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Abstract The AGM postulates are for the belief revision (revision by a single belief), and the DP postulates

for the iterated revision (revision by a finite sequence of beliefs). Li gave an R-calculus for R-configurations

Δ|Γ, where Δ is a set of atomic formulas or the negations of atomic formulas, and Γ is a finite set of formulas. In

this paper, two deduction systems for the revision of a theory by another theory are given such that the systems

are sound and complete, that is, if Δ|Γ ⇒ Γ′ is provable then Γ′ ⊇ Δ is consistent and Γ′ − Δ is a maximal

subset of Γ such that (Γ′ − Δ) ∪ Δ is consistent; and for any finite theories Δ and Γ, there is a finite theory

Γ′ such that Γ′ − Δ is a maximal subset of Γ such that (Γ′ −Δ) ∪ Δ is consistent, and Δ|Γ ⇒ Γ′ is provable.

Moreover, if Δ|Γ ⇒ Γ′ is provable then Γ′ satisfies the AGM and the DP postulates.
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1 Introduction

The AGM postulates [1–4] are for the revision K ◦ ϕ of a theory K by a formula ϕ; while the DP

postulates [5] are for the iterated revision (· · · (K ◦ ϕ1) ◦ · · · ) ◦ ϕn [6–13].

The R-calculus [14] brought up a Gentzen-type deduction system to deduce a consistent one Γ′ ∪Δ

from an inconsistent theory Γ∪Δ, where Γ′∪Δ should be a maximal consistent subtheory of Γ∪Δ which

includes Δ as a subset (notice that here is the maximal consistent theory, not the maximally consistent

theory), where Δ|Γ is an R-configuration, Γ is a consistent set of formulas, and Δ is a consistent sets of

atomic formulas or the negation of atomic formulas. It was proved that if Δ|Γ ⇒ Δ|Γ′ is deducible and

Δ|Γ′ is an R-termination, i.e., there is no R-rule to reduce Δ|Γ′ to another R-configuration Δ|Γ′′, then
Δ ∪ Γ′ is a contraction of Γ by Δ.
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Given two theories Δ,Γ, assume that Γ = {ϕ1, . . . , ϕn} is finite. To find a maximal subset Γ′ of Γ such

that Γ′ ∪Δ is consistent, a natural way is to define

Θ0 = Δ;

Θi =

{
Θi−1 ∪ {ϕi}, if ϕi ∪Θi−1 is consistent,

Θi−1, otherwise.

Then, Γ′ = Θn −Δ ⊆ Γ is a maximal subset such that Γ′ ∪Δ is consistent.

Therefore, a revision should be a formula that is revised by a theory, formally, Δ|ϕ (or ϕ ◦ Δ).

Correspondingly, a theory Γ revised by a theory Δ is an iterated revision of form

Δ|Γ = (· · · ((Δ|ϕ1)|ϕ2) · · · )|ϕn,

where Γ = {ϕ1, . . . , ϕn}. Here, we consider only the belief bases and not the belief sets.

In this paper we firstly consider a simple case of revision: Δ|ϕ, where Δ is a set of formulas to revise,

and ϕ is a formula to be revised; and then consider a general case of revision: Δ|Γ, which is reduced

to the successive revisions (· · · ((Δ|ϕ1)|ϕ2) · · · )|ϕn, where Γ = {ϕ1, . . . , ϕn}. Here, formulas are in the

propositional logic [15–17].

A set of deductions rules S for Δ|ϕ will be given such that S are sound and complete, that is, for any

theories Δ,Θ and formula ϕ, if Δ|ϕ⇒ Θ is provable in S then Θ is consistent, and if Δ∪{ϕ} is consistent

then Θ = Δ ∪ {ϕ}; and if Δ ∪ {ϕ} is inconsistent then Θ = Δ; and conversely, if Δ ∪ {ϕ} is consistent

then Δ|ϕ⇒ Δ ∪ {ϕ} is provable in S; and if Δ ∪ {ϕ} is inconsistent then Δ|ϕ⇒ Δ is provable in S.

Generally, the soundness and completeness theorems hold good for Δ|Γ too. That is, for any consistent

sets Δ,Γ,Θ of formulas with Γ being finite, if Δ|Γ ⇒ Θ is provable in S then Θ is a maximal consistent

set of Γ by Δ; and for any maximal consistent set Θ of Γ by Δ then Δ|Γ ⇒ Θ is provable in S. Here,

Θ is a maximal consistent set of Γ by Δ if (i) Θ ⊇ Δ, (ii) Θ is consistent, and (iii) for any Θ′ with
Θ ⊂ Θ′ ⊆ Γ ∪Δ,Θ′ is inconsistent.

It will be proved that the AGM postulates and the DP postulates are satisfied by both Δ|ϕ and Δ|Γ.
The deduction rules in S are used to decompose formulas in Γ (we call the right decomposition).

Symmetrically, there is a set T of deduction rules to decompose formulas in Δ, so that the rule (S¬) that
if Δ � ¬p then Δ|p ⇒ Δ is reduced to the revision of revising l by ¬l by a set of deduction rules for the

left decomposition, where l is a literal (atomic formula or the negation of an atomic formula). We shall

prove that T is sound and complete, that is, for any consistent sets Δ,Γ,Θ of formulas with Γ being

finite, if Δ|Γ ⇒ Θ is provable in T then Θ is a maximal consistent set of Γ by Δ; and for any maximal

consistent set Θ of Γ by Δ then Δ|Γ ⇒ Θ is provable in T.

