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Abstract Characterizing network traffic with higher-dimensional features results in increased complexity of

most detectors and classifiers for identifying traffic anomalies. Several key observations from existing studies

confirm that network anomalies are typically distributed in a sparse way, with each anomaly essentially char-

acterized by its lower-dimensional features. Based on this important finding, we exploit sparsity in designing a

novel detection method for anomalies that ignores redundancies that are dynamically filtered from the feature

sets and accurately classifies anomalies. Comparison of our method with three well known techniques shows a

10% improvement in accuracy with an O (n) complexity of the classifier.
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1 Introduction

Uncovering anomalies in large Internet Service Providers (ISPs) and enterprise networks is challenging.

On the one hand, there is a wide variety of such anomalies. Anomalies can come from activities with

malicious intent (e.g., DDoS, port scanning), from failures of network components (e.g., link failures,

congestion problems), or even from legitimate events such as flash crowds. On the other hand, it is a great

number of traffic features representing the various of anomalies that prevent perfect techniques performing

in an effective way. Thus traffic cannot be characterized precisely by lower dimensional features, whereas

higher dimensional ones costly. Determining a suitable tradeoff by dynamically filtering the “proper”

feature subset is an open problem.

A number of techniques have been proposed to detect these anomalies by analyzing network traffic [1].

All of these try to reveal anomalies by detecting deviations from some underlying model of normal traffic.
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For a long time, researchers have uncovered anomalies in the network based on traffic volume, for example,

number of packets or bytes [1–3]. Nychis et al. [4] reviewed the distribution of traffic volume and degree as

a result of entropy. This can hit anomalies caused by much smaller traffic flows, but not the distribution

of IP addresses and ports. Lakhina discovered that the distributions of packet features (IP addresses and

ports) observed in flow traces reveal both the presence and the structure of a wide range of anomalies

[2,3]. Then, using entropy as a summarization tool, they designed a method that is highly sensitive to a

wide range of anomalies. As indicated by Ringberg [5], principal component analysis (PCA) is sensitive

to large traffic anomalies. Silveira et al. [6–8] introduced Unsupervised Root Cause Analysis (URCA),

which isolates anomalous traffic and classifies alarms with minimal manual assistance and high accuracy.

The most disastrous limitation is that it is difficult for URCA to converge if initialized badly. However,

none of the above studies attach much importance to the correlation among features, or even whether it

is necessary for all of these to be detected together.

Recently, special emphasis has been placed on assembling multiple atomic detectors in the field of

network traffic anomaly detection. Nyalkalkar et al. [9] compared a promising approach from each of two

broad categories (approaches based on spatial correlation and temporal analysis, respectively), namely,

entropy-based PCA and hierarchical heavy hitter (HHH) based wavelets. Gao et al. [10] proposed in-

ferring a discriminative model by reaching consensus among multiple atomic anomaly detectors in an

unsupervised manner, when there are very few or even no known anomalous events for training. Al-

though the combined detector achieved a 10 to 20% improvement over the base detectors, the researchers

were disappointed with the cost.

Traffic features, such as packet and flow counts, form a time series with the following two features:

(i) self-similarity [11], i.e., auto-covariance function R(k) at different time scales are fundamentally the

same; (ii) long range dependence [12,13], which means that the auto-covariance function decays at a much

slower rate than general exponential decay.

When volume anomalies occur in the network, the structure of traffic violates this phenomenon. Thus,

multi-resolution analysis is used to uncover these anomalies under these circumstances. it is Typically

impossible for large anomalies to present themselves on the network links. On the contrary, network

anomalies are normally distributed in a sparse way. Therefore, it comes as no surprise that the integral

structure of traffic is usually unchanged even with the existence potential anomalies. For example,

when large instantaneous anomalies occur in the network, the anomalies are proportionally lower than

normal traffic making them totally disappear as they are drowned by normal traffic noise. From a multi-

resolution perspective, we can decompose a traffic series into multi-layers, with each layer is mapped onto

one frequency scope.

