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Abstract In this paper, we propose a semantic framework to debug synchronous message passing-based con-

current programs, which are increasingly useful as parallel computing and distributed systems become more

and more pervasive. We first design a concurrent programming language model to uniformly represent exist-

ing concurrent programming languages. Compared to sequential programming languages, this model contains

communication statements, i.e., sending and receiving statements, and a concurrent structure to represent com-

munication and concurrency. We then propose a debugging process consisting of a tracing and a locating

procedure. The tracing procedure re-executes a program with a failed test case and uses specially designed data

structures to collect useful execution information for locating bugs. We provide for the tracing procedure a struc-

tural operational semantics to represent synchronous communication and concurrency. The locating procedure

backward locates the ill-designed statement by using information obtained in the tracing procedure, generates

a fix equation, and tries to fix the bug by solving the fix equation. We also propose a structural operational

semantics for the locating procedure. We supply two examples to test our proposed operational semantics.
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1 Introduction

Message passing-based concurrent programs are widely used in the field of parallel computing and dis-

tributed systems in order to handle growing amounts of data in different domains, such as mobile Inter-

net, weather forecasting and image processing. Therefore, effectively debugging these kinds of concurrent

programs with the aim of troubleshooting the various problems encountered has become very important

nowadays.

Program debugging is a time-consuming process in software development because one has to trace the

execution of a program with a failed test case and locate the bug by repeatedly narrowing the bounds of

the anomaly. According to [1,2], debugging and testing of programs contribute to 50%–75% of the total

development cost, whereas locating and understanding the nature of the errors usually amount to 90%

of the debugging work.
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Despite the availability of many techniques for modeling, testing, and debugging message passing-

based concurrent programs, such as mathematical models [3–8], structural testing [9–12], reachability

testing [13], replay [14–16], and monitoring execution information [17,18], debugging message passing-

based concurrent programs is still extremely time-consuming, and the efficiency of the debugging relies

heavily on the insight and experience of programmers.

A sequential program debugging framework designed using the notations and techniques of operational

semantics [19] has recently been proposed in [20]. It enables a calculus to deal with the inconsistency

between the actual result of executing a program and the expected result derived from its specification. In-

spired by the formal semantics in [20], we design in this paper a semantic framework to debug synchronous

message passing-based concurrent programs1). The important aspects of the proposed framework are as

follows:

• We design a concurrent programming language model according to three widely used real message

passing-based programming languages. Compared to sequential programming languages, this model

contains communication statements, i.e., sending and receiving statements, to represent communication

as well as concurrent structure to represent concurrency. Synchronization is represented by the semantics

for the communication statements.

• We provide a framework for debugging synchronous message passing-based concurrent programs,

which contains a tracing procedure and a locating procedure. The tracing procedure re-executes the

program with a failed test case to collect useful execution information. During this process, some specific

data structures are used to record this information. The locating procedure locates the ill-designed

statement by comparing the execution information obtained from the tracing procedure with the expected

information specified by the specification. Finally, a fix equation is generated, and the locating procedure

tries to fix the bug by solving the fix equation.

• We propose a structural operational semantics for the tracing procedure and the locating procedure,

which are both represented by some rules. The rules for the tracing procedure carefully handle the

semantics of concurrency and synchronous communication. The rules for the locating procedure contain

step-by-step instructions for locating ill-designed statements.

The rest of the paper is organized as follows. In Section 2, we present three synchronous message

passing-based concurrent programs and design a concurrent programming language model to represent

the features common to different languages, i.e., concurrency and synchronous communication. In Sec-

tions 3 and 4, we provide the structural operational semantics for the tracing procedure and the locating

procedure, respectively, along with a few examples to explicate the use of the proposed operational se-

mantics. Related research is introduced in Section 5. We present our conclusions and directions for future

work in Section 6.

2 Concurrent programming language model and basic notations

In the field of concurrent programming, there are many widely used message passing-based program-

ming languages or libraries. Some of these are completely based on synchronous communication, such

as Occam and Java Communicating Sequential Processes (JCSP). Others presume both synchronous

and asynchronous communication, such as the Parallel Virtual Machine (PVM) and Message Passing

Interface (MPI). A program written by the synchronous parts of these languages is called a synchronous

message passing-based concurrent program, or SyncCP for short in what follows. A SyncCP usually con-

sists of several processes that can exchange messages through channels. A process that sends a message

to a channel is called a sending process and the corresponding statement is called a sending statement.

A process that receives a message from a channel is called a receiving process and the corresponding

statement is called a receiving statement.

Figure 1 shows programs written in Occam, MPI and JCSP. Each program has two processes, the

sending process and the receiving process. All three programs implement the same function, i.e., the

1) In this paper, we only address the situation where the program halts but the output is not as expected.
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SyncCP1 ( by Occam)

/* Communication channel */
CHAN OF INT comm 

PAR  /* Concurrent operator */

WHILE TRUE
INT val1  
SEQ  /* Sequential operator */
  Val1 = 2
  comm ! val1 

WHILE TRUE
INT val2:
SEQ
  comm ? val2  

         
            

      

               (a)    

SyncCP2 ( by MPI)

#include "mpi.h"
#define SIZE 10  /* Size of sending/receiving buffer */
int main( int argc, char **argv){
    int buffer[SIZE];
    act_size = 1;
    buf[0] = 2;
    MPI_Init(&argc, &argv);
     /* Get the process Id rank from communication world*/
    MPI_Comm_rank(MPI_COMM_WORLD,&rank);

    if (rank == src) { 
         /* The current process is sending process and sends 

             the first act_size elements in sending buffer  */
MPI_Ssend (buffer, act_size , dest, ……);

    }

    else if (rank == dest) {
         /*The current process is receiving process and receives 

             the first act_size elements to receiving buffer. */
MPI_Recv(buffer, act_size, src, ……);

    }
} 

                                       (b)

SyncCP3 ( by JCSP)

public class SendEvenIntsProcess implements CSProcess {
   private ChannelOutput out; 
   ……     /* Constructor initialize the channel out */
   public void run(){
      i = 2;
      out.write (new Integer (i));
   }
 }
public class ReadEvenIntsProcess implements CSProcess{
   private ChannelInput in;
   ……     /* Constructor initialize the channel in */
   public void run(){       
      Integer d = ( Integer)in.read();
      System.out.println("Read: " + d.intValue());     
   }
 }
 public class DriverProgram{
    One2OneChannel chan = new One2OneChannel();
    new CSProcess[]{
       /* The same channel */
      new SendEvenIntsProcess (chan),
      new ReadEvenIntsProcess (chan)
    }
 } 

                                          (c)

Figure 1 Three synchronous message passing-based concurrent programs. (a) Written by Occam; (b) written by MPI;

(c) written by JCSP.

sending process sends the value 2 to the receiving process.

• The Occam program uses the keyword PAR to create two processes. These processes transfer values

through the channel comm, i.e., the sending process sends the value stored in val1 to comm through the

statement comm!val1, and the receiving process receives the value from comm and assigns the received

value to val2 through the statement comm?val2.

• The MPI program defines the communication world, where all processes in the same MPI concurrent

program belong to the same communication world. The process id, which is used to distinguish processes,

is obtained through MPI Comm rank. The sending process has a sending buffer and sends the data

in the buffer to the target process (receiving process) through MPI Ssend. The receiving process has a

receiving buffer. It receives data from the source process (sending process) and stores it in the receiving

buffer through MPI Recv. Although the channel is not explicitly defined, the implementation of the

MPI guarantees that there is a channel connecting the sending process and the receiving process when

communication occurs.

• The JCSP program defines processes as objects, such as SendEvenIntsProcess and ReadEvenInts-

Process. The main function spawns two parallel processes by creating one sending object and one

receiving object. The sending object contains a channel out, which means that the sending object will

write values to this channel. The receiving object contains a channel in, which means that the it will

read values from this channel. The main function passes the same channel chan to the sending process

(sending object) and the receiving process (receiving object) so that these two processes can communicate

through chan.

These real programs show that in addition to statements used in sequential programs, a concur-

rent program should contain syntax objects that are used for: 1) Sending, e.g., comm!val1 in Occam,

MPI Ssend in MPI, and out.write in JSCP; 2) Receiving, e.g., comm?val2 in Occam, MPI Recv in

MPI, and in.read in JCSP; 3) Connecting, e.g., comm in Occam, chan in JCSP, and the underlying

implementation in MPI.