The paper is organized as follows: Section 2 lists the AGM postulates and the R-calculus; Section 3

gives an R-calculus S (a deduction rules) for the revision operator Δ|ϕ, and proves that the deduction

rules for Δ|ϕ are sound and complete; Section 4 discusses the basic properties of Δ|ϕ, and shows that Δ|ϕ
satisfies the AGM postulates for the R-calculus (the R-calculus is set-based, not closed theory-based, and

hence, Δ|Γ is a set of formulas, not a belief base, a deductively closed set of formulas); Section 5 gives a

set T of deduction rules for the left-decomposition of formulas such that the set of the deduction rules is

sound and complete with respect to the maximal consistent sets; and the last section draws conclusion

for the whole paper and discusses future work.

2 The AGM postulates for the R-calculus

The R-calculus [14] is defined on a first-order logical language [16,17]. Let L′ be a logical language of the

first-order logic; ϕ, ψ formulas and Γ,Δ sets of formulas (theories), where Δ is a set of atomic formulas

or the negations of atomic formulas, and Δ|Γ is called an R-configuration.
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The R-calculus consists of the following axiom and inference rules:

(A¬) Δ, ϕ1|¬ϕ1,Γ ⇒ ϕ1,Δ|Γ,

(Rcut)

Γ1, ϕ1 � ϕ2 ϕ1 	→T ϕ2

Γ2, ϕ2 � ϕ3 Δ|ϕ3,Γ2 ⇒ Δ|Γ2

Δ|ϕ1,Γ1,Γ2 ⇒ Δ|Γ1,Γ2

,

(R∧)
Δ|ϕ1,Γ ⇒ Δ|Γ

Δ|ϕ1 ∧ ϕ2,Γ ⇒ Δ|Γ ,

(R∨)
Δ|ϕ1,Γ ⇒ Δ|Γ Δ|ϕ2,Γ ⇒ Δ|Γ

Δ|ϕ1 ∨ ϕ2,Γ ⇒ Δ|Γ ,

(R→)
Δ|¬ϕ1,Γ ⇒ Δ|Γ Δ|ϕ2,Γ ⇒ Δ|Γ

Δ|ϕ1 → ϕ2,Γ ⇒ Δ|Γ ,

(R∀)
Δ|ϕ[t/x],Γ ⇒ Δ|Γ
Δ|∀xϕ,Γ ⇒ Δ|Γ ,

where in Rcut, ϕ1 	→T ϕ2 means that ϕ1 occurs in the proof tree T of ϕ2 from Γ1 and ϕ1; and in R∀, t is
a term, and is free in ϕ for x.

Definition 1. Δ|Γ ⇒ Θ|Γ′ is an R-theorem, denoted by �R Δ|Γ ⇒ Θ|Γ′, if there is a sequence

{(Δi,Γi,Δ
′
i,Γ

′
i) : i � n} such that

(i) Δ|Γ ⇒ Θ|Γ′ = Δn|Γn ⇒ Δ′
n|Γ′

n,

(ii) for each 1 � i � n, either Δi|Γi ⇒ Θi|Γ′
i is an axiom, or Δi|Γi ⇒ Θi|Γ′

i is deduced by some R-rule

of form
Δi−1|Γi−1 ⇒ Θi−1|Γ′

i−1

Δi|Γi ⇒ Θi|Γ′
i

.

Definition 2. Δ|Γ ⇒ Δ|Γ′ is valid, denoted by |= Δ|Γ ⇒ Δ|Γ′, if for any contraction Θ of Γ′ by Δ,Θ

is a contraction of Γ by Δ.

Theorem 1 (The soundness and completeness theorem of theR-calculus). For any theories Γ,Γ′ and Δ,

� Δ|Γ ⇒ Δ|Γ′

if and only if

|= Δ|Γ ⇒ Δ|Γ′.

In the following we discuss about the propositional logic. Let L be a logical language of the propositional

logic which contains the following symbols:

• propositional variables p0, p1, . . . ;

• logical connectives ¬,∧,∨,→ .

Formulas are defined as follows: ϕ = p|¬p|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|ϕ1 → ϕ2.

The AGM postulates are for the logically-closed theory revision; and the R-calculus is for the set-

theoretic theory revision. Therefore, the AGM postulates should be rewritten as follows to fit in the

set-theoretic theory revision.

The AGM postulates for the R-calculus:

• Success: Δ ⊆ Δ|Γ;
• Inclusion: Δ|Γ ⊆ Δ ∪ Γ;

• Vacuity: if Γ �� ¬ϕ1,Γ1 = Γ ∪ {ϕ1} �� ¬ϕ2, . . . ,Γn−1 = Γ ∪ {ϕ1, . . . , ϕn−1} �� ¬ϕn, where Δ =

{ϕ1, . . . , ϕn}, then Δ|Γ = Δ ∪ Γ;

• Extensionality: Δ|Γ is consistent if Δ is consistent;

• Extensionality: if Δ ≡ Δ′, that is, Δ � Δ′ and Δ′ � Δ then Δ|Γ ≡ Δ′|Γ;
• Superexpansion: (Δ1 ∪Δ2)|Γ ⊆ (Δ1|Γ) ∪Δ2;

• Subexpansion: if Δ1|Γ �� ¬Δ2 then (Δ1|Γ) ∪Δ2 ⊆ (Δ1 ∪Δ2)|Γ.
Definition 3. Given any sets Δ,Γ,Θ of formulas, Θ is called a maximal consistent set of Γ by Δ if

(i) Θ ⊆ Δ ∪ Γ;



Li W, et al. Sci China Inf Sci September 2015 Vol. 58 092101:4

(ii) Δ ⊆ Θ, and

(iii) for any set Θ′ of formulas with Θ ⊂ Θ′ ⊆ Δ ∪ Γ,Θ′ is inconsistent.
Proposition 1. Θ is a maximal consistent set of Γ by Δ if and only if Θ−Δ is a maximal subset of Γ

such that (Θ−Δ) ∪Δ is consistent.

