
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

January 2014, Vol. 57 012204:1–012204:14

doi: 10.1007/s11432-013-5043-y

c© Science China Press and Springer-Verlag Berlin Heidelberg 2014 info.scichina.com link.springer.com

Observer-based adaptive fuzzy backstepping
control of uncertain nonlinear

pure-feedback systems

TONG ShaoCheng∗ & LI YongMing

Department of Basic Mathematics, Liaoning University of Technology,
Liaoning 121001, China

Received July 20, 2013; accepted October 5, 2013

Abstract In this paper, a new fuzzy adaptive control approach is developed for a class of SISO uncertain

pure-feedback nonlinear systems with immeasurable states. Fuzzy logic systems are utilized to approximate

the unknown nonlinear functions; and the filtered signals are introduced to circumvent algebraic loop systems

encountered in the implementation of the controller, and a fuzzy state adaptive observer is designed to estimate

the immeasurable states. By combining the adaptive backstepping technique, an adaptive fuzzy output feedback

control scheme is developed. It is proven that the proposed control approach can guarantee that all the signals of

the resulting closed-loop system are semi-globally uniformly ultimately bounded (SGUUB), and the observer and

tracking errors converge to a small neighborhood of the origin by appropriate choice of the design parameters.

Simulation studies are included to illustrate the effectiveness of the proposed approach.
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1 Introduction

In recent years, adaptive backstepping control for uncertain nonlinear strict-feedback systems has been

widely studied using fuzzy logic systems (FLSs) and neural networks (NNs), and many significant devel-

opments have been achieved (see for example, [1–13] and the references therein). The adaptive fuzzy and

neural backstepping control approaches in [1–6] are developed for single-input and single-output (SISO)

uncertain nonlinear strict-feedback systems, and those in [7–9] are for multiple-input and multiple-output

(MIMO) uncertain nonlinear strict-feedback systems, while [10–13] are for the uncertain SISO nonlinear

strict-feedback systems with immeasurable states. In general, these adaptive fuzzy or NN backstepping

controllers can provide a systematic methodology of solving tracking or regulation control problems,

∗Corresponding author (email: jztsc@sohu.com)



Tong S C, et al. Sci China Inf Sci January 2014 Vol. 57 012204:2

where FLSs or NNs are used to approximate unknown nonlinear functions and typically adaptive fuzzy

or NN controllers are constructed recursively in the framework of backstepping design technique. The

main features of these adaptive approaches include (i) they can deal with those nonlinear systems without

satisfying the matching conditions, and (ii) they do not require that the unknown nonlinear functions be

linearly parameterized.

Although many important results have been achieved for the adaptive fuzzy and NN backstepping

control for uncertain nonlinear strict-feedback systems, only a few results in the literatures can be available

for solving the problem of adaptive control of uncertain nonlinear pure-feedback systems. As shown in

[14–16], the pure-feedback system represents a more general class of triangular systems which have no

affine appearance of the variables to be used as virtual controls. In practice, there are many systems

falling into this category, such as mechanical systems, aircraft flight control systems, biochemical process,

Duffing oscillator, etc. It is quite restrictive and difficult to find the explicit virtual controls to stabilize the

pure-feedback system by using the existing backstepping technique. To solve the above control problem,

adaptive NN control schemes in [15,16] are proposed for a class of pure-feedback systems, where the last

equation of the controlled system is affine nonlinear to avoid the algebraic loop problem. Direct adaptive

NN or fuzzy control approaches in [17–20] are developed for some classes of uncertain pure-feedback

systems without or with time delays, where an implicit theorem is exploited to assert the existence

of continuous desired feedback controllers, and NNs or FLSs are utilized to approximate these desired

feedback controllers. However, the bounds and the signs of the derivatives of the nonlinear functions

for all the variables are assumed to be known. Therefore, a priori knowledge of the plant dynamics was

required to determine these signs and bounds, which are difficult to acquire in practical applications as

indicated by [21]. More recently, an adaptive fuzzy backstepping control approach in [21] are developed

for a class of uncertain nonlinear pure-feedback systems by using FLSs. The proposed approach not

only relaxed the restrictive conditions in [17–20] that the bounds and the signs of the derivatives of the

nonlinear functions for all the variables are assumed to be known, but also avoided the algebraic loop

problem in [15,16] by introducing the filtered signals into the backstepping control design.