We design a concurrent programming language model to represent the important features common to

these different languages. This model consists of four kinds of syntax objects: arithmetic expression e,

boolean expression b, statement S, and concurrent program Proc. e and b are defined as usual. S and
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Proc are defined as follows.

S ::= skip | x := e | {S} | if b then {S1} else {S2} | while b do {S} | S1;S2 | C!e | C?x,

Proc ::= pid : S | pid : S || Proc.

Here, pid ∈ N+ is the process id used to uniquely represent a process, and C is a string used to represent

the communication channel.

In comparison with sequential programs, the sending statement C!e and receiving statement C?x are

added to statement S to represent communication. C!e means that the sending process sends the value

of expression e to C, whereas C?x means that the receiving process receives the value from C and assigns

the received value to variable x. Communication channel C is unidirectional, which means that each

channel has a fixed direction of communication and connects exactly two processes.

Proc represents the concurrent program SyncCP. It usually consists of several processes separated by

the parallel operator ||. In particular, a concurrent program can only contain a single process pid : S,

which can be regarded as a sequential program. Processes in Proc shall be executed in parallel and may

communicate with each other during execution.

In the following, we give some basic definitions and notations. “State” is an abstract description of a

configuration of the memory and is defined as follows:

Definition 1 (State). A state σ is a map σ : V → N, xi �→ ni, where xi �→ ni states that the value of

xi under σ is ni, or that ni is stored in xi, and is written as σ(xi) = ni.

We use the notation σ[n/x] to represent a new state where the value of x is n and the values of the

other variables are the same as in state σ. It is defined as

σ[n/x](y) =

{
n, y = x,

σ(y), y �= x.

Refs. [21,22] propose that in a first-order language, a formal calculus including logical connectives and

quantifiers can be built to deduce maximal consistent subsets of two inconsistent formal theories. When

a failed test case of a program is found, it shows that the actual result of the program’s execution is not

consistent with the result expected from its specification. We can thus build a calculus to handle the

inconsistency between “the actual execution” and “the expected execution”2). To debug synchronous

concurrent programs, this calculus is the structural operational semantics proposed in this paper.

The following notations are used to represent both the actual execution and the expected execution,

and are important for semantics. �e�σ, �b�σ, and �S�σ are used to represent the value of arithmetic

expression e in σ, the truth value of boolean expression b in σ, and the state after executing statement

S in σ, respectively. �e�exp, �b�exp, and �S�exp are used to represent the expected value of e, the expected

truth value of b, and the expected state after executing S, respectively.

Given the above concurrent programming language model and the notations, we will define the struc-

tural operational semantics for tracing and locating in the following two sections.

3 A structural operational semantics for tracing

The purpose of this section is to define a structural operational semantics for the tracing procedure.

There are two points that should be taken into consideration. The first is the special role of assignment

statements and communication statements, and the second relates to the nested branch structure3).

We first investigate the role of communication statements. When two processes communicate success-

fully, the receiving process assigns the received value, which is sent by the corresponding sending process,

to a variable. Thus, the communication can be seen as a distributed assignment. This means that both

2) We assume that, for a given specification, there exists an expected program that will do exactly what the specification

requires. The execution of such a program is the expected execution.
3) A special situation arises when the nesting depth is 1.
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assignment statements and communication statements can change the values of variables and may cause

an unexpected state.

The second issue is that if and while statements create nested branch structures. When a statement

is being executed, it may be in some nested structure. When checking such statements, we should first

check their nested structures. This is because if the nested structure is not as expected, the statement

being checked becomes irrelevant. This means that when assignment statements and communication

statements are recorded, the corresponding nested structures should also be recorded.

According to the characteristics of concurrent programs, we design the following data structures to

record this information.

3.1 Global state σ

In a SyncCP, memory spaces for different processes are disjoint. Although a few variable names for

different processes might be the same, they can still be uniquely identified, e.g., by using process id. For

simplicity, we assume that variable names for different processes are different in a SyncCP. We can then

use a global state σ to uniformly represent the mapping from the variables of a SyncCP to their values.

3.2 Global environment stack array ε and local environment stack ε[pid] for process pid

Nested branch structures are generated by if andwhile statements and depend on the boolean expressions

in these statements. We hence give the following two definitions:

Definition 2 (Environment). Let b be a boolean expression that is the boolean condition of either an

if statement or a while statement, and σ be a state in which b will be evaluated. The pair 〈b, σ〉 is called
an environment.

Definition 3 (Environment stack). A stack is called an environment stack if its elements are environ-

ments 〈b, σ〉.
An environment stack can be used to represent nested branch structure, i.e., the bottom element of an

environment stack represents the outermost branch and the top element represents the innermost branch.

Through σ, we can evaluate the truth value of b and check whether the truth value is as expected.

However, for a SyncCP, we cannot use a uniform global environment stack to record all the environ-

ments of different processes. Let us consider the example below.

Example 1 (Wrong environment stack for a SyncCP). The left-hand side of Figure 2 shows a SyncCP

consisting of two processes P1 and P2. P1’s statement if b then {S} else {S′} and P2’s statement

if c then {A} else {A′} can be executed simultaneously. Suppose b of P1 is evaluated first4) and c of

P2 is evaluated later. When using a global environment stack, environment 〈b, σ1〉 corresponding to b

will be pushed first into the stack, followed by environment 〈c, σ2〉 corresponding to c. The resultant

stack is shown on the right-hand side of Figure 2. Following this, if the execution of statement S or S′

is completed first, the environment generated by if b then {S} else {S′} should be cleared in order to

not affect subsequent recording. Our current strategy is simply to pop the top element of the stack, i.e.,

〈c, σ2〉. Therefore, when statement A or A′ is executed, the corresponding recorded nested structure will

be environment 〈b, σ1〉. This is obviously wrong.

Thus, we design a local environment stack ε[pid] for each process pid and design a global environment

stack array ε that consists of these local environment stacks. We can then safely operate on ε[pid] because

it is local.

3.3 Global trace stack π

In order to record assignment statements and communication statements (i.e., sending statements and

receiving statements), we provide the following definition:

4) Because the truth value of a boolean expression can influence the execution branch that follows, we treat the evaluation

of the boolean expression, which leads to the corresponding environment being pushed into the environment stack, as a

single execution step in this paper.
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Figure 2 Wrong environment stack for a SyncCP.

Definition 4 (Local S-configuration). Let σ be a state, S be an assignment, sending or receiving

statement, of process pid to be executed in state σ, and ε be the environment stack array. The triple

〈pid : S, σ, ε〉 is called a local S-configuration.

The local S-configuration is used to record the scenario in which S of process pid was executed, including

the statement pid : S, the state σ, and the environment stack array ε. It can be seen as the execution

history of statement S.

By combining pid and ε, we can easily identify the local environment stack ε[pid]. Along with the

assumption that variable names are different from each other in a SyncCP, we use a global stack to

record these local S-configurations.

Definition 5 (Trace stack). A stack π is called a trace stack if its elements are local S-configurations

〈pid : S, σ, ε〉.
The trace stack records the execution history of a program. Its elements are local S-configurations

stored in a reverse order of program execution.

3.4 The structural operational semantics

The tracing procedure re-executes the concurrent program with the failed test case and uses the above

data structures to record useful information, i.e., the execution history of the program. By using the

above data structures, we shall define the structural operational semantics of tracing in this section.

First, we give the following two definitions.

Definition 6 (Global S-configuration). Let σ be a state, S be a statement of process pid, Q be the

remaining processes excluding process pid, and ε be the environment stack array. The triple 〈pid :

S || Q, σ, ε〉 is called a global S-configuration.

Definition 7 (T-configuration). Let 〈pid : S || Q, σ, ε〉 be a global S-configuration, and π be a trace

stack. A T-configuration is of the form π | 〈pid : S || Q, σ, ε〉.
The global S-configuration shows the current execution status of the entire concurrent program, i.e.,

the current concurrent program pid : S || Q, the current state σ, and the current environment stack array

ε. Statement S of process pid will be executed in σ with ε. The trace stack π on the left side records

local S-configurations whose statements have been executed before the global S-configuration. Thus, a

T-configuration can be used to trace the execution of the program and to save the execution history for

the locating procedure.