According to the different anomalies inhabiting different frequency scopes, we can separate anomaly-

free layers from anomalous ones. Moreover, each of the anomalies is essentially characterized by its

lower-dimensional features, irrespective of how many higher-dimensional features there are. In this pa-

per, we introduce a novel approach to filter out the “proper” features from a set with high dimensionality.

This approach is based on a mathematical model of a type of sparsity that we call Multi-Resolution Low

Rank (MRLR). Then, Based on the MRLR, we develop a dimensionality reduction technique, Recursive

Reducing Features (RRF) that reduces redundant features, i.e., most of the features that are not contam-

inated by anomalies. Then, based on the residual features we proposed a simple yet effective classifier, the

Focused Classification Algorithm (FCA). We validate the MRLR using manually analyzed real anomalies

as well as synthetic anomaly injection. The validation shows that RRF can accurately filter anomalous

flow features, and achieves a 10% improvement in accuracy. FCA whose complexity is O (n), works well

in real-time.

The rest of the paper is organized as follows. In Section 2 we provide some background analytical

information to justify the techniques adopted. In Section 3 details of the proposed model, i.e., MRLR

are given. Section 4 presents the RRF and FCA based on the MRLR, while in Section 5 we describe the

traffic traces and anomalies used in the experimental tests, and discuss the results thereof. Finally, in

Section 6 we draw some conclusions and discuss future works.
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Table 1 Features and the types of anomalies detected by them (H (·) denotes entropy)

Anomaly Description Flow features for detecting (F ′)

Alpha
Unusually high rate of point to point

byte transfer # of packets, # of bytes

DDoS
Distributed denial of service attack

against a single victim H(dest ip), flow counts, # of src ip, # of packages

Network scan
Scanning the network for a target

port H(src ip), H(dest port), flow counts, # of packages

Port scan Scanning a host for a vulnerable port H(src ip), H(src port), # of src port, # of packets

Flash crowd
Unusually large number of accesses

for some resource/service Flow counts, H(dest ip), H(dest port)

2 An MRLR model

2.1 Model definition

Let F = f1(t), f2(t), . . . , fn(t) be the observed feature sets (e.g., aggregated traffic time series for several

same protocol words). Fi(t) ∈ F represents the time series of feature-i. Considering the multi-resolution

of traffic, we retain Empirical Mode Decomposition (EMD) to give prominence to anomalies before

applying MRLR.

In brief, the EMD method deals with non-stationary and non-linear signal on purpose [14]. In contrast

to almost all of the previous methods, this new method is intuitive, direct, and adaptive, and is based on

the simple assumption that any signal consists of different simple intrinsic modes of oscillations. Each

intrinsic mode, linear or nonlinear, represents a simple oscillation, which is represented by an intrinsic

mode function defined as follows: (i) in the whole dataset, the number of extrema and the number of

zero-crossings must either be equal or differ at most by one, and (ii) at any point, the average value of

the envelope defined by the local maxima and the envelope defined by the local minima is zero.

Typically, for fi (t) (i = 1, 2, . . . , n) as input, we get fij (t) (i = 1, 2, . . . , n; j = 1, 2, . . . , p) instead

after a p-layer EMD. Formally, variable t is discretized to obtain matrix F (i, j, k) (i = 1, 2, . . . , n;

j = 1, 2, . . . , p; k = 1, 2, . . . ,M), i.e., traffic feature matrix (TFM), which expresses the k’s observed value

on scale- j about feature- i, if the length of the observed window is M . This is a multi-way data; an

effective way of analyzing multi-way data is to recast it into a simpler, one-way representation. We can

“unfold” the multi-way matrix into a single, large matrix by considering each scale as an independent

variable. This results in a new, merged matrix of size N×M (N = n× p), which contains the ensemble of

N = n× p scales.

The TFM is a very large matrix, i.e., the variables that are used to detect anomalies is high dimen-

sionalities. However, there are two ground truths. First, network anomalies are typically distributed in a

sparse way [2,3,15]. Anomalies tend to assemble locally except for network-wide uncontrolled attacks or

failures that fortunately occur infrequently. Accordingly, these affect sparse links or several local areas.