Despite these efforts in adaptive fuzzy and NN backstepping control, the above mentioned fuzzy or

NN adaptive control methods are all based on the assumption that the states of the controlled systems

are available for measurement. It is well known that state variables are often immeasurable for many

practical nonlinear systems. In such a case, observer-based control schemes should be required. It is

worth mentioning that in the case of linear systems, output-feedback control problems can be solved by

combining state-feedback controllers with a state observer. However, the separation principle doses not

hold for nonlinear systems; thus the observer-based adaptive output feedback backstepping control design

and stability analysis are more complex and difficult than the counterpart of state feedback. To our best

knowledge, to date, few attempts have been made on adaptive fuzzy or neural network backstepping

controllers for uncertain SISO nonlinear pure-feedback systems with immeasurable states, which are

important and more practical. This has motivated us to make this study.

Starting with the aforementioned observations, in this paper, an adaptive fuzzy backstepping output

feedback control approach is proposed for a class of SISO nonlinear pure-feedback systems with immea-

surable states. FLSs are first used to approximate the unknown nonlinear functions, and then a fuzzy

state observer is designed for estimating the immeasurable states. Based on the backstepping design

technique, an observer-based adaptive fuzzy output feedback approach is developed. It is proven that

the proposed control approach can guarantee that all the signals of the resulting closed-loop system are

SGUUB, and the observer and tracking errors converge to a small neighborhood of the origin by ap-

propriate choice of the design parameters. The main advantages of the proposed control approach are

as follows: (i) by designing a fuzzy state observer, the proposed adaptive control method removes the

restrictive assumption in [15–21] that all the states of the system are available for measurement, (ii) by

incorporating the filtered signals into the controllers designs, the proposed adaptive control method can

avoid the algebraic loop problem in [15,16], and relax some restrictive conditions in [17–20] that the

bounds and the signs of the derivatives of the nonlinear functions for all the variables are assumed to

be known.
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2 Problem formulations and preliminaries

2.1 System descriptions control problems

Consider the following uncertain SISO pure-feedback nonlinear system:

⎧
⎪⎪⎨

⎪⎪⎩

ẋi = fi(xi, xi+1) + xi+1, i = 1, 2, . . . , n− 1,

ẋn = fn(xn, u) + u,

y = x1,

(1)

where xi = (x1, x2, . . . , xi)
T, i = 1, 2, . . . , n are the state vectors of the system, u ∈ R and y ∈ R are

system input and output, respectively; fi(·), i = 1, 2, . . . , n are smooth unknown nonlinear functions. In

this paper, it is assumed that only output y is available for measurement.

Let f ′
i(xi, xi+1) = fi(xi, xi+1) + xi+1, i = 1, 2, . . . , n − 1 and f ′

n(xn, u) = fn(xn, u) + u. Then the

nonlinear pure-feedback system (1) can be transformed into the following pure-feedback nonlinear systems

considered in [17,20]: ⎧
⎪⎪⎨

⎪⎪⎩

ẋi = f ′
i(xi, xi+1), i = 1, 2, . . . , n− 1,

ẋn = f ′
i(xn, u),

y = x1.

(2)

Remark 1. It should be mentioned that if the states are available for measurement, then system (1) is

the one considered by [21]. If the states are available for measurement and ẋn = fn(xn) + γ(xn)u, with

γ(xn) being a known function, then system (1) is the model studied by [15,16]. If the states are available

for measurement and the bounds and signs of ∂f ′
i(xi, xi+1)/∂xi+1 and ∂f ′

i(xi, u)/∂u are known, then

system (2) becomes the models in [17,20]. In this paper, the states are not required to be available for

feedback; thus the control design and stability analysis are more difficult than in [15–20].

Assumption 1. There exists a set of known constants mi, i = 1, 2, . . . , n, such that ∀X1, X2 ∈ R
i

the following inequality holds: |fi(X1)− fi(X2)| � mi ‖X1 −X2‖ , where ‖X‖ denotes the 2-norm of a

vector X .

Our control objective is to design an adaptive fuzzy output feedback control scheme by using FLSs so

that all the signals involved in the resulting closed-loop system are SGUUB, and the state observer and

tracking errors are as small as desired.