3 The R-calculus S

The rules for the calculus S are the composing rules, which compose subformulas (e.g. ϕ1, ϕ2) in the

precondition of a rule into a complex formula (e.g. ϕ1 ∧ ϕ2) in the postcondition of the rule.

S consists of the following rules:

(Scon)
ϕ ∪Δ is consistent

Δ|ϕ⇒ Δ ∪ {ϕ} ,

(S¬)
Δ � ¬p
Δ|p⇒ Δ

,

(S∧
1 )

Δ|ϕ1 ⇒ Δ

Δ|ϕ1 ∧ ϕ2 ⇒ Δ
if Δ ∪ {ϕ1} is inconsistent,

(S∧
2 )

Δ, [ϕ1]|ϕ2 ⇒ Δ, [ϕ1]

Δ|ϕ1 ∧ ϕ2 ⇒ Δ
if Δ ∪ {ϕ1} is consistent,

(S∨)
Δ|ϕ1 ⇒ Δ Δ|ϕ2 ⇒ Δ

Δ|ϕ1 ∨ ϕ2 ⇒ Δ
,

(S→)
Δ|¬ϕ1 ⇒ Δ Δ|ϕ2 ⇒ Δ

Δ|ϕ1 → ϕ2 ⇒ Δ
.

Remark 1. The rules
Δ|ϕ1 ⇒ Δ

Δ|ϕ1 ∧ ϕ2 ⇒ Δ
and

Δ|ϕ2 ⇒ Δ

Δ|ϕ1 ∧ ϕ2 ⇒ Δ

are too weak to revise Δ|ϕ1 ∧ ϕ2 when both Δ ∪ {ϕ1} and Δ∪ {ϕ2} are consistent and Δ ∪ {ϕ1 ∧ ϕ2} is

inconsistent.

We need (S∧
1 ) and (S∧

2 ) instead of the weak ones.

For example, let Δ = {p → q, q → r} and ϕ1 ∧ ϕ2 = p ∧ ¬r. Then, both Δ ∪ {p} and Δ ∪ {¬r} are

consistent and Δ ∪ {p ∧ ¬r} is inconsistent. Therefore, we have the following deduction:

p→ q, q → r, [p] � r

p→ q, q → r, [p]|¬r ⇒ p→ q, q → r, [p]| (S¬)

p→ q, q → r|p ∧ ¬r ⇒ p→ q, q → r| (S∧
2 )

Example 1. Revision p,¬r, p→ q|q → r has the following sub-revisions:

(1) p,¬r, p→ q � q
(2) p,¬r, p→ q|¬q ⇒ p,¬r, p→ q| (S¬)

(3) p,¬r, p→ q � ¬r
(4) p,¬r, p→ q|r ⇒ p,¬r, p→ q| (S¬)

(5) p,¬r, p→ q|q → r ⇒ p,¬r, p→ q| (S→)

Definition 4. Δ|ϕ⇒ Δ, ϕi is provable if there is a sequence {θ1, . . . , θm} of statements such that

θ1 = Δ|ϕ1 ⇒ Δ|ϕ2,

· · ·
θm = Δ|ϕm ⇒ Δ, ϕi;
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and for each j < m,Δ|ϕj ⇒ Δ|ϕj+1 is deduced from the previous statements by a deduction rule, where

i ∈ {0, 1}, ϕ1 = ϕ and ϕ0 = λ, the empty string.

Intuitively, we decompose ϕ into literals according to the structure of ϕ, and delete/add literals by

rule (S¬)/(Scon).

Theorem 2. For any consistent theory Δ and formula ϕ, if Δ|ϕ⇒ Δ, ϕi is provable then if i = 0 then

Δ ∪ {ϕ} is inconsistent; otherwise, Δ ∪ {ϕ} is consistent.

Proof. Assume that Δ|ϕ⇒ Δ, ϕi is provable.

If i = 1, i.e., Δ|ϕ⇒ Δ, ϕ is provable then by (Scon),Δ ∪ {ϕ} is consistent.

If i = 0 then we prove that Δ ∪ {ϕ} is inconsistent by induction on the structure of ϕ.

If ϕ = p or ¬p is a literal then Δ|ϕ⇒ Δ only if Δ � ¬ϕ, and by (S¬),Δ ∪ {ϕ} is inconsistent;

If ϕ = ϕ1 ∧ ϕ2 then there are two cases: either Δ|ϕ1 ⇒ Δ or Δ, [ϕ1]|ϕ2 ⇒ Δ, [ϕ1] is provable. By

the induction assumption, if Δ|ϕ1 ⇒ Δ then Δ ∪ {ϕ1} is inconsistent, and so is Δ ∪ {ϕ1 ∧ ϕ2}; and if

Δ, [ϕ1]|ϕ2 ⇒ Δ, [ϕ1] then Δ ∪ {ϕ1, ϕ2} is inconsistent, and so is Δ ∪ {ϕ1 ∧ ϕ2};
If ϕ = ϕ1 ∨ ϕ2 then Δ|ϕ1 ⇒ Δ and Δ, [ϕ1]|ϕ2 ⇒ Δ, [ϕ1] are provable. By the induction assumption,

both Δ ∪ {ϕ1} and Δ ∪ {ϕ2} are inconsistent, and so is Δ ∪ {ϕ1 ∨ ϕ2};
Similarly for ϕ = ϕ1 → ϕ2.