Second, each of the anomalies is essentially characterized by its lower-dimensional features, as presented

in Table 1. From the view of anomaly detection, we have a set of linear constraints on the TFM, i.e.,

A (F ) = Q, (1)

where A (·) is a linear operator, and Q is a N ×M matrix given by

Q =

{
0, if F (i, j) has no anomaly,

1, otherwise.
(2)

The operator expresses the information available from anomalies. Note that the sparse presence of

anomalies is implicit in (1) by means of the sparse Q; for instance, operator A can filter suspicious

variables or rows of the matrix by writing (1) as F ′ = Q · ∗F , where ·∗ denotes the element-wise product,

i.e., A = C · ∗B means A (i, j) = B (i, j)C (i, j).
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A sparse matrix is simply a matrix that has only a few non-zero elements. Often anomalies of interest

occur only a few elements of the matrix to increase, where the rest remain small. The notion of low rank

approximation is associated with these larger elements, because most of its information is carried in the

larger elements. Generally, a low rank is similar to sparsity, because the spectrum formed by the singular

value of a low rank matrix is sparse [16]. The central premise of normal anomaly detectors is that the

presence of anomalies should alter the structure of normal traffic, which is not in conflict with the idea

of MRLR, but is instead complementary since the premise is not always valid.

2.2 Consequences of the MRLR model

Given an N ×M matrix A and a positive integer k, we wish to find an N ×M matrix Ak of rank at most

k, so as to minimize the Frobenius norm of the matrix difference X = A−Ak, defined as

‖X‖F =

√∑N

i=1

∑M

j=1
A2

ij . (3)

Thus, the Frobenius norm of X measures the discrepancy between Ak and A, Our goal is to find a

matrix Ak that minimizes this discrepancy, while constraining Ak to have rank at most k. If r is the rank

of A, clearly Ar = A and the Frobenius norm of the discrepancy is zero in this case. When k is much

smaller than r, we refer to Ak as a low-rank approximation.

Singular value decomposition (SVD) can be used to solve the low-rank matrix approximation problem.

Let r be the rank of the N ×M matrix A. Then, there is an SVD of A of the form

A = UΣV T, (4)

where V T is the transpose of V , and U is an M ×M unitary matrix (i.e., UTU = UUT = I), and V is a

N ×M unitary matrix (i.e., V TV = V V T = I). The eigenvalues λ1, . . . , λr of AAT are the same as the

eigenvalues of ATA. For 1 � i � r, let σi =
√
λi, with λi � λi+1. Then the N ×M matrix Σ is composed

by setting Σii = σi for 1 � i � r, and zero otherwise.

To understand the use of the SVDs in matrix approximations, consider Ak which is the best rank-k

approximation of A, incurring an error (measured by the Frobenius norm of A−Ak) equal to σk+1. Thus,

the larger k is, the smaller is this error. To derive further insight into why the process of truncating the

smallest r−k singular values in Σ helps generate a rank-k approximation of with small error, we examine

the form of Ak:

Ak = UΣkV
T =

k∑
i=1

σi�ui�v
T
i , (5)

where �ui and �vi are the ith columns of U and V , respectively. Thus, since �ui�v
T
i is a rank-1 matrix, we

have just expressed Ak as the sum of k rank-1 matrices each weighted by a singular value. As i increases,

the contribution of the rank-1 matrix �ui�v
T
i is weighted by a sequence of shrinking singular values σi.

Based on (3) and (5), truncation of the SVD provides a natural solution to

min ‖A−Ak‖F , s.t. rank(Ak) � k. (6)

In terms of the fact that matrix A is exactly a sparse matrix, k � r, we obtain the low rank approximation

of A.