2.2 Fuzzy logic system

A fuzzy logic system (FLS) consists of four parts: the knowledge base, the fuzzifier, the fuzzy inference

engine, and the defuzzifier. The knowledge base is composed of a collection of fuzzy If-then rules of the

following form:

Rl: If x1 is F l
1 and x2 is F l

2 and . . . and xn is F l
n, then y is Gl, l = 1, 2, . . . , N , where x = (x1, . . . , xn)

T

and y are the FLS input and output, respectively. Fuzzy sets F l
i and Gl are associated with the fuzzy

membership functions μF l
i
(xi) and μGl(y), respectively. N is the rule number of IF-THEN.

Through singleton fuzzifier, center average defuzzification and product inference [22], the FLS can be

expressed as

y(x) =

∑N
l=1 ȳl

∏n
i=1 μF l

i
(xi)

∑N
l=1 [

∏n
i=1 μF l

i
(xi)]

, (3)

where ȳl = maxy∈R μGl(y).

Define the fuzzy basis functions as

ϕl =

∏n
i=1 μF l

i
(xi)

∑N
l=1 (

∏n
i=1 μF l

i
(xi))

. (4)
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Denote θ T = [ȳ1, ȳ2, . . . , ȳN ] = [θ1, θ2, . . . , θN ] and ϕ(x) = [ϕ1(x), . . . , ϕN (x)] T. Then fuzzy logic

system (3) can be rewritten as

y(x) = θTϕ(x). (5)

Lemma 1 ([22]). Let f(x) be a continuous function defined on a compact set Ω. Then for any constant

ε > 0, there exists a fuzzy logic system (5) such that supx∈Ω

∣
∣f(x)− θTϕ(x)

∣
∣ � ε.

3 State observer design

Note that the states x2, x3, . . . , xn−1 and xn in system (1) are not available for feedback; therefore, a

state observer should be established to estimate the unmeasured states, and then fuzzy adaptive output

feedback control scheme is investigated based on the designed state observer.

To begin with, rewrite (1) as

⎧
⎪⎪⎨

⎪⎪⎩

ẋi = fi(x̂i, x̂i+1,f ) + xi+1 +Δfi, i = 1, 2, . . . , n− 1,

ẋn = fn(x̂n, uf ) + u+Δfn,

y = x1,

(6)

where Δfi = fi(xi, xi+1) − fi(x̂i, x̂i+1,f ), i = 1, 2, . . . , n − 1; Δfn = fn(xn, u) − fn(x̂n, uf); x̂i is the

estimate of the state vectors xi, which can be obtained by the state observer designed later. x̂i,f and uf

are the filtered signals defined by [21,23]

x̂i,f = HL(s)x̂i, uf = HL(s)u, (7)

where HL(s) is a Butterworth low-pass filter (LPF), the corresponding filter parameters of Butterworth

filters with the cutoff frequency ωC = 1 rad/s for different values of can be obtained in [21].

Remark 2. As stated by [21,23], the filtered signals used in (7) are to circumvent the algebraic loop

problem, and the replacements x̂i ≈ x̂i,f and u ≈ uf are reasonable because most actuators have low-pass

properties.

Denote x̂n+1,f = uf , and rewrite (6) in the state space form

ẋn = Axn +Ky +

n−1∑

i=1

Bi[fi(x̂i, x̂i+1,f ) + Δfi] +Bn[fn(x̂n, uf ) + u+Δfn]

= Axn +Ky +

n∑

i=1

Bi[fi(x̂i, x̂i+1,f ) + Δfi] +Bnu, (8)

where

A =

⎡

⎢
⎢
⎣

−k1
... I

−kn 0 . . . 0

⎤

⎥
⎥
⎦ , K =

⎡

⎢
⎢
⎣

k1
...

kn

⎤

⎥
⎥
⎦ , Bn =

⎡

⎢
⎢
⎣

0
...

1

⎤

⎥
⎥
⎦ , Bi =

[

0 · · · 1 · · · 0
]T

.

.