The structural operational semantics interprets the execution of a SyncCP by a sequence of computa-

tional steps, and each computational step is interpreted as a transition from the current T-configuration

to the next T-configuration. The structural operational semantics consists of six groups of rules, where

one group is related to communication and the others correspond to local statements5). Each rule is a

fraction, where the numerator represents the premises and the denominator represents the conclusion.

The fraction means that if the conditions and transitions in the numerator hold, then the transition in

the denominator is performed.

5) A statement of any process that is not a communication statement is called a local statement.
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• Assignment statement

�e�σ = n

π | 〈pid : x := e || Q, σ, ε〉 −→ push(〈pid : x := e, σ, ε〉, π) | 〈pid : skip || Q, σ[n/x], ε〉 . (3.1)

This rule states that the assignment statement of process pid is executed in state σ with environment

stack array ε and trace stack π. If the value of expression e in state σ is n, then after the execution of

one step, the assignment statement of process pid becomes skip, and other processes remain unchanged.

The state is changed to σ[n/x], the environment stack array is unchanged, and the local S-configuration

〈pid : x := e, σ, ε〉 is pushed into trace stack π.

• if statement

�b�σ = True

π | 〈pid : if b then {S1} else {S2} || Q, σ, ε〉 −→ π | 〈pid : {S1} || Q, σ, push(〈b, σ〉, ε[pid])〉 , (3.2)

�b�σ = False

π | 〈pid : if b then {S1} else {S2} || Q, σ, ε〉 −→ π | 〈pid : {S2} || Q, σ, push(〈b, σ〉, ε[pid])〉 . (3.3)

Rule (3.2) says that if the boolean expression b of if statement of process pid is evaluated to be true

in state σ, the next statement to be executed in process pid is {S1}. The other processes and state σ

remain unchanged. push(〈b, σ〉, ε[pid]) is used to push environment 〈b, σ〉 into local environment stack

ε[pid] and to leave other local environment stacks unchanged. The result is a new environment stack

array. Rule (3.3) is similar to rule (3.2), except that if the boolean expression b is evaluated to be false

in state σ, the next statement to be executed in process pid will be {S2}.
• while statement

�b�σ = True

π | 〈pid : while b do {S} || Q, σ, ε〉 −→ π | 〈pid : {S};while b do {S} || Q, σ, push(〈b, σ〉, ε[pid])〉 ,
(3.4)

�b�σ = False

π | 〈pid : while b do {S} || Q, σ, ε〉 −→ π | 〈pid : skip || Q, σ, ε〉 . (3.5)

Rule (3.4) is similar to rule (3.2), with the difference that the next statement to be executed in process

pid is {S}; while b do {S}. This means that the body S of while statement is executed first, following

which the while statement is executed again. Rule (3.5) says that if the boolean expression b of while

statement of process pid is evaluated to be false in state σ, the while statement of process pid terminates.

The other processes, the state σ and the environment stack array ε all remain unchanged.

• Communication
π | 〈Q, σ, ε〉 −→ π′ | 〈Q′, σ′, ε′〉

π | 〈Q || C!e, σ, ε〉 −→ π′ | 〈Q′ || C!e, σ′, ε′〉 , (3.6)

π | 〈Q, σ, ε〉 −→ π′ | 〈Q′, σ′, ε′〉
π | 〈Q || C?x, σ, ε〉 −→ π′ | 〈Q′ || C?x, σ′, ε′〉 , (3.7)

�e�σ = n

π|〈pid1 : C!e || pid2 : C?x || Q, σ, ε〉 −→
push(〈pid1 : C!e, σ, ε〉, 〈pid2 : C?x, σ, ε〉, π)|〈pid1 : skip ||pid2 : skip || Q, σ[n/x], ε〉

. (3.8)

The above three rules represent the semantics of synchronous communication, i.e., communication can

be successful only when the sending process is ready to send and the receiving process is ready to receive.

Otherwise, the process that has already reached the communication point should wait. Rules (3.6)

and (3.7) represent situations when only one process reaches the communication point. Rule (3.6) says

that if only the sending process reaches the communication point, it stays unchanged and other processes

Q move forward if they can. Rule (3.7) is similar, but applies to the receiving process. These two

rules are meant to preserve the integrity of the semantics and are not used during the tracing procedure

because the function they perform can be carried out by other local statement rules. Rule (3.8) represents

the situation when communication is successful. It says that communication can occur if process pid1
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reaches C!e and process pid2 reaches C?x. If the value of expression e in state σ is n, then following

the execution of the communication, the next statements to be executed in processes pid1 and pid2 both

become skip, the state σ is changed to σ[n/x], the environment stack array ε is unchanged, and the local

S-configurations 〈pid1 : C!e, σ, ε〉 and 〈pid2 : C?x, σ, ε〉 are pushed into the trace stack π. push(A,B, π)

pushes A into stack π followed by B.

• Sequential statement

π | 〈pid : S1 || Q, σ, ε〉 −→ π′ | 〈pid : S1
′ || Q′, σ′, ε′〉

π | 〈pid : S1;S2 || Q, σ, ε〉 −→ π′ | 〈pid : S1
′;S2 || Q′, σ′, ε′〉 , (3.9)

π | 〈pid : S1 || Q, σ, ε〉 −→ π′ | 〈pid : skip || Q′, σ′, ε′〉
π | 〈pid : S1;S2 || Q, σ, ε〉 −→ π′ | 〈pid : S2 || Q′, σ′, ε′〉 . (3.10)

Rule (3.9) states that for sequential statement S1;S2 of process pid, S1 will be executed first. Assume that

S1 of process pid is executed in state σ with environment stack array ε, trace stack π, remaining processes

Q. Following one execution step, S1 becomes S1
′, σ is changed to σ′, ε is changed to ε′, π is changed

to π′, and Q becomes Q′. Then, following one execution step of the sequential statement S1;S2, the

T-configuration becomes π′ | 〈pid : S1
′;S2||Q′, σ′, ε′〉. Note that if S1 contains communication statements,

its execution can lead to the execution of some processes in Q, which changes Q to Q′. Rule (3.10) says

that if, following one execution step of process pid, S1 becomes skip, then S1;S2 will change to S2. In

other words, S2 is the next statement to be executed in process pid if and only if S1 terminates.

• Block

π | 〈pid : {skip} || Q, σ, ε〉 −→ π | 〈pid : skip || Q, σ, pop(ε[pid])〉, (3.11)

π | 〈pid : S1 || Q, σ, ε〉 −→ π′ | 〈pid : S1
′ || Q′, σ′, ε′〉

π | 〈pid : {S1;S2} || Q, σ, ε〉 −→ π′ | 〈pid : {S1
′;S2} || Q′, σ′, ε′〉 , (3.12)

π | 〈pid : S1 || Q, σ, ε〉 −→ π′ | 〈pid : skip || Q′, σ′, ε′〉
π | 〈pid : {S1;S2} || Q, σ, ε〉 −→ π′ | 〈pid : {S2} || Q′, σ′, ε′〉 . (3.13)

The above three rules are used to specify the execution of a block in an environment 〈b, σb〉, which is the

top element of local environment stack ε[pid]. The rules are similar to those of the sequential statement,

except for rule (3.11). This rule states that when the statements belonging to the block of process pid

terminate, the environment 〈b, σb〉 is popped out from ε[pid]. For the sake of convenience, we give the

following communication ′ rule (3.8′). It can be deduced from communication rule (3.8) and sequential

statement rule (3.10). The proof is given in Appendix A.

• Communication′

�e�σ = n

π | 〈pid1 : C!e;S1 || pid2 : C?x;S2 || Q, σ, ε〉 −→
push(〈pid1 : C!e, σ, ε〉, 〈pid2 : C?x, σ, ε〉, π) | 〈pid1 : S1 ||pid2 : S2 || Q, σ[n/x], ε〉

. (3.8′)

Note that the semantics of synchronous communication guarantees that the execution order of local

statements of different processes can be arbitrary. Thus, when several processes can be executed simul-

taneously, any one can be chosen first. In what follows, we give two simple examples to demonstrate the

use of these rules.