Theorem 2 is the soundness theorem for the deduction, that is, if Δ|ϕ⇒ Δ|ϕi is provable then

Δ||ϕ =

{
Δ ∪ {ϕ} if Δ ∪ {ϕ} is consistent,

Δ if Δ is consistent,

where || is a consistent operator. And the following Theorem 3 is the completeness theorem for the

deduction, that is, if Δ||ϕ⇒ Δ, ϕi then Δ|ϕ⇒ Δ, ϕi is provable.

Theorem 3. For any consistent theory Δ and formula ϕ, if Δ ∪ {ϕ} is consistent then Δ|ϕ ⇒ Δ, ϕ is

provable; and if Δ ∪ {ϕ} is inconsistent then Δ|ϕ⇒ Δ is provable.

Proof. If Δ ∪ {ϕ} is consistent then, by (Scon),

Δ|ϕ⇒ Δ, ϕ;

If Δ∪ {ϕ} is inconsistent then we prove that Δ|ϕ⇒ Δ is provable by induction on the structure of ϕ.

If ϕ = p or ¬p is a literal then Δ � ¬ϕ, and Δ|ϕ⇒ Δ by (Scon).

If ϕ = ϕ1∧ϕ2 then either Δ∪{ϕ1} is inconsistent or Δ∪{ϕ1}∪{ϕ2} is inconsistent. By the induction

assumption, either Δ|ϕ1 ⇒ Δ, or Δ, [ϕ1]|ϕ2 ⇒ Δ, [ϕ1]; and by (S∧
1 ) and (S∧

2 ), Δ|ϕ1 ∧ ϕ2 ⇒ Δ.

If ϕ = ϕ1 ∨ϕ2 then Δ∪{ϕ1} and Δ∪{ϕ2} are inconsistent. By the induction assumption, Δ|ϕ1 ⇒ Δ,

and Δ|ϕ2 ⇒ Δ; and by (S∨
1 ), Δ|ϕ1 ∨ ϕ2 ⇒ Δ.

Similarly for ϕ = ϕ1 → ϕ2.

Let Δ,Γ be two finite consistent sets of formulas such that Γ = {ϕ1, . . . , ϕn}. Then we define

Δ|Γ = (· · · ((Δ|ϕ1)|ϕ2)| · · · )|ϕn.

Thus, Theorems 2 and 3 can be generalized to any finite set Γ in the following Theorems 4 and 5,

respectively.

Theorem 4. For any consistent theories Δ,Γ and Θ, if Δ|Γ ⇒ Θ is provable then Θ is a maximal

consistent set of Γ by Δ.

Theorem 5. For any consistent theories Δ and Γ and any maximal consistent set Θ of Γ by Δ, Δ|Γ ⇒ Θ

is provable.
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4 The basic logical properties of Δ|Γ
The AGM postulates for revision:

Success: Δ ⊂ Δ|ϕ;
Inclusion: Δ|ϕ ⊆ {ϕ} ∪Δ;

Vacuity: if Δ �� ¬ϕ then Δ|ϕ = Δ ∪ {ϕ};
Extensionality: Δ|ϕ is consistent if Δ is consistent;

Extensionality: if |= Δ ↔ Δ′ then Δ|ϕ ≡ Δ′|ϕ;
Superexpansion: (Δ1,Δ2)|ϕ ⊆ (Δ2|ϕ) ∪Δ1;

Subexpansion: if Δ2|ϕ �� ¬Δ1 then (Δ2|ϕ) ∪Δ1 ≡ Δ1,Δ2|ϕ.

Theorem 6. Δ|ϕ satisfies the AGM postulates.

Proof. It is obvious that Δ ⊆ Δ|ϕ and Δ|ϕ ⊆ {ϕ} ∪Δ.

(Vacuity) If Δ �� ¬ϕ then Δ ∪ ϕ is consistent, and by (Scon),Δ|ϕ⇒ Δ ∪ {ϕ}.
(Extensionality) By the proof of the completeness theorem, if Δ is consistent with ϕ then Δ|ϕ ⇒

Δ ∪ {ϕ}; and if Δ is inconsistent with ϕ then Δ|ϕ⇒ Δ, and Δ is consistent.

(Extensionality) If Δ ≡ Δ′ then Δ is consistent with ϕ if and only if Δ′ is consistent with ϕ, and

Δ|ϕ⇒ Δ ∪ {ϕ} iff Δ′|ϕ⇒ Δ′ ∪ {ϕ}, and hence,

Δ|ϕ ≡ Δ′|ϕ.

(Superexpansion) By the definition

Δ1,Δ2|ϕ = Δ1|(Δ2|ϕ)

and (Inclusion), Δ1,Δ2|ϕ = Δ1|(Δ2|ϕ) ⊆ (Δ2|ϕ) ∪Δ1.