Choose the vector K to make matrix A a strict Hurwitz matrix. Thus, given a matrix Q = QT > 0,

there exists a matrix P = PT > 0 satisfying

ATP + PA = −2Q. (9)

By Lemma 1, the fuzzy logic system is a universal approximator, i.e., it can approximate any smooth func-

tion on a compact space; thus it can be assumed that the nonlinear functions fi(·) in (8) can be approx-

imated by the following fuzzy logic systems: f̂i(x̂i, x̂i+1,f |θi ) = θTi ϕi(x̂i, x̂i+1,f ), 1 � i � n. The optimal

parameter vector θ∗i is defined as θ∗i = argminθi∈Ωi [sup(x̂i,x̂i+1,f )∈Ui
|f̂i(x̂i, x̂i+1,f |θi )− fi(x̂i, x̂i+1,f )|],
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1 � i � n where Ωi and Ui are bounded compact sets for θi and (x̂i, x̂i+1,f ), respectively. Also the fuzzy

minimum approximation error εi and fuzzy approximation error δi are defined by

εi = fi(x̂i, x̂i+1,f )− f̂i(x̂i, x̂i+1,f |θ∗i ), δi = fi(x̂i, x̂i+1,f )− f̂i(x̂i, x̂i+1,f |θi ). (10)

Assumption 2. There exist unknown constants ε∗i , δ
∗
i and τi,0 (τ1,0 = 0) such that |εi| � ε∗i , |δi| � δ∗i ,

and |x̂i+1 − x̂i+1,f | � τi,0, i = 1, 2, . . . , n. Denote wi = εi − δi, i = 2, . . . , n, by Assumption 2, there is an

unknown constant w∗
i > 0 such that |wi| � w∗

i = ε∗i + δ∗i .

Remark 3. By Lemma 1, a fuzzy logic system has the approximation capability for any continuous

smooth function. Thus, it is generally assumed that the fuzzy minimum approximation errors εi and

approximation errors δi are bounded by their known supper bounds ε∗i and δ∗i , for example, [1–7,12,13]

and the references therein. However, in practice, it is difficult to determine the upper bounds ε∗i and δ∗i .
In this paper, an approach to estimating them online via adaptation laws is proposed. Also, according to

[21,23], the filtered signals x̂i,f satisfy x̂i,f = HL(s)x̂i ≈ x̂i, i = 1, 2, . . . , n+ 1; therefore, it is reasonable

to assume that |xi+1 − xi+1,f | � τi,0, with τi,0 being a known constant.

Design a fuzzy state observer as
⎧
⎪⎪⎨

⎪⎪⎩

˙̂xi = x̂i+1 + ki(y − x̂1) + f̂i(x̂i, x̂i+1,f |θi ), i = 1, 2, . . . , n− 1,

˙̂xn = kn(y − x̂1) + f̂n(x̂n, x̂n+1,f |θn ) + u,

ŷ = x̂1.

(11)

Rewrite (11) as
{

˙̂xn = Ax̂n +Ky +
∑n

i=1 Bif̂i(x̂i, x̂i+1,f |θi ) +Bnu,

ŷ = Cx̂n,
(12)

where C = [ 1 · · · 0 · · · 0 ].

Let e = xn − x̂n be observer error. Then from (8) and (12), one has

ė = Ae+

n∑

i=1

Bi[(fi(x̂i, x̂i+1,f )− f̂i(x̂i, x̂i+1,f |θi ))+Δfi] = Ae+

n∑

i=1

Bi[δi+Δfi] = Ae+ δ+ΔF, (13)

where δ = [δ1, . . . , δn]
T and ΔF = [Δf1, . . . ,Δfn]

T.

Consider the Lyapunov function candidate V0 as

V0 =
1

2
eTPe. (14)

The time derivation of V0 is

V̇0 =
1

2
ėTPe+

1

2
eTP ė. (15)

Using (9) and substituting (13) into (15) results in

V̇0 � −λmin(Q)‖e‖2 + eTP (δ +ΔF ), (16)

where λmin(Q) is the largest eigenvalue of the matrix Q.

By the Young’s inequality 2ab � a2 + b2, and by Assumptions 1 and 2, one can obtain the following

inequalities:

eTPδ � 1

2
‖e‖2 + 1

2
‖P‖2‖δ‖2 � 1

2
‖e‖2 + 1

2
‖P‖2‖δ∗‖2, (17)

∣
∣eTPΔF

∣
∣ � 1

2
‖e‖2 + 1

2
‖P‖2‖ΔF‖2 � 1

2
‖e‖2 + 1

2
‖P‖2(|Δf1|2 + · · ·+ |Δfn|2)

� 1

2
‖e‖2 + ‖P‖2

n∑

i=1

m2
i ‖e‖2 + ‖P‖2

n∑

i=1

m2
i τ

2
i,0, (18)
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where δ∗ = [δ∗1 , . . . , δ
∗
n]

T.