Example 2. Figure 3(a) is a SyncCP used to exemplify the use of the communication rule. This

SyncCP consists of two processes P1 and P2 communicating through channel C. P2 uses the received

value for some computation. Figure 3(b) shows the execution process and the trace stacks generated

during this process. The step numbers indicate the concrete execution order. The statement(s) following

the step number is (are) the statement(s) to be executed in the corresponding step. The stack above

each step number is the trace stack generated after the execution of the step, and is represented by πi.

We now show how to get these trace stacks by using the rules of the semantics of tracing.
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Step 1: P1:x=1 Step 2: P2:o=3

Step 4: P2:e= o+ u

P1         

x= 1; 
C!x ; 

P2

o= 3;
C?u;
e= o+ u;

(a)

1(π )

3(π )
4(π )

2(π )

Step 3: P1:C!x || P2:C?u

(b)

1:x=1, 0σ :(x �⊥, o �⊥, u �⊥, e �⊥), 0ε
2:o=3, 1σ :(x �1, o �⊥, u �⊥, e �⊥), 0ε
1:x=1, 0σ :(x �⊥, o �⊥, u �⊥, e �⊥), 0ε

2:C?u, 2σ :(x �1, o �3, u �⊥, e �⊥), 0ε
2:e=o+u, 3σ :(x �1, o �3, u �1, e �⊥), 0ε

1:C!x, 2σ :(x �1, o �3, u �⊥, e �⊥), 0ε

2:o=3, 1σ :(x �1, o �⊥, u �⊥, e �⊥), 0ε
1:x=1, 0σ :(x �⊥, o �⊥, u �⊥, e �⊥), 0ε

2:C?u, 2σ :(x �1, o �3, u �⊥, e �⊥), 0ε
1:C!x, 2σ :(x �1, o �3, u �⊥, e �⊥), 0ε

2:o=3, 1σ :(x �1, o �⊥, u �⊥, e �⊥), 0ε
1:x=1, 0σ :(x �⊥, o �⊥, u �⊥, e �⊥), 0ε

Figure 3 The tracing of a SyncCP. (a) The program; (b) the execution process and the trace stack.

In the initial T-configuration, the trace stack π0 is empty (π0 = ∅), the state σ0 is (x �→ ⊥, o �→
⊥, u �→ ⊥, e �→ ⊥), and all the local environment stacks in the environment stack array ε0 are empty

(ε0 = [∅, ∅]), and will remain empty during execution because the program does not contain any if or

while statements.

Step 1 The assignment statement of P1 is chosen to be executed, and assignment statement rule (3.1)
and sequential statement rule (3.10) are applied.

�1�σ0 = 1

π0 | 〈1 : x := 1 || Q, σ0, ε0〉 −→ push(〈1 : x := 1, σ0, ε0〉, π0)
︸ ︷︷ ︸

π1

|〈1 : skip|| Q, σ0[1/x]
︸ ︷︷ ︸

σ1

, ε0〉 (by (3.1))

π0 | 〈1 : x := 1;C!x || Q, σ0, ε0〉 −→ π1 | 〈1 : C!x || Q, σ1, ε0〉 (by (3.10)).

Here, Q is P2, which is 2 : o = 3;C?u; e = o + u. Following this step, we get trace stack π1, shown

in Figure 3(b), and the new state σ1 = (x �→ 1, o �→ ⊥, u �→ ⊥, e �→ ⊥). The current program becomes

1 : C!x || 2 : o = 3;C?u; e = o+ u.

Step 2 Although process P1 is ready to send, it should wait because the corresponding receiving
statement is not ready. The first assignment statement of P2 is chosen to be executed and, again,
rules (3.1) and (3.10) are applied.

�3�σ1 = 3

π1 | 〈2 : o := 3 || 1 : C!x
︸ ︷︷ ︸

Q

, σ1, ε0〉 −→ push(〈2 : o := 3, σ1, ε0〉, π1)
︸ ︷︷ ︸

π2

| 〈2 : skip || 1 : C!x
︸ ︷︷ ︸

Q

, σ1[3/o]
︸ ︷︷ ︸

σ2

, ε0〉 (by (3.1))

π1 | 〈2 : o := 3;C?u; e = o+ u || 1 : C!x
︸ ︷︷ ︸

Q

, σ1, ε0〉 −→ π2 | 〈2 : C?u; e = o+ u, 2 || 1 : C!x
︸ ︷︷ ︸

Q

, σ2, ε0〉 (by (3.10)).

Following this step, we get trace stack π2, shown in Figure 3(b), and the new state σ2 = (x �→ 1, o �→
3, u �→ ⊥, e �→ ⊥). The current program becomes 1 : C!x || 2 : C?u; e = o+ u.

Step 3 P1 is now ready to send and P2 is ready to receive. The communication is thus chosen to be

executed and rule (3.8′) is applied.

�x�σ2 = 1

π2 | 〈1 : C!x || 2 : C?u; e = o+ u, σ2, ε0〉 −→
push(〈1 : C!x, σ2, ε0〉, 〈2 : C?u, σ2, ε0〉, π2)︸ ︷︷ ︸

π3

| 〈1 : skip || 2 : e = o+ u, σ2[1/u]︸ ︷︷ ︸
σ3

, ε0〉

(by (3.8′)).

At this step, two local S-configurations corresponding to the communication statements are pushed

into π2. Following this step, we get trace stack π3, shown in Figure 3(b), and the new state σ3 = (x �→
1, o �→ 3, u �→ 1, e �→ ⊥). The current program becomes 1 : skip || 2 : e = o+ u.
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      Input x,y,z;
      C!x;
      C!y;
      D!y;
      D!z;
      E?o;
      F?u;
S1: if (o>u) then

S11: v=o;
     else
       S12: v=u;

      C?a ;
      C?b ;
S2: if (a>b) then
       S21: E!b;
     else

S22: E!a;

   

      D?c;
      D?d;
S3: if (c>d) then
       S31: F!c;
     else
       S32: F!d;

(a) (b)

1:F?u,

3:F!d, 3ε
1:E?o, 2ε
2:E!b, 2ε

3ε

1:v=u, 5ε
1:F?u,

3:F!d, 3ε
1:E?o, 2ε
2:E!b,< 2ε

3ε

1:E?o, 2ε
2:E!b, 2ε

P1 P2 P3

0σ :( o �⊥, u �⊥, v �⊥),
0σ :( o �⊥, u �⊥, v �⊥),
1σ :( o �4, u �⊥, v �⊥),
1σ :( o �4, u �⊥, v �⊥),
2σ :( o �4, u �5⊥, v �⊥),

0σ :( o �⊥, u �⊥, v �⊥),

0σ :( o �⊥, u �⊥, v �⊥),

1σ :( o �4, u �⊥, v �⊥),

1σ :( o �4, u �⊥, v �⊥),

0σ :( o �⊥, u �⊥, v �⊥),
0σ :( o �⊥, u �⊥, v �⊥),

1(π )

3(π )

2(π )

Step 8: P1:v=u

Step 6: P3:F!d||P1:F?u

Step 3: P2:E!b||P1:E?o

Figure 4 Get the maximum of three numbers. (a) The program; (b) the execution process and the trace stack.

0σa>b,    0σa>b,    0σc>d,    2σo>u,    0σc>d,    

1[2]ε 2 [2]ε 2 [3]ε 3 [3]ε1[1]ε 1[3]ε 2 [1]ε 3 [1]ε 3 [2]ε 5 [2]ε 5 [3]ε5 [1]ε4 [1]ε 4 [2]ε 4 [3]ε

1ε 2ε 3ε 4ε 5ε

Figure 5 The environment stack arrays during the execution.

Step 4 Now P1 terminates. The last assignment statement of P2 is chosen to be executed and rule (3.1)
is applied.

�o+ u�σ3 = 4

π3 | 〈2 : e = o+ u || 1 : skip
︸ ︷︷ ︸

Q

, σ3, ε0〉 −→ push(〈2 : e = o+ u, σ3, ε0〉, π3)
︸ ︷︷ ︸

π4

| 〈2 : skip || 1 : skip
︸ ︷︷ ︸

Q

, σ3[4/e]
︸ ︷︷ ︸

σ4

, ε0〉
(by (3.1)).

Following this step, we obtain the final trace stack π4, shown in Figure 3(b), and the final state

σ4 = (x �→ 1, o �→ 3, u �→ 1, e �→ 4).