Table 1 illustrates the prevalent anomalies and different kinds of information that are present in each

type of traffic feature. Each anomaly can be detected by several features because it changes their relevant

behaviors. For example, Alpha tends to be detected by number of bytes or number of packets, while DDoS

by H(dest IP), number of flows, among others. To uncover as many anomalies as possible, the feature set

should have high dimensionality (e.g., the total number of feature dimensions in KDD CUP1999 datasets

is 41). Suppose vi represents the unitary absolute deviation of fi when anomalies occur. Then, the

proportion of each deviation vi is defined as

P (fi) =
vi∑n
i=1 vi

. (7)
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Figure 1 Cumulative distribution of deviation.

Figure 1 depicts the cumulative distribution figure for different P (fi), which shows deviated proportion

as a function of the sequence number of features. The common ground of all curves is that there are sev-

eral impulses, which dominate the deviations at corresponding features. Nevertheless, this phenomenon

validates the sparsity of the anomaly.

3 MRLR-based anomaly detection

This section presents an algorithm that dynamically selects “optimal” features for detection. We also

provide empirical evidence that the algorithm in our detector is effective for real traffic.

3.1 Recursive Reducing Features (RRF)

We designed a heuristic greedy algorithm to identify the real offenders in a set of features. Algorithm 1

shows the pseudo code for RRF which takes three parameters: F , the deviation function V (·) and

threshold. It outputs Af whose elements are symptomatic of the underlying anomalies. First, initialize

Nf = F , Af = ∅, where Nf is a candidate of the features. Then, for each element in Nf , if the difference

between V (Nf) and V (Nf |fi) exceeds the threshold, add fi to Ai, and at the same time delete it from

Nf . If Af = ∅, RRF deems the threshold to be on the high side, reduce it, and run RRF recursively.

If the ratio between count(F ) and count(Af ) is less than 10, which could mean that Af is not a sparse

matrix, we consider that this phenomenon violates the sparsity supported by MRLR, and runs recursively

until sparsity is satisfied.

3.2 Focused classification algorithm

Having delved into traffic anomalies, we found the ground truth that the fluctuation of each fi is most

often contributed by several classes of anomalies in one anomalous subset Ci. In another, each anomaly

emphasizes itself by causing several specific traffic features to fluctuate obviously. Thus, different traffic

features can always be explained by several anomalous subsets. When reviewing, one-by-one, the multi-

traffic features that simultaneously represent the anomaly we may find some anomalies that appear with

high frequency. Based on this, we propose a simple approach for classifying the anomalies, namely,

the FCA.

Algorithm 2 gives the pseudo code for the FCA, which takes that has a couple of parameters: the

subset of features {f1, f2, . . . , fl} selected by RRF and C last. The concrete steps are listed below:

Step 1: Map Fsub to anomaly sets C. and then, compute the intersection Cr among C.

Step 2: If there is at least one element in Cr, Cr is defined by the intersection between Cr and C last

that is the intersection Cr obtained in the last iteration, else go to step 3.
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Algorithm 1 Pseudo code for the RRF.

Input:

F : the full set of flow features.

Nlast: N that acquire by last recursion, ∅ initially. Every recursion makes Af +Nlast to be the full set of flow features.

threshold: deviation threshold.

V (•): the function computing the deviations of features caused by anomaly.

Output:

Af : the subset of flow features contained anomaly.

1: Nf ← F : {fi |fi ∈ F };
2: Af ← ∅;
3: for all fi ∈ Nf do

4: if
∣
∣V

(
Nf

)− V
(
Nf\fi

)∣
∣ > threshold then

5: Af = add
(
Af , fi

)
;

6: Nf = eliminate(Nf , fi);

7: else

8: continue;

9: end if

10: end for

11: Nlast = add(Nlast, Nf );

12: if Af = ∅ then
13: threshold = reduce(threshold);

14: Af = RRF (F,Nlast, threshold, V (•));
15: else

16: if element
(

Af ∪Nlast

)/

element
(

Af

)

< 10 then

17: threshold = augment(threshold);

18: F ← Af ;

19: Af = RRF (F,Nlast, threshold, V (•));
20: end if

21: end if

22: return Af ;

a b c d e f

C1 C2

(a)

a b c d e

C1 C2

(b)

a c d eb

C1 C2

(c)

Figure 2 Possible results of FCA. (a) Normal; (b) correct; (c) ambiguous.