(Subexpansion) Assume that Δ2|ϕ �� ¬Δ1. Then, (Δ2|ϕ) is consistent with Δ1, and Δ1|(Δ2|ϕ) ≡
Δ1 ∪ (Δ2|ϕ).

The DP postulates:

(C1) If Δ2 |= Δ1 then Δ2|(Δ1|ϕ) ≡ Δ2|ϕ;
(C2) If Δ2 |= ¬Δ1 then Δ2|(Δ1|ϕ) ≡ Δ2|ϕ;
(C3) If (Δ2|ϕ) |= Δ1 then Δ2|(Δ1|ϕ) |= Δ1;

(C4) If (Δ2|ϕ) �|= ¬Δ1 then Δ2|(Δ1|ϕ) �|= ¬Δ1.

Lemma 1. If Δ1 ≡ Δ2 then Δ1|ϕ ≡ Δ2|ϕ.
Proof. Assume that Δ1 ≡ Δ2.

If ϕ is consistent with Δ1 then ϕ is consistent with Δ2, and Δ1|ϕ = Δ1 ∪ {ϕ} ≡ Δ2 ∪ {ϕ} = Δ2|ϕ.
If ϕ is inconsistent with Δ1 then ϕ is inconsistent with Δ2, and Δ1|ϕ ⇒ Δ1,Δ2|ϕ ⇒ Δ2, and hence,

Δ1|ϕ ≡ Δ2|ϕ.
Lemma 2. Assume that Δ1 ∪Δ2 is consistent. Then, Δ1,Δ2|ϕ ≡ Δ1|(Δ2|ϕ) ≡ Δ2|(Δ1|ϕ).
Proof. If ϕ is consistent with Δ1 ∪ Δ2 then ϕ is consistent with Δ1 and Δ2, respectively, and

Δ1,Δ2|ϕ; Δ2,Δ1|ϕ are consistent, and

Δ1,Δ2|ϕ = Δ1,Δ2, ϕ

= Δ1|(Δ2|ϕ)
≡ Δ2|(Δ1|ϕ).

If ϕ is inconsistent with Δ1 and Δ2 then

Δ1|(Δ2|ϕ) = Δ1|Δ2

= Δ1,Δ2
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≡ Δ2|Δ1

≡ Δ2|(Δ1|ϕ).
If ϕ is consistent with Δ1 and inconsistent with Δ2 then

Δ1|(Δ2|ϕ) = Δ1|Δ2

= Δ1,Δ2

≡ Δ2,Δ1|ϕ)
≡ Δ2|(Δ1, ϕ)

≡ Δ2|(Δ1|ϕ).
If ϕ is consistent with Δ1 and Δ2, and inconsistent with Δ1 ∪Δ2 then

Δ1|(Δ2|ϕ) = Δ1|(Δ2, ϕ)

= Δ1,Δ2|ϕ
= Δ1,Δ2

≡ Δ2,Δ1|ϕ)
≡ Δ2|(Δ1, ϕ)

≡ Δ2|(Δ1|ϕ).
Theorem 7. By introducing a postulate

Δ2,Δ1,¬Δ1|ϕ ≡ Δ2|ϕ,
Δ|ϕ satisfies the DP postulates.

Proof. (C1) Assume that Δ2 |= Δ1. Then,

Δ2|ϕ ≡ (Δ2,Δ1)|ϕ
≡ Δ2|(Δ1)|ϕ.

(C2) Assume that Δ2 |= ¬Δ1. Then,

Δ2,Δ1|ϕ ≡ Δ2,¬Δ1,Δ1|ϕ
≡ Δ2|ϕ.

(C3) Assume that Δ2|ϕ |= Δ1. Then

Δ2,Δ1|ϕ ≡ Δ2|(Δ1|ϕ)
⊇ Δ2

|= Δ1.

(C4) Assume that Δ2|ϕ �|= ¬Δ1. Then,

Δ2,Δ1|ϕ ≡ Δ1|(Δ2|ϕ)
≡ Δ1 ∪ (Δ2|ϕ)
�|= ¬Δ1,

because Δ1 ∪ (Δ2|ϕ) is consistent.
It is rather clear that Δ|ϕ satisfies the principle of the minimal change [18–20] with respect to set.

Considering the fact that if Δ is consistent with ϕ then Δ|ϕ⇒ Θ = Δ∪{ϕ}, and for any set A ⊆ Δ∪{ϕ},
if A ⊇ Δ then A ⊆ Θ; and if Δ is inconsistent with ϕ then Δ|ϕ ⇒ Θ = Δ, and for any set A ⊆ Δ, if

A ⊇ Δ then A ⊆ Θ.

Δ|ϕ also satisfies the principle of the minimal change with respect to inference.
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Theorem 8. Assume that Δ|ϕ⇒ Θ is provable. Then,

(i) Θ � Δ; and

(ii) for any theory Δ0, if Δ0 � Δ and Δ0 � ϕ then Δ0 � Θ.

Proof. If ϕ is consistent with Δ then Θ = Δ ∪ {ϕ}, and (i),(ii) are satisfied.

If ϕ is inconsistent with Δ then Θ = Δ, and for any theory Δ0, if Δ0 � Δ and Δ0 � ϕ then Δ0 is

inconsistent, and so Δ0 � Θ.

Similarly, the following theorem is also true.

Theorem 9. (i) Δ|Γ satisfies the AGM postulates; and

(ii) Δ|Γ satisfies the AGM postulates.