Example 3 (Get the maximum of three numbers). Figure 4(a) shows a SyncCP that aims to obtain

the maximum of three numbers. The program consists of three processes P1, P2 and P3. P1 sends the

first two numbers to P2 and the last two numbers to P3. P2 and P3 perform the same operation, i.e., to

compute the maximum of the two received numbers and return it to P1. Finally, in P1, the maximum of

the two returned numbers is computed, which is also the maximum of the three numbers. Although this

SyncCP is simple, it demonstrates a scenario where a complicated task is divided into simple tasks that

can be processed separately.

Assume that the input is x = 6, y = 4, z = 5 and that P1 has already sent the numbers to P2 and

P3. The statements to then be executed in each process are E?o, S2, and S3, respectively. The current

trace stack π0 contains the local S-configurations that are generated by the previous communications.

The current state σ0 is (x �→ 6, y �→ 4, z �→ 5, a �→ 6, b �→ 4, c �→ 4, d �→ 5, o �→ ⊥, u �→ ⊥, v �→ ⊥).

The values of x, y, z, a, b, c, d are unchanged during the execution. For simplicity, we ignore the previous

information. This means that we see π0 as empty (π0 = ∅) and σ0 as (o �→ ⊥, u �→ ⊥, v �→ ⊥)6). The

initial environment stack array is ε0, where each ε0[pid] is empty.

The content of Figure 4(b) is similar to that of Figure 3: it shows the execution process and the trace

stacks generated during the process. The step number in Figure 4(b) is discontinuous because there are

many steps that do not affect the trace stack, e.g., the step involving the use of the if statement rule.

Figure 5 shows the change process of the environment stack array ε caused by if statements. For this

example, we only provide a brief outline of the tracing process. The details can be found in Appendix B.

Note that the trace stacks mentioned in this paragraph can be found in Figure 4(b), and the environ-

ment stack arrays can be found in Figure 5. In Step 1, the if statement rule (3.2) is applied to statement

S2 of P2, following which the environment stack array changes to ε1. S2 changes to {S21} because the

6) Actually, they contain previously collected information.
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truth value of a > b is true in σ0. In Step 2, the if statement rule (3.2) is applied again to statement S3 of

P3, following which the environment stack array changes to ε2. S3 changes to S32 because the truth value

of c > d is false in σ0. In Step 3, the communication between statement E?o of P1 and statement S21 of

P2 is executed, through which we obtain trace stack π1 and the new state σ1 = (o �→ 4, u �→ ⊥, v �→ ⊥).

In Steps 4 and 5, block rules are applied to terminate the if statement S2 of P2, and the environment

stack array changes to ε3. In Step 6, using the same method as in Steps 3-5, for communication between

F?u of P1 and S32 of P3, we obtain the trace stack π2 and the new state σ2 = (o �→ 4, u �→ 5, v �→ ⊥). At

the same time, the environment stack array changes to ε4. Now both P2 and P3 terminate. In Step 7,

the if statement rule (3.2) is applied to statement S1 of P1, following which the environment stack array

changes to ε5, and S1 changes to {S12} because the truth value of o > u is false in σ2. In Step 8,

assignment statement rule (3.1) is applied to statement S12, following which we get the final trace stack

π3 and the final state σ3 = (o �→ 4, u �→ 5, v �→ 5). In the final step, the block rule is applied and the

environment stack array changes to ε6, which is the same as ε0.

4 A structural operational semantics for locating

The locating procedure starts with the trace stack obtained in the tracing procedure. It aims to locate the

ill-designed statement by backtracking the trace stack, and tries to fix the bug by solving the fix equation.

In order to clearly describe this procedure, we first define the following concept, which is slightly different

from the T-configuration proposed in Section 3.

Definition 8 (D-configuration). The form π | 〈pid : S, σ, ε〉 is called a D-configuration.

D-configuration gives the configuration of a step during the locating procedure. π is the current trace

stack, which is a sub-stack of the trace stack obtained in the tracing procedure. 〈pid : S, σ, ε〉 represents
the current statement S, which is to be checked next. σ and ε are the state and the environment stack

array, respectively, in which S was executed.

As discussed in Section 3, if a statement is in a nested structure, we should first check whether the

nested structure is as expected. Only after confirming the nested structure should we proceed to check

the statement; if the nested structure is not as expected, we should first investigate the reason for the

unexpected nested structure. Based on this principle, we first present an outline of the locating procedure.

Step 1 The locating procedure starts immediately after the tracing procedure terminates and takes

the following initial D-configuration π | 〈x, σ, ε〉7) as input. Because σ is the terminal state obtained by

re-running the program with the failed test case, there exists at least one variable x whose value in σ is

not as expected, i.e., �x�σ �= �x�exp.

Step 2 Pop the elements in π one by one until the first local S-configuration is found that contains a

statement with an assignment effect on x. This operation can be implemented by a fas function such that

fas(x, π) is a sub-stack of π. The top element 〈pid : S, σ′, ε′〉 of fas(x, π) is the first local S-configuration
from the top of π, which contains a statement that has an assignment effect on x. S can be an assignment

statement or a receiving statement. Then go to Step 3 to check 〈pid : S, σ′, ε′〉 with the new trace stack

pop(fas(x, π)) which is a sub-stack of fas(x, π) obtained by popping out the top element of fas(x, π).

Step 3 For a given local S-configuration 〈pid : S, σ′, ε′〉, check ε′[pid]. If ε′[pid] = ∅, statement S is

either not in a nested structure or the nested structure is confirmed to be as expected, and we can directly

check statement S according to the following three cases:

Step 3.1 If S is an assignment statement pid : x := e, the value of e in σ is not as expected; otherwise

the value of x in σ is as expected. We have the following two cases.

Step 3.1.1 If there exists a variable y ∈ FV (e), such that �y�σ′ �= �y�exp. This means that the value of

7) Note that here π, σ and ε are the trace stack, the state, and the environment stack array, respectively, when the

tracing procedure terminates. There is no process id for x because variable names are different from one another in a

SyncCP.
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y in state σ′ is not as expected, i.e., the computation of y conducted prior to the current S-configuration

is wrong. We thus return to Step 2 to check y, i.e., we backtrack to the first local S-configuration that

contains a statement with an assignment effect on y.

Step 3.1.2 If for every y ∈ FV (e), we have �y�σ′ = �y�exp. This means that the value of every free

variable occurring in e is as expected, but the value of e is not as expected. There is only one possibility,

i.e., the structure of arithmetic expression e is incorrect. For example, x := y + z is incorrectly written

as x := y · z. Thus, an ill-designed statement is found and the locating procedure terminates. We denote

the terminating D-configuration as π | 〈Error(e), σ′ , ε′〉. In this case, the locating procedure outputs the

following fix equation f(FV (P ))σ′ = �e�exp. This equation is used to solve function f . An arithmetic

expression can be obtained by applying f on FV (P )8), whose value in state σ′ is the expected value of

e. After solving the fix equation, we modify the assignment statement and re-execute the program with

the failed test case.

Step 3.2 If S is a receiving statement pid : C?x, the received value is not as expected. Since the local

environment stack has been confirmed to be as expected, it means that the communication has occurred

in the expected place. Thus, the only reason for having received an unexpected value is that the value

sent by the sending process is not as expected. We thus go back to Step 3 to check the corresponding

local S-configuration 〈pid′ : C!e′, σ′′, ε′′〉. This local S-configuration is the current top element of the

trace stack because local S-configurations for communication statements are continuously pushed into

the trace stack in the tracing procedure.

Step 3.3 If S is a sending statement pid : C!e, the value to be sent, i.e., the value of e, is not as

expected. Similarly to Step 3.1, there are two cases.

Step 3.3.1 There exists a variable y ∈ FV (e), such that �y�σ′ �= �y�exp. This case is handled by the

same method as used in Step 3.1.1.

Step 3.3.2 For every y ∈ FV (e), we have �y�σ′ = �y�exp. This case is handled by the same method as

used in Step 3.1.2.

Step 4 For a given local S-configuration 〈pid : S, σ′, ε′〉, we check ε′[pid]. If ε′[pid] �= ∅, we check each

of the environments stored in ε′[pid] starting from the top, i.e., from the innermost execution branch to

the outermost. Suppose that the top element of ε[pid] is 〈b, σb〉. There are two cases.