Substituting (17) and (18) into (16) yields

V̇0 � −r‖e‖2 +M, (19)

where r = λmin(Q)− 1− ‖P‖2 ∑n
i=1 m

2
i and M = 1

2‖P‖2‖δ∗‖2 + ‖P‖2 ∑n
i=1 m

2
i τ

2
i,0.

Remark 4. By the designed state observer (11) can guarantee the convergences of the observer errors if

we choose r > 0. Thus the designed state observer of this paper is reasonable.

4 Fuzzy adaptive output feedback control design and stability analysis

In this section, a fuzzy adaptive output feedback controller will be developed by using the above fuzzy

state observer in the framework of the backstepping technique. The stability of the closed-loop system

will be given below.

The n-steps fuzzy adaptive output feedback backstepping design is based on the change of coordinates:

χ1 = y − yr, χi = x̂i − αi−1, i = 2, . . . , n, (20)

where αi−1 is an intermediate control, and u is designated in the last step.

Step 1: Expressing x2 in terms of its estimate as x2 = x̂2 + e2, we obtain

χ̇1 = ẋ1 − ẏr = x2 + f1(x1, x2)− ẏr = x̂2 + f1(x̂1, x̂2,f )− ẏr + e2 +Δf1

= x̂2 + θT1 ϕ1(x̂1, x̂2,f )− ẏr + e2 + θ̃T1 ϕ1(x̂1, x̂2,f ) + ε1 +Δf1, (21)

where θ̃1 = θ∗1 − θ1 is the parameter error vector.

Taking x̂2 as a virtual control, from (20) and (21), one has

χ̇1 = χ2 + α1 + θT1 ϕ1(x̂1, x̂2,f )− ẏr + e2 + θ̃T1 ϕ1(x̂1, x̂2,f ) + ε1 +Δf1. (22)

Consider the following Lyapunov function candidate:

V1 = V0 +
1

2
χ2
1 +

1

2γ1
θ̃T1 θ̃1 +

1

2γ̄1
ε̃21, (23)

where γ1 > 0 and γ̄1 > 0 are design constants. ε̂1 is the estimate of ε∗1, and ε̃1 = ε∗1 − ε̂1.

The time derivative of V1 along with (19) and (22) is

V̇1 = V̇0 + χ1χ̇1 +
1

γ1
θ̃T1

˙̃
θ1 +

1

γ̄1
ε̃1 ˙̃ε1

= V̇0 + χ1[χ2 + α1 + θT1 ϕ1(x̂1, x̂2,f )− ẏr + e2 + θ̃T1 ϕ1(x̂1, x̂2,f ) + ε1 +Δf1] +
1

γ1
θ̃T1

˙̃
θ1 +

1

γ̄1
ε̃1 ˙̃ε1

� −r‖e‖2 + χ1[χ2 + α1 + θT1 ϕ1(x̂1, x̂2,f )− ẏr] + |χ1Δf1|+ |χ1| ε∗1
+ e2χ1 + θ̃T1 ϕ1(x̂1, x̂2,f )χ1 +

1

γ1
θ̃T1

˙̃
θ1 +

1

γ̄1
ε̃1 ˙̃ε1 +M. (24)

By Young’s inequality 2ab � a2 + b2 and Assumption 1, one has

e2χ1 � 1

2
|e2|2 + 1

2
χ1

2 � 1

2
‖e‖2 + 1

2
χ1

2, (25)

|χ1Δf1| � 1

2
χ2
1 +

1

2
|Δf1|2 � 1

2
χ2
1 +m2

1‖e‖2 +m2
2τ

2
2,0. (26)

Substituting (25) and (26) into (24) yields

V̇1 � −(r − 1

2
−m2

1)‖e‖2 + χ1[χ2 + χ1 + α1 − ẏr + θT1 ϕ1(x̂1, x̂2,f )]

+ |χ1| ε∗1 +
1

γ1
θ̃T1 (γ1ϕ1(x̂1, x̂2,f )χ1 − θ̇1) +M +m2

2τ
2
2,0. (27)

For the convenience of the subsequent derivations, we cite the following Lemma 2.
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Lemma 2 ([24]). For any κ > 0, |x| − x tanh(x/κ) � 0.2785κ = κ′ is satisfied.