Theorem 10. Assume that Δ|Γ ⇒ Θ is provable. Then,

(i) Θ ⊆ Δ ∪ Γ;

(ii) Θ � Δ; and

(iii) for any consistent theory Δ0, if Δ0 � Δ and Δ0 � Γ then Δ0 � Θ.

5 The left decomposition rules

The S-rules are used to decompose the formula ϕ to be revised by Δ. The rule (Scon) can be replaced by

a set of the T -rules to decompose formulas in Δ.

The rules for the calculus T are decomposed into two classes: the right-side rules (denoted by T ) and

the left-side rules (denoted by S).

The right-side rules:

(T incon)
Δ is inconsistent

Δ|ϕ⇒ Δ| ,

(T¬
1 )

¬l ∈ Δ

Δ|l ⇒ Δ
, (T¬

2 )
Δ, l′,¬l′|l ⇒ Δ, l′,¬l′ ,

(T∧
1 )

Δ, ψ1|l ⇒ Δ, ψ1

Δ, ψ1 ∧ ψ2|l ⇒ Δ, ψ1 ∧ ψ2
,

(T∧
2 )

Δ, ψ2|l ⇒ Δ, ψ2

Δ, ψ1 ∧ ψ2|l ⇒ Δ, ψ1 ∧ ψ2
,

(T∨)
Δ, ψ1|l ⇒ Δ, ψ1 Δ, ψ2|l ⇒ Δ, ψ2

Δ, ψ1 ∨ ψ2|l ⇒ Δ, ψ1 ∨ ψ2
,

(T→)
Δ,¬ψ1|l ⇒ Δ Δ, ψ2|l ⇒ Δ

Δ, ψ1 → ψ2|l ⇒ Δ, ψ1 → ψ2
,

where l = p|¬p.
The left-side rules:

(Scon)
ϕ ∪Δ is consistent

Δ|ϕ⇒ Δ ∪ {ϕ} ,

(S∧
1 )

Δ|ϕ1 ⇒ Δ

Δ|ϕ1 ∧ ϕ2 ⇒ Δ
if Δ ∪ {ϕ1} is inconsistent,

(S∧
1 )

Δ, [ϕ1]|ϕ2 ⇒ Δ, [ϕ1]

Δ|ϕ1 ∧ ϕ2 ⇒ Δ
if Δ ∪ {ϕ1} is consistent,

(S∨)
Δ|ϕ1 ⇒ Δ Δ|ϕ2 ⇒ Δ

Δ|ϕ1 ∨ ϕ2 ⇒ Δ
,

(S→)
Δ|¬ϕ1 ⇒ Δ Δ|ϕ2 ⇒ Δ

Δ|ϕ1 → ϕ2 ⇒ Δ
.
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The reason for which we need rule (T¬
2 ) is given in the following example. Let Δ = {p, p → q} and

l = ¬q. To use (T→), we need

(i) p,¬p|¬q ⇒ p,¬p;
(ii) p, q|¬q ⇒ p, q

and a rule to get

p, p→ q|¬q ⇒ p, p→ q.

(ii) is obtained by rule (T¬
1 ). Without (T¬

1 ) we cannot prove (i).

Example 2. Revision p,¬r, p→ q|q → r has the following sub-revisions:

(1) p,¬r,¬p|¬q ⇒ p,¬r,¬p| (T¬
2 )

(2) p,¬r, q|¬q ⇒ p,¬r, q| (T¬
1 )

(3) p,¬r,¬p|r ⇒ p,¬r,¬p| (T¬
1 )

(4) p,¬r, q|r ⇒ p,¬r, q| (T¬
1 )

(5) p,¬r, p→ q|¬q ⇒ p,¬r, p→ q| (1, 2, T→)

(6) p,¬r, p→ q|r ⇒ p,¬r, p→ q| (3, 4, T→)

(7) p,¬r, p→ q|q → r ⇒ p,¬r, p→ q| (5, 6, S→).

Therefore, we have

p,¬r, p→ q|q → r ⇒ p,¬r, p→ q| = {p,¬r, p→ q}.
Intuitively, ϕ can be decomposed into literals by the decomposition S-rules, and some formulas in Δ

can be decomposed into literals by the decomposition T -rules. By (Scon) and (T incon) rules, we delete

some literals, and then, compose the formulas in Δ by the composition T -rules.

Proposition 2. For any formula ϕ, we have

(T ′
1)

¬ϕ ∈ Δ

Δ|ϕ⇒ Δ
, (T ′′

1 ) Δ, ψ,¬ψ|ϕ⇒ Δ, ψ,¬ψ ,

(T2)
Δ, ψ1|ϕ⇒ Δ, ψ1 or Δ, ψ1|ϕ⇒ Δ, ψ2

Δ, ψ1 ∧ ψ2|ϕ⇒ Δ, ψ1 ∧ ψ2
,

(T3)
Δ, ψ1|ϕ⇒ Δ, ψ1 Δ, ψ2|ϕ⇒ Δ, ψ2

Δ, ψ1 ∨ ψ2|ϕ⇒ Δ, ψ1 ∨ ψ2
,

(T4)
Δ,¬ψ1|ϕ⇒ Δ Δ, ψ2|ϕ⇒ Δ

Δ, ψ1 → ψ2|ϕ⇒ Δ, ψ1 → ψ2
,

Proof. We prove (T3) by the induction on the structure of ϕ, and can prove others similarly.