Step 4.1 �b�σb
= �b�exp. This means that the truth value of boolean expression b is as expected, i.e.,

the current execution branch is as expected. We simply pop out the top element and continue to check

the next environment, i.e., the outer execution branch, if it exists. Thus, if pop(ε′[pid]) is empty, then go

to Step 3), else go to Step 4) with the new environment stack pop(ε′[pid]).

Step 4.2 �b�σb
�= �b�exp. This means that the truth value of boolean expression b is not as expected,

i.e., the current execution branch is not as expected. There are two cases.

Step 4.2.1 There exists variable y ∈ FV (b), such that �y�σb
�= �y�exp. This means that the value of y

in state σb is not as expected, i.e., the prior computation of the value of y is not as expected. Thus, we

return to Step 2 and check the value of y, i.e., backtrack to the first local S-configuration that contains

a statement with an assignment effect on y.

Step 4.2.2 For every y ∈ FV (b), we have �y�σb
= �y�exp. This means that the value of every free

variable occurring in b is as expected, but that the truth value of b is not as expected. There is only

one possibility, i.e., the structure of boolean expression b is incorrect. For example, x < y is incorrectly

written as x > y. Thus, an ill-designed statement is found and the locating procedure terminates.

The terminating D-configuration is π | 〈Error(b), σ′ , ε′〉. In this case, the locating procedure outputs

the following fix equation g(FV (P ))σb
= �b�exp. This equation is used to solve function g. A boolean

expression is obtained by applying g to FV (P ), whose truth value in state σb is the expected value of

8) FV (P ) represents the free variables that appear in the concurrent program. We use FV (P ) in addition to FV (e)

because the correct statement may contain variables that do not appear in e.
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b. After solving the fix equation, we modify the boolean expression and re-execute the program with the

failed test case.

According to the above outline, the structural operational semantics for the locating procedure is

defined as follows:

• Variables
�x�σ �= �x�exp, top(fas(x, π)) = 〈pid : x := e, σ′, ε′〉
π | 〈x, σ, ε〉 −→ pop(fas(x, π)) | 〈pid : x := e, σ′, ε′〉 , (4.1)

�x�σ �= �x�exp, top(fas(x, π)) = 〈pid : C?x, σ′, ε′〉
π | 〈x, σ, ε〉 −→ pop(fas(x, π)) | 〈pid : C?x, σ′, ε′〉 . (4.2)

Rules (4.1) and (4.2) are the operational semantics for Step 2 in the outline. Taking rule (4.1) as an

example, the inequality �x�σ �= �x�exp in the numerator means that the value of x in σ is not as expected,

which means that a bug has been encountered. The equality top(fas(x, π)) = 〈pid : x := e, σ′, ε′〉 means

that 〈pid : x := e, σ′, ε′〉 is the first local S-configuration containing a statement that has an assignment

effect on x, starting from the top of stack π. The operation in the denominator means that the next step

in the locating procedure should check the statement which has an assignment effect on x.

• Assignment statement

ε[pid] = ∅, y ∈ FV (e), �y�σ �= �y�exp, top(fas(y, π)) = 〈pid : y := e′, σ′, ε′〉
π | 〈pid : x := e, σ, ε〉 −→ pop(fas(y, π)) | 〈pid : y := e′, σ′, ε′〉 , (4.3)

ε[pid] = ∅, y ∈ FV (e), �y�σ �= �y�exp, top(fas(y, π)) = 〈pid : C?y, σ′, ε′〉
π | 〈pid : x := e, σ, ε〉 −→ pop(fas(y, π)) | 〈pid : C?y, σ′, ε′〉 , (4.4)

ε[pid] = ∅, ∀y ∈ FV (e)(�y�σ = �y�exp)

π | 〈pid : x := e, σ, ε〉 −→ π | 〈Error(e), σ, ε〉 . (4.5)

Rules (4.3) and (4.4) are the operational semantics for Step 3.1.1, and rule (4.5) is the operational

semantics for Step 3.1.2.

• Receiving statement

ε[pid] = ∅, top(π) = 〈pid′ : C!e, σ, ε〉
π | 〈pid : C?x, σ, ε〉 −→ pop(π) | 〈pid′ : C!e, σ, ε〉 . (4.6)

Rule (4.6) is the operational semantics for Step 3.2.

• Sending statement

ε[pid] = ∅, y ∈ FV (e), �y�σ �= �y�exp, top(fas(y, π)) = 〈pid : y := e′, σ′, ε′〉
π | 〈pid : C!e, σ, ε〉 −→ pop(fas(y, π)) | 〈pid : y := e′, σ′, ε′〉 , (4.7)

ε[pid] = ∅, y ∈ FV (e), �y�σ �= �y�exp, top(fas(y, π)) = 〈pid : D?y, σ′, ε′〉
π | 〈pid : C!e, σ, ε〉 −→ pop(fas(y, π)) | 〈pid : D?y, σ′, ε′〉 , (4.8)

ε[pid] = ∅, ∀y ∈ FV (e)(�y�σ = �y�exp)

π | 〈pid : C!e, σ, ε〉 −→ π | 〈Error(e), σ, ε〉 . (4.9)

Rules (4.7) and (4.8) are the operational semantics for Step 3.3.1 and Rule (4.9) is the operational

semantics for Step 3.3.2. These rules are very similar to rules for assignment statement, except that

arithmetic expression e in them is part of the sending statement.

• Block
top(ε[pid]) = 〈b, σb〉, �b�σb

= �b�exp
π | 〈pid : S, σ, ε〉 −→ π | 〈pid : S, σ, ε[ε[pid] = pop(ε[pid])]〉 . (4.10)

Rule (4.10) is the operational semantics of Step 4.1 in the outline. ε[ε[pid] = pop(ε[pid])] is the new

environment stack array obtained by popping out the top element of ε[pid] and leaving the remaining

local environment stacks unchanged.(
top(ε[pid]) = 〈b, σb〉, �b�σb

�= �b�exp

y ∈ FV (b), �y�σb
�= �y�exp, top(fas(y, π)) = 〈pid : y := e′, σ′, ε′〉

)

π | 〈pid : S, σ, ε〉 −→ pop(fas(y, π)) | 〈pid : y := e′, σ′, ε′〉 , (4.11)
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(
top(ε[pid]) = 〈b, σb〉, �b�σb

�= �b�exp

y ∈ FV (b), �y�σb
�= �y�exp, top(fas(y, π)) = 〈pid : C?y, σ′, ε′〉

)

π | 〈pid : S, σ, ε〉 −→ pop(fas(y, π)) | 〈pid : C?y, σ′, ε′〉 . (4.12)

Rules (4.11) and (4.12) are the operational semantics for Step 4.2.1 in the outline.

top(ε[pid]) = 〈b, σb〉, �b�σb
�= �b�exp, ∀y ∈ FV (b)(�y�σb

= �y�exp)

π | 〈pid : S, σ, ε〉 −→ π | 〈Error(b), σ, ε〉 . (4.13)

Rule (4.13) is the operational semantics for Step 4.2.2 in the outline.

To demonstrate the use of the operational semantics of locating, let us consider Example 2 and Exam-

ple 3 from Subsection 3.4 again.

Example 4. In Example 2, the expected result is e = 5, but the result obtained by executing the failed

test case is e = 4. The initial D-configuration is π4|〈e, σ4, ε〉, where ε is [∅, ∅]. The process of locating the

error by using the operational semantics of locating (or the locating procedure) is as follows:

(a)
�e�σ4 �= �e�exp, top(fas(e, π4)) = 〈2 : e := o+ u, σ3, ε〉
π4 | 〈e, σ4, ε〉 −→ pop(fas(e, π4))︸ ︷︷ ︸

π3

| 〈2 : e := o+ u, σ3, ε〉 (by (4.1)),

(b)
ε[2] = ∅, �u�σ3 �= �u�exp, top(fas(u, π3)) = 〈2 : C?u, σ2, ε〉

π3 | 〈2 : e := o+ u, σ3, ε〉 −→ pop(fas(u, π3))︸ ︷︷ ︸
π′
3

| 〈2 : C?u, σ2, ε〉 (by (4.4)),

(c)
ε[2] = ∅, top(π′

3) = 〈1 : C!x, σ2, ε〉
π′
3 | 〈2 : C?u, σ2, ε〉 −→ pop(π′

3)︸ ︷︷ ︸
π2

| 〈1 : C!x, σ2, ε〉 (by (4.6)),

(d)
�C!x�σ2 �= �C!x�exp, �x�σ2 = �x�exp

π2 | 〈1 : C!x, σ2, ε〉 −→ π2 | 〈Error(x), σ2, ε〉 (by (4.8)).