Step 3: If there are no elements in Cr, then the element presented most frequently in C is returned.

Figure 2 depicts the possible outputs of FCA. Suppose a–f are known classes of the anomaly. C1 and

C2 are separately aroused by f1 and f2. Figure 2(a) represents Cr = C1 ∩ C2 = ∅, which denotes that

no anomaly occur. Figure 2(b) represents Cr = C1 ∩ C2 = {c}, which suggests that the correct anomaly

has been classified. Figure 2(c) represents Cr = C1 ∩ C2 = {b, c}, which means that we cannot identify

the correct one in b and c.

4 Evaluation

4.1 Datasets

The previous section presented a precise view on MRLR and its RRF. Next, we describe the experiments

used to validate it. Evaluating anomaly detectors is notoriously difficult for non-accurate data. In the

absence of a ground truth, we use synthetic anomalies and real traffic traces.
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Algorithm 2 Focused Classification Algorithm.

Input:

Fsub: the subset of features {f1, f2, . . . , fl} selected by RRF.

Clast: Cr which latest Output of the FCA, and C initially.

Output:

Cr : the real class that the anomaly affiliated.

Procedure FCA(Fsub, C
last)

1: Fsub ← C : {C1, C2, · · ·Cl};
2: Cr ← C1 ∩ C2 · · · ∩ Cl;

3: Cr = intersection
(
Cr, Clast

)
;

4: if |Cr | = 0 then

5: Cr = max support (C);

6: intersection
(
Cr, Clast

)
;

7: end if

8: return Cr ;

Procedure intersection(Cr , Clast)

9: if elements(Cr) > 1&&
∣
∣Clast

∣
∣ > 0 then

10: Cr = intersection
(

Cr , Clast
)

;

11: end if

Table 2 Datasets used in the experiments

Symbol Network Collection time Time scales (min) Anomalous density (%)

A Enterprise network 2010-08 1 < 1

B CERNET2a) 2010-04 1 < 19

C Abileneb) 2007-05 5 < 22

a) CERNET2. http://www.edu.cn/internet 2 1339/index.shtml.

b) The Abilene Observatory Data Collection. http://abilene.internet2.edu/observatory/data-collections.htm.

Table 3 Original variables

Symbol Description Symbol Description

f1 # of flows identified as a 5-tuple f7 # of dest ports emerged

f2 # of packets f8 Entropy of src ip

f3 # of bytes f9 Entropy of dest ip

f4 # of src IPs emerged f10 Entropy of src port

f5 # of dest IPs emerged f11 Entropy of dest port

f6 # of src ports emerged

The datasets used are show in Table 2. Datasets -A was collected from traffic in a single large-scale

enterprise, since the network of this enterprise was a virtual private network, we deemed these traffic traces

to be approximately anomaly-free. Having inspected synthetic anomalies in it, we signed it. Datasets -B

and -C come from the CERNET2 and Abilence networks, respectively, both of which are contaminated

by anomalies. We manually marked the anomalies in B and C, and then exposed anomalies utilizing

variables as shown in Table 3. Note that the original form of C was a traffic matrix, so we re-aggregated

it to variables as Table 3 shows.

For each variable fi (t), after m-layer EMD, we obtained F (i, j) (i = 1, 2, . . . , N ; j = 1, 2, . . . ,M),

where the columns represent variables or features, and the rows represent observations. In general,

there are n original variables, with the number of real columns in F (i, j) is N = nm. For instance,

given the 11 features in Table 3, and assuming m = 10, the total number of variables is 110 which is a

high-dimensional set.

In the next experiment, we used typical anomaly detection algorithms, SVM, Bayes and PCA, for

comparison. The RRF algorithm based on MRLR, was deployed between traffic records, with all detection

algorithms depicted in Figure 3. Low-dimensional records were first extracted from the original traffic

records by RRF. General algorithms could then utilize this redundancy-free data for anomaly detection.
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Figure 5 Variable reduction of RRF. (a) DDoS; (b) Network scan.

