forward push trajectory.

One thing worth mentioning is that all these push actions are controlled off-line and the resolution of

each joint is 1◦. Because of such joints’ resolutions, in these experiments, we set the length of push vector

OP as a constant 5 mm (d = 5 mm). Therefore, the push resistance is the pressure value which can be

collected from the tactile sensors directly.

Though the low level controller on shadow hand is PID control, the push actions are still limited by

robotic structure. However with the conception of haptic exploration, both the limitation from the push

finger’s structure and the control resolution are part of the environment for this perceiving agent.

5.2 Data processing and experiment results

In this paper, the experiments were carried out in two parts. Firstly, the angle α was fixed and the

thumb was controlled to push with different angle θ. Secondly, the angle θ was fixed and the thumb was

controlled to push with different angle α.

5.2.1 Push with fixed α

The collected raw data in first segment is shown in Figure 9, where the blue line denotes the push

feedback collected from syntouh sensor which is mounted on the tip of thumb. In addition the vertical

and horizonal axes refer to the experiment time and the push pressure value respectively. Thus the peaks

were produced by the push of the thumb. With different push directions, different peaks are acquired.

While the angle α is fixed, α = 90◦, the peaks from left to right relate to different value of angle θ, with

θ =−60◦, −45◦, −30◦, −15◦, 0◦, 15◦, 30◦, 45◦, 60◦.
In this paper we focus on the height of each peak. The height of each peak is calculated from the value

of its highest point (at the middle point for each push) minus the value of its lowest point (at initial point

for each push). Besides, in this experiment for each direction, each push actions is carried out 3 times.

We calculated the average of them and plot it in Figure 10. In Figure 10 different color lines denote the

push results with different fixed angle α. From the Figure 10, the relationship between push angle θ and

push feedback can be considered as a linear model.

5.2.2 Push with fixed θ

The collected raw data in the second segment is shown in Figure 11, where the blue line also denotes

the push feedback collected from syntouh sensor with a fixed angle θ = 15◦. Similarly to Figure 9, the
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vertical and horizonal axes refer to the time and the push pressure respectively. Therefore each peak

denotes one push. While the angle θ is fixed to 15◦, the peaks from left to right relate to different α

values, with θ = 0◦, 30◦, 60◦, 90◦, 120◦, 150◦. It is worth noting that θ never equals to 180◦. This is

because under the current grasp configuration, the push direction with θ = 180◦ can not be reached. In

other words, this direction is out of the finger’s workspace.

Also the height of peaks are considered in this part of experiment; and each action is also carried out 3

times along given directions. The average value of peaks’ height is plotted in Figure 8. From this figure,

a significant concave curve is shown.

If we define the best push direction α∗ as a direction with smallest push resistance (feedback). From

this view, this best push direction can be estimated from the Figure 8, it is located at around 65◦ (lowest

point). Though theoretically the best push direction should be at the position α∗ = 90◦; the deformation

of contact surface, error relating to contact position, the compliance propriety of robot fingers and the

accuracy of robot control system, all these affect best push direction in the manipulation tasks. Though

most of them are hard to be estimated; with this haptic exploration method the best push direction can

be found out directly from the smallest push resistance point.

6 Conclusion and future work

This paper gives a new insight to the perception of robot-object interaction in multi-finger dexterous

manipulations. We make the robot system perceive the robot-object interaction state from trail and

error. In order to evaluate the push feedback, push resistance has been proposed in this paper. Further,

a synthetic push stiffness model is given to interpret the principle of push resistance in this paper. At last

real robotic experiments have been carried out. In these experiments, the robot is controlled to push in

given directions, which perceives the pressure feedback. With the feedback, the interaction state can be

estimated, to find out the best push direction. Finally, the results of the experiments show the feasibility

of our proposed method.

In the future, there are still lots of work to be done. On one hand, more experiments with different

objects and different grasp configurations should be conducted. On the other hand, besides haptic

feedback, other modalities (like vision) should be employed into this system for a better manipulation

performance.
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