Note that, in Step (b) above, pop(fas(u, π3)) is denoted as π′
3, which is not π2. This is because

fas(u, π3) is obtained by pushing 〈1 : C!x, σ2, ε〉 and 〈2 : C?u, σ2, ε〉 together into π2. In Step (d), fix

equation 2 = (f(FV (P )))σ2 is generated. Since the expected value of variable x is 1 and the expected value

of the arithmetic expression in the sending statement is 2, a solution of the fix equation is f(FV (P )) =

x+1. Thus, one possible fix to the program is changing the sending statement C!x into C!(x+1), which

can be confirmed by re-executing the program with the failed test case.

Example 5. Consider the program in Example 3. Suppose that the input is x = 6, y = 4, z = 5. The

expected final result should be v = 6 rather than v = 5. The initial D-configuration is π3 | 〈v, σ3, ε6〉.
The process of locating the error by using the operational semantics of locating (or the locating procedure)

is as follows:

(a)
�v�σ3 �= �v�exp, top(fas(v, π3)) = 〈1 : v := u, σ2, ε5〉
π3 | 〈v, σ3, ε6〉 −→ pop(fas(v, π3))︸ ︷︷ ︸

π2

| 〈1 : v := u, σ2, ε5〉 (by (4.1)),

(b)

(
top(ε5[1]) = 〈o > u, σ2〉, �o > u�σ2 �= �o > u�exp

�o�σ2 �= �o�exp, top(fas(o, π2)) = 〈1 : E?o, σ0, ε2〉

)

π2 | 〈1 : v := u, σ2, ε5〉 −→ pop(fas(o, π2))︸ ︷︷ ︸
π′
2

| 〈1 : E?o, σ0, ε2〉 (by (4.12)),

(c)
ε2[1] = ∅, top(π′

2) = 〈2 : E!b, σ0, ε2〉
π′
2 | 〈1 : E?o, σ0, ε2〉 −→ pop(π′

2)︸ ︷︷ ︸
π1

| 〈2 : E!b, σ0, ε2〉 (by (4.6)),

(d)
top(ε2[2]) = 〈a > b〉, �a > b�σ0 = �a > b�exp

π1 | 〈2 : E!b, σ0, ε2〉 −→ π1 | 〈2 : E!b, σ0, ε[ε[2] = pop(ε2[2])]〉 (by (4.10)),

(e)
ε[2] = ∅, �E!b�σ0 �= �E!b�exp, �b�σ0 = �b�exp
π1 | 〈2 : E!b, σ0, ε〉 −→ π1 | 〈Error(b), σ0, ε〉 (by (4.5)).
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As in Example 4, pop(fas(o, π2)) is denoted as π′
2. In Step (e), fix equation 6 = g(FV (P ))σ0 is

generated. Since the expected value of the arithmetic expression in the sending statement is 6, which is

the value of variable a, a solution to the fix equation is g(FV (P )) = a. Thus, one possible fix to the

program is to change the statement E!b to E!a, which can be confirmed by re-executing the program

with the failed test case.

5 Related work

Many debugging techniques have been proposed for sequential programs, such as step breakpoint [23],

omniscient debugging [24], program slice [25], scientific debugging [2] and delta debugging [26].

For message passing-based concurrent programs, many mathematical models, as well as testing and

debugging methods have also been proposed.

Mathematical models can be used to describe the action of concurrent programs. Petri net [3] is used to

represent distributed concurrent system. A Petri net is a directed graph where the nodes represent tran-

sitions (i.e., events that may occur) and places (i.e., conditions). The directed arcs designate which places

(conditions) are preconditions and/or postconditions for which transitions (events). The dependencies

among events can represent the interactions among processes. Actor model [4] describes the character of

message passing more directly. In actor model, everything is an actor. Different actors can communicate

only through message passing. Another category of models is process calculus, which includes the Cal-

culus of Communicating System (CCS) [5], Communicating Sequential Process (CSP) [6], Hybrid CSP

(HCSP) [7], and so on. Process calculus describes the interaction, communication and synchronization

among processes through algebraic approaches. All models have rigorous mathematical foundations and

can be further used for program verification [8].

Structural testing [9] is based on the control structures of programs and has been extended to test

message passing-based concurrent programs. This kind of methods [10–12] design different testing criteria

to guide test case generation or to evaluate the quality of test cases. Reachability testing [13] is another

testing method that focuses on synchronization (SYN)-sequences [14] of concurrent programs. Given an

input, a concurrent program can have many SYN sequences, some of which may contain the error. The

target of reachability testing is to traverse all possible SYN-sequences of a concurrent program to check

for the error.

Debugging techniques for message passing-based concurrent programs collect the execution information

of the programs and aid the debugging process using this information. One direction of investigation is

to replay the previous execution by using the recorded execution events [15,16]. These approaches are

orthogonal to our method and can aid our locating procedure. The other direction is to directly use

the information to help analyze the behavior of the program. Xab [17] helps debug PVM programs by

monitoring their runtime information and providing direct feedback about the functions being executed.

Umpire [18] records programs’ MPI operations by interposing itself between the programs and the MPI

runtime system and then checks the programs’ behavior for specific errors. Although these techniques

expect to utilize the collected information, they do not propose a uniform method to locate the bug.

Instead, our method provides a uniform framework to locate bugs for different programming languages

and for different situations. This will greatly improve debugging efficiency .

Ref. [20] has proposed a debugging framework for sequential programs built up from notations and tech-

niques of operational semantics. Our method is inspired by this method, but we extend it to synchronous

message passing-based concurrent programs.

6 Conclusion

In this paper, we proposed a formal semantics for debugging synchronous message passing-based concur-

rent programs. We presented three programs written in different programming languages, and designed a

concurrent programming language model based on these languages. Compared with sequential program-
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ming languages, our model contains communication statements and concurrent structure to represent

communication and concurrency. Our proposed debugging process consists of a tracing procedure and a

locating procedure. The tracing procedure aims to collect useful information by re-executing the program

with the failed test case. During this process, data structures, such as state, environment stack array and

trace stack, are designed to record this information. A structural operational semantics, which represents

the semantics of synchronous communication and concurrency, is provided to instruct the execution of

tracing procedure. The locating procedure uses the information obtained in the tracing procedure to

locate the ill-designed statement, generates a fix equation and tries to fix the bug by solving the fix

equation. We also supply the structural operational semantics to instruct the locating procedure.

Ref. [20] has proposed a formal framework for debugging sequential programs. This paper improves

this result by enabling the debugging of synchronous message passing-based concurrent programs. We

have in mind at least three directions for future research. The first is to develop a prototype system

based on our method and to use practical cases to evaluate the effectiveness of our method. The second

direction is to design the formal framework for two other kinds of concurrent programs, i.e., asynchronous

message passing-based concurrent programs and shared variable-based concurrent programs. The third

direction in which we plan to pursue research is to relax the limitation whereby the expected value of

each variable or expression has to be known, and to locate the error by using incomplete information.
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Appendix A Communication′ rule

Communication′ rule is described as (3.8′). For convenience, we usually use communication′ rule (3.8′) to replace commu-

nication rule (3.8). It can be deduced by communication rule (3.8) and sequential statement rule (3.10). The process is as

follows.

• The first step is to use communication rule (3.8).

�e�σ = n

π | 〈pid1 : C!e || pid2 : C?x || Q, σ, ε〉 −→
push(〈pid1 : C!e, σ, ε〉, 〈pid2 : C?x, σ, ε〉, π)
︸ ︷︷ ︸

π′

| 〈pid1 : skip ||pid2 : skip || Q, σ[n/x], ε〉

(by (3.8)).

• The second step is to use sequential statement rule (3.10), where the handled process is the sending process.