4.2 Experimental process

We firstly give the following notions before experiment:

Definition 1 (Reduction Ratio). the ratio (n− l) /n, where n is the number of original variables and l

is the number of variables selected by RRF.

Definition 2 (Anomalous Density). the ratio k/m, where m is the total number of links in the network,

k is the number of suspicious links.

Furthermore, we provide empirical evidence about the assumptions with respect to the sparse distri-

bution of anomalies in our detector. Therefore we review the anomalous density of datasets -B and -C

as shown in Figure 4. Both have a lower anomalous density than 30% which means that the distribution

is also sparse in real traffic traces.

To gain a clearer understanding of the nature of the suspicious variables detected using RRF. We

manually inspected each of the 350 anomalies. And then we extract heavy-hitter variables. Figure 5

shows the real original variables and the heavy-hitter ones exposed by RRF. Find that the reduction

ratio is lower than 10% which is a typically perfect result.

Although Figure 5 represents the pure effect of RRF on reducing variables, we do not know whether

the selected variables are actual heavy-hitters. Using the above injection, we are able to plot the receiver

operating characteristic (ROC) curves, which show detection rates as a function of false positive rates.

The ROC plot in Figure 6 shows the relative performance of RRF for two common injected anomalies.

The curves show that the detection rate is greater than 90% with a false positive rate of 10%.
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Figure 6 RRF ROC curves for two common anomalies.
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The premise of MRLR is that the observed network has a low anomalous density r which is the daily

truth. For maturity, we also observed the ability of MRLR with different r. Figure 7 shows six different

behaviors in the relative performance of RRF when increasing the anomalous density in the network from

10% to 60% at intervals of 10%. The performance of RRF decreases with an increase in r. when r is less

than 30%, RRF functions in a finer state, yet evidently deteriorates thereafter.

Figure 8 shows the proportion of three outcomes of FCA. There is little evidence of ambiguous phenom-

ena in the results, the dataset used has a low anomalous density and almost no intercross between anoma-

lies.

In Figure 9, we plot the ROC curves for the MRLR-based anomaly classifiers, SVM, Bayes, as well

as PCA+Entropy. Whenever the SVM and Bayes classifiers employ the MRLR-based algorithm RRF

to filter the meta-data, they both show greater improvement. Although the FCA classifier has slightly

lower performance compared to SVM and Bayes, it is greater than that of PCA+Entropy, and has low

complexity, about O (n), where n denotes the dimensions of the meta-data.

Finally, Table 4 compares the time cost for FCA, SVM and Bayes, before and after applying MRLR as

well as for PCA+Entropy. The execution environment for the emulator is an Intel(R) Pentium(R) Dual

E2140 1.6 GHz processor and 1 GB memory. We can see that MRLR+FCA requires less time than SVM,

Bayes and PCA+Entropy. In addition, the cost of SVM and Bayes decreases by approximately 30% and

25% respectively, with the application of MRLR.
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Figure 9 ROC curves comparing MRLR-based classifiers with SVM, and Bayes for different datasets. (a) Using dataset B;

(b) using dataset C.

Table 4 Comparison of execution times for FCA, SVM, Bayes and PCA + Entropy

Algorithm Dataset B Dataset C

Bayes 95 93

SVM 102 98

MRLR+Bayes 69 72

MRLR+SVM 72 68

MRLR+FCA 29 43

PCA+entropy 75 97

5 Conclusion and future research

This paper proposed an inductive dimensionality theory (i.e., MRLR) based on the sparse distribution

of anomalies. Under the supervision of MRLR, we designed an algorithm (RRF) that can dynamically

reduce features. We validated MRLR using manually analyzed real traffic anomalies as well as synthetic

injected anomalies. Our validation shows that MRLR can accurately filter anomalous flow features, and

reduce the dimensions thereof to less than 10%. Our future work will focus on extending MRLR to

classify various anomalies.
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