Case 1. ϕ = l is a literal. Then, (T3) is (T
∨);

Case 2. ϕ = ϕ1 ∧ ϕ2. Assume that

Δ, ψ1|ϕ1 ⇒ Δ, ψ1 Δ, ψ2|ϕ1 ⇒ Δ, ψ2

Δ, ψ1 ∨ ψ2|ϕ1 ⇒ Δ, ψ1 ∨ ψ2

Δ, ψ1|ϕ2 ⇒ Δ, ψ1 Δ, ψ2|ϕ2 ⇒ Δ, ψ2

Δ, ψ1 ∨ ψ2|ϕ2 ⇒ Δ, ψ1 ∨ ψ2
,

and
Δ, ψ1|ϕ⇒ Δ, ψ1

Δ, ψ2|ϕ⇒ Δ, ψ2

are provable, i.e.,

Δ, ψ1|ϕ1 ∧ ϕ2 ⇒ Δ, ψ1

Δ, ψ2|ϕ1 ∧ ϕ2 ⇒ Δ, ψ2
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are provable. Then, either Δ, ψ1|ϕ1 ⇒ Δ, ψ1 or Δ, ψ1, ϕ1|ϕ2 ⇒ Δ, ψ1; and either Δ, ψ2|ϕ2 ⇒ Δ, ψ2 or

Δ, ψ2, ϕ1|ϕ2 ⇒ Δ, ψ2 are provable.

If Δ, ψ1|ϕ1 ⇒ Δ, ψ1 and Δ, ψ2|ϕ2 ⇒ Δ, ψ2 are provable then

Δ, ψ1|ϕ1 ∧ ϕ2 ⇒ Δ, ψ1

Δ, ψ2|ϕ1 ∧ ϕ2 ⇒ Δ, ψ2

are provable and by (T∨), we have Δ, ψ1 ∨ ψ2|ϕ1 ∧ ϕ2 ⇒ Δ, ψ1 ∨ ψ2 is provable.

If Δ, ψ1|ϕ1 ⇒ Δ, ψ1 and Δ, ψ2, ϕ1|ϕ2 ⇒ Δ, ψ2, ϕ1 are provable then

Δ, ψ1|ϕ1 ∧ ϕ2 ⇒ Δ, ψ1

Δ, ψ2|ϕ1 ∧ ϕ2 ⇒ Δ, ψ2

are provable and by (T∨), we have Δ, ψ1 ∨ ψ2|ϕ1 ∧ ϕ2 ⇒ Δ, ψ1 ∨ ψ2 is provable.

If Δ, ψ1, ϕ1|ϕ2 ⇒ Δ, ψ1, ϕ1 and Δ, ψ2|ϕ2 ⇒ Δ, ψ2 are provable then

Δ, ψ1|ϕ1 ∧ ϕ2 ⇒ Δ, ψ1

Δ, ψ2|ϕ1 ∧ ϕ2 ⇒ Δ, ψ2

are provable and by (T∨), we have Δ, ψ1 ∨ ψ2|ϕ1 ∧ ϕ2 ⇒ Δ, ψ1 ∨ ψ2 is provable.

If Δ, ψ1, ϕ1|ϕ2 ⇒ Δ, ψ1, ϕ1 and Δ, ψ2, ϕ1|ϕ2 ⇒ Δ, ψ2, ϕ1 are provable then

Δ, ψ1|ϕ1 ∧ ϕ2 ⇒ Δ, ψ1

Δ, ψ2|ϕ1 ∧ ϕ2 ⇒ Δ, ψ2

are provable and by (T∨), we have Δ, ψ1 ∨ ψ2|ϕ1 ∧ ϕ2 ⇒ Δ, ψ1 ∨ ψ2 is provable.

Similarly, there is the following soundness and completeness theorem for the deduction.

Theorem 11. For any consistent theory Δ and formula ϕ, if Δ|ϕ ⇒ Δ, ϕi is provable then if i = 0

then Δ ∪ {ϕ} is inconsistent; otherwise, Δ ∪ {ϕ} is consistent.

We cannot prove that for any consistent theory Δ and formula ϕ, if Δ ∪ {ϕ} is inconsistent then

Δ|ϕ ⇒ Δ is provable. For example, let Δ = {¬p ∨ q,¬p ∨ ¬q} and ϕ = p, we cannot prove that either

¬p ∨ q|p⇒ ¬p ∨ q, or ¬p ∨ q¬q|p⇒ ¬p ∨ q, and hence it cannot be inferred that

¬p ∨ q,¬p ∨ ¬q|p⇒ ¬p ∨ q,¬p ∨ ¬q ≡ ¬p.

Because ¬p ∨ q,¬p ∨ ¬q ≡ ¬p and ¬p|p⇒ ¬p, we have the following theorem.

Theorem 12. For any consistent theory Δ and formula ϕ, if Δ ∪ {ϕ} is consistent then Δ|ϕ ⇒ Δ, ϕ

is provable; and if Δ ∪ {ϕ} is inconsistent then there is a theory Δ′ such that Δ′ ≡ Δ and Δ′|ϕ ⇒ Δ is

provable.

Proof. Assume that Δ∪{ϕ} is inconsistent. Then, there is a theory Δ′ such that ¬ϕ ∈ Δ′ and Δ′ ≡ Δ.

Therefore, we prove that ¬ϕ|ϕ⇒ ϕ is provable. We prove it by the induction on the structure of ϕ.