π | 〈pid1 : C!e || pid2 : C?x || Q
︸ ︷︷ ︸

Q1

, σ, ε〉 −→ π′ | 〈pid1 : skip || pid2 : skip || Q
︸ ︷︷ ︸

Q′
1

, σ[n/x], ε〉

π | 〈pid1 : C!e;S1 || pid2 : C?x || Q
︸ ︷︷ ︸

Q1

, σ, ε〉 −→ π′ | 〈pid1 : S1 || pid2 : skip || Q
︸ ︷︷ ︸

Q′
1

, σ[n/x], ε〉 (by (3.10)).

• The third step is to use sequential statement rule (3.10) again, where the handled process now is the receiving process

and the initial T-configuration is the final T-configuration of step 2.

π | 〈pid2 : C?x || pid1 : C!e;S1 || Q
︸ ︷︷ ︸

Q2

, σ, ε〉 −→ π′ | 〈pid2 : skip || pid1 : S1 || Q
︸ ︷︷ ︸

Q′
2

, σ[n/x], ε〉

π | 〈pid2 : C?x;S2 || pid1 : C!e;S1 || Q
︸ ︷︷ ︸

Q2

, σ, ε〉 −→ π′ | 〈pid2 : S2 || pid1 : S1 || Q
︸ ︷︷ ︸

Q′
2

, σ[n/x], ε〉 (by (3.10)).

The denominator is just the denominator of the communication′ rule.

Appendix B Detailed execution process of Example 3

In the following, we show how to use rules of the semantics of tracing for Example 3. Note that the trace stacks mentioned

in this section can be found in Figure 4(b) and the environment stack arrays can be found in Figure 5.

Step 1 The if statement S2 of P2 is chosen to be executed and the if statement rule (3.2) is applied.

�a > b�σ0 = True

π0 | 〈2 : if a > b then {S21} else {S22} || Q, σ0, ε0〉 −→ π0 | 〈2 : {S21} || Q, σ0, push(〈a > b, σ0〉, ε0[2])
︸ ︷︷ ︸

ε1

〉
(by (3.2)).

Here

Q := 1 : E?o;F ?u;S1
︸ ︷︷ ︸

P1

|| 3 : S3
︸ ︷︷ ︸

P3

.

After this step, the environment stack array changes to ε1 and S2 becomes {S21}. The current program becomes 1 :

E?o;F ?u;S1 || 2 : {S21} || 3 : S3.

Step 2 The if statement S3 of P3 is chosen to be executed and the if statement rule (3.2) is applied again.

�c > d�σ0 = False

π0 | 〈3 : if c > d then {S31} else {S32} || Q, σ0, ε1〉 −→ π0 | 3 : {S32} || Q, σ0, push(〈c > d, σ0〉, ε1[3])
︸ ︷︷ ︸

ε2

〉 (by (3.2)).

Here

Q := 1 : E?o;F ?u;S1
︸ ︷︷ ︸

P1

|| 3 : {S21}
︸ ︷︷ ︸

P2

.

After this step, the environment stack array changes to ε2 and S3 becomes {S32}. The current program becomes 1 :

E?o;F ?u;S1 || 2 : {S21} || 3 : {S32}.
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Step 3 The communication between statement E?o of P1 and statement S21 of P2 is chosen to be executed and the

communication′ rule (3.8′) is applied. After the execution of the communication, block rule (3.13) is further applied.

�b�σ0 = 4

π0 | 〈2 : E!b || 1 : E?o;F ?u;S1 || 3 : {S32}
︸ ︷︷ ︸

Q

, σ0, ε2〉 −→

push(〈2 : E!b, σ0, ε2〉, 〈1 : E?o, σ0, ε2〉, π0)
︸ ︷︷ ︸

π1

| 〈2 : skip || 1 : F ?u;S1|| 3 : {S32}
︸ ︷︷ ︸

Q

, σ0[4/o]
︸ ︷︷ ︸

σ1

, ε2〉

(by (3.8′))

π0 | 〈2 : {S21} || Q1, σ0, ε2〉 −→ π1 | 〈2 : {skip} || Q′
1, σ1, ε2〉

(by (3.13)).

When using rule (3.13), Q1 is 1 : E?o;F ?u;S1
︸ ︷︷ ︸

P1

|| 3 : {S32}
︸ ︷︷ ︸

P3

and Q′
1 is 1 : F ?u;S1

︸ ︷︷ ︸

P1

|| 3 : {S32}
︸ ︷︷ ︸

P3

. At this step, two local

S-configurations corresponding to the communication statements are pushed to π0. After this step, we get trace stack π1

and the new state σ1 = (o �→ 4, u �→ ⊥, v �→ ⊥). The current program becomes 1 : F ?u;S1 || 2 : {skip;} || 3 : {S32}.
Step 4 For the result of step 3, block rule (3.11) is applied for the termination of the if statement S2 of P2.

π1 | 〈2 : {skip} || Q, σ1, ε2〉 −→ π1 | 〈2 : skip || Q, σ1, pop(ε2[2])
︸ ︷︷ ︸

ε3

〉 (by (3.11)).

Here

Q := 1 : F ?u;S1
︸ ︷︷ ︸

P1

|| 3 : {S32}
︸ ︷︷ ︸

P3

.

After this step, the environment stack array changes to ε3. The current program becomes 1 : F ?u;S1 || 2 : skip || 3 : {S32}.
Step 5 According to step 3 and step 4, we can get

π0 | 〈2 : {S21} || 1 : E?o;F ?u;S1 || 3 : {S32}, σ0, ε2〉 −→ π1 | 〈2 : skip || 1 : F ?u;S1 || 3 : {S32}, σ1, ε3〉.

Step 6 Similar to the above three steps, for the communication between F ?u of P1 and S32 of P3, we can get

π1 | 〈3 : {S32} || 1 : F ?u;S1 || 2 : skip, σ1, ε3〉 −→ π2 | 〈3 : skip || 1 : S1 || 2 : skip, σ2, ε4〉.
After this step, we can get the new trace stack π2 = push(〈3 : F !d, σ1, ε3〉, 〈1 : F ?u, σ1, ε3〉, π1), the new state

σ2 = σ1[5/u] = (o �→ 4, u �→ 5, v �→ ⊥), and the new environment stack array ε4 = pop(ε3[3]). The current program

becomes 1 : S1 || 2 : skip || 3 : skip.

Step 7 Now processes P2 and P3 are terminated. The if statement S1 of P1 is chosen to be executed and the if statement

rule (3.2) is applied.

�o > u�σ2 = False

π2 | 〈1 : if o > u then {S11} else {S12} || Q, σ2, ε4〉 −→ π2 | 1 : {S12} || Q, σ2, push(〈o > u, σ2〉, ε4[1])
︸ ︷︷ ︸

ε5

〉 (by (3.2)).

Here

Q := 2 : skip
︸ ︷︷ ︸

P2

|| 3 : skip
︸ ︷︷ ︸

P3

.

After this step, the environment stack array changes to ε5 and S1 becomes {S12}. The current program becomes 1 :

{S12} || 2 : skip || 3 : skip.

Step 8 The assignment statement S12 of P1 is to be executed and assignment statement rule (3.1) is applied. After the

execution of the assignment statement, block rule (3.13) is applied.

�u�σ2 = 5

π2 | 〈1 : v := u || Q , σ2, ε5〉 −→ push(〈1 : v := u, σ2, ε5〉, π2)
︸ ︷︷ ︸

π3

| 〈1 : skip || Q, σ2[5/v]
︸ ︷︷ ︸

σ3

, ε5〉
(by (3.1))

π2 | 〈1 : {v := u} || Q, σ2, ε5〉 −→ π3 | 〈1 : {skip} || Q,σ3, ε5〉
(by (3.13)).

Here

Q := 2 : skip
︸ ︷︷ ︸

P2

|| 3 : skip
︸ ︷︷ ︸

P3

.

After this step, we get the final trace stack π3 and the final state σ3 = (o �→ 4, u �→ 5, v �→ 5). The current program becomes

1 : {skip} || 2 : skip || 3 : skip.

Step 9 At last, block rule (3.11) is applied for the termination of the if statement S1 of P1.

π3 | 〈1 : {skip} || 2 : skip || 3 : skip, σ3, ε5〉 −→ π3 | 〈1 : skip || 2 : skip || 3 : skip, σ3, pop(ε5[1])
︸ ︷︷ ︸

ε6

〉 (by (3.11)).

After this step, the environment stack array changes to ε6 which is same as ε0.