If ϕ = p is a propositional variable then by (T¬),¬p|p⇒ ¬p.
If ϕ = ϕ1 ∧ ϕ2 then ¬ϕ|ϕ ≡ ¬ϕ1 ∨ ¬ϕ2|ϕ1 ∧ ϕ2, and

¬ϕ1|ϕ1 ⇒ ¬ϕ1 (induction assumption)

¬ϕ1|ϕ1 ∧ ϕ2 ⇒ ¬ϕ1 (S∧)

¬ϕ2|ϕ2 ⇒ ¬ϕ2 (induction assumption)

¬ϕ2|ϕ1 ∧ ϕ2 ⇒ ¬ϕ2 (S∧)

¬ϕ1 ∨ ¬ϕ2|ϕ1 ∧ ϕ2 ⇒ ¬ϕ1 ∨ ¬ϕ2 (T∨).
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If ϕ = ϕ1 ∨ ϕ2 then ¬ϕ|ϕ ≡ ¬ϕ1 ∧ ¬ϕ2|ϕ1 ∨ ϕ2, and

¬ϕ1|ϕ1 ⇒ ¬ϕ1 (induction assumption)

¬ϕ1 ∧ ¬ϕ2|ϕ1 ⇒ ¬ϕ1 ∧ ¬ϕ2 (T∧)

¬ϕ2|ϕ2 ⇒ ¬ϕ2 (induction assumption)

¬ϕ1 ∧ ¬ϕ2|ϕ2 ⇒ ¬ϕ1 ∧ ¬ϕ2 (T∧)

¬ϕ1 ∧ ¬ϕ2|ϕ1 ∨ ϕ2 ⇒ ¬ϕ1 ∧ ¬ϕ2 (S∨).

Similar for ϕ = ϕ1 → ϕ2.

We extend Theorems 11 and 12 for a single formula ϕ to a theory Δ as follows.

Theorem 13. For any consistent theories Δ,Γ and Θ, if Δ|Γ ⇒ Θ is provable in T then Θ is a maximal

consistent set of Γ by Δ.

Theorem 14. For any consistent theories Δ,Γ and Θ, if Θ is a maximal consistent set of Γ by Δ then

Δ|Γ ⇒ Θ is provable in T.

6 Conclusion

This paper gave two R-calculi S and T, which both are sound and complete with respect to the maximal

consistent sets, given that T is a set of axioms without (S¬).
Further work is to reduce (Scon) into a set of deduction rules. In S, firstly it is to be decided whether

ϕ is consistent with Γ, and if not then we use other deduction rules to reduce ϕ in Δ|ϕ into the empty

string so that Δ|ϕ⇒ Δ|λ, i.e., Δ|ϕ⇒ Δ is provable.

This question seems difficult, owing to the asymmetrical properties of consistence and inconsistence.

Let con(Γ) and incon(Γ) denote that Γ is consistent and inconsistent, respectively. Then, for the

consistence,

(con∧+
1 )

con(ϕ1 ∧ ϕ2,Γ)

con(ϕ1,Γ)
, (con∧+

2 )
con(ϕ1 ∧ ϕ2,Γ)

con(ϕ2,Γ)
,

(×con∧−)
con(ϕ1,Γ) con(ϕ2,Γ)

con(ϕ1 ∧ ϕ2,Γ)
,

(con∨+)
con(ϕ1,Γ)

con(ϕ1 ∨ ϕ2,Γ)
, (con∨−)

con(ϕ2,Γ)

con(ϕ1 ∨ ϕ2,Γ)
,

(con →+)
con(¬ϕ1,Γ)

con(ϕ1 → ϕ2,Γ)
, (con →−)

con(ϕ2,Γ)

con(ϕ1 → ϕ2,Γ)
,

(con¬−)
Γ �� ¬ϕ1

con(ϕ1,Γ)
, (¬+)

con(ϕ1,Γ)

Γ �� ¬ϕ1
,

and for the inconsistence,

(∧+
1 )

incon(ϕ1,Γ)

incon(ϕ1 ∧ ϕ2,Γ)
, (∧+

2 )
incon(ϕ2,Γ)

incon(ϕ1 ∧ ϕ2,Γ)
,

(×∧−)
incon(ϕ1 ∧ ϕ2,Γ)

incon(ϕ1,Γ) or incon(ϕ2,Γ)
, (∧−)

incon(ϕ1 ∧ ϕ2,Γ)

incon(ϕ1,Γ) or incon(ϕ2,Γ ∪ {ϕ1}) ,

(∨+)
incon(ϕ1,Γ) incon(ϕ2,Γ)

incon(ϕ1 ∨ ϕ2,Γ)
, (∨−)

incon(ϕ1 ∨ ϕ2,Γ)

incon(ϕ1,Γ) incon(ϕ2,Γ)
,

(→+)
incon(¬ϕ1,Γ) incon(ϕ2,Γ)

incon(ϕ1 → ϕ2,Γ)
, (→−)

incon(ϕ1 → ϕ2,Γ)

incon(¬ϕ1,Γ) incon(ϕ2,Γ)
,

(¬−)
Γ � ¬ϕ1

incon(ϕ1,Γ)
, (¬+)

incon(ϕ1,Γ)

Γ � ¬ϕ1
.

From these rules, we see that the rules for the consistence are not dual to those for the inconsistence;

(×∧−) should be replaced by (∧−); and each other rule has an inverse rule.

For the asymmetry of the rules for inconsistence, we should make the rules for the revision asymmetrical.
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