By using Lemma 2, Eq. (27) can be rewritten as

V̇1 � −(r − 1

2
−m2

1)‖e‖2 + χ1[χ2 + χ1 + α1 − ẏr + θT1 ϕ1(x̂1, x̂2,f )]

+ |χ1| ε∗1 − χ1ε
∗
1 tanh(

χ1/κ1
) + χ1ε

∗
1 tanh(

χ1/κ1
)

+
1

γ1
θ̃T1 (γ1ϕ1(x̂1, x̂2,f )χ1 − θ̇1)

2 +M +m2
2τ

2
2,0 +

1

γ̄1
ε̃1 ˙̃ε1

� −(r − 1

2
−m2

1)‖e‖2 + χ1[χ2 + χ1 + α1 − ẏr + θT1 ϕ1(x̂1, x̂2,f ) + ε̂1 tanh(χ1/κ1
)] + ε∗1κ

′

+
1

γ1
θ̃T1 (γ1ϕ1(x̂1, x̂2,f )χ1 − θ̇1) +

1

γ̄1
ε̃1(γ̄1χ1 tanh(χ1/κ1

)− ˙̂ε1) +M +m2
2τ

2
2,0. (28)

Since variables χ1, x1 and x̂2,f are available, the intermediate control function α1, and the adaptation

laws for θ1 and ε̂1 are chosen as

α1 = −c1χ1 − χ1 − θT1 ϕ1(x̂1, x̂2,f )− ε̂1 tanh(χ1/κ1
) + ẏr, (29)

θ̇1 = γ1ϕ1(x̂1, x̂2,f )χ1 − σ1θ1, (30)

˙̂ε1 = γ̄1χ1 tanh(χ1/κ1
)− σ̄1ε̂1, (31)

where c1 > 0, κ1 > 0, σ1 > 0 and σ̄1 > 0 are design parameters.

Substituting (29)–(31) into (28) and applying Lemma 2, one has

V̇1 � −r1‖e‖2 − c1χ
2
1 + χ1χ2 +

σ1

γ1
θ̃T1 θ1 +

σ̄1

γ̄1
ε̃1ε̂1 +M1, (32)

where r1 = r − 1/2−m2
1 and M1 = ε∗1κ

′
1 +M +m2

2τ
2
2,0.

Step 2: Differentiating (20) yields

χ̇2 = ˙̂x2 − α̇1 = x̂3 + k2e1 + θT2 ϕ2(x̂2, x̂3,f ) + θ̃T2 ϕ2(x̂2, x̂3,f ) + w2

− ∂α1

∂x̂1

˙̂x1 − ∂α1

∂ε̂1
˙̂ε1 − ∂α1

∂θ1
θ̇1 − ∂α1

∂yr
ẏr − ∂α1

∂ẏr
ÿr − ∂α1

∂y
ẏ

= x̂3 + k2e1 + θT2 ϕ2(x̂2, x̂3,f ) + θ̃T2 ϕ2(x̂2, x̂3,f ) + w2

− ∂α1

∂x̂1
[x̂2 + θT1 ϕ1(x̂1, x̂2,f ) + k1e1]− ∂α1

∂ε̂1
˙̂ε1 − ∂α1

∂θ1
θ̇1 − ∂α1

∂yr
ẏr

− ∂α1

∂ẏr
ÿr − ∂α1

∂y
[x̂2 + θT1 ϕ1(x̂1, x̂2,f ) + e2 + δ1 +Δf1]

= x̂3 +H2 − ∂α1

∂y
e2 − ∂α1

∂y
(Δf1 + δ1) + θ̃T2 ϕ2(x̂2, x̂3,f ) + w2, (33)

where H2 = θT2 ϕ2(x̂2, x̂3,f )− ∂α1

∂x̂1
[x̂2 + θT1 ϕ1(x1, x̂2,f )− k1e1]− ∂α1

∂ε̂1
˙̂ε1 − ∂α1

∂θ1
θ̇1 − ∂α1

∂yr
ẏr − ∂α1

∂ẏr
ÿr + k2e1 −

∂α1

∂y [x̂2+θT1 ϕ1(x1, x̂2,f )]. Consider the following Lyapunov function candidate: V2 = V1+
1
2χ

2
2+

1
2γ2

θ̃T2 θ̃2+
1

2γ̄2
w̃2

2 , where γ2 > 0 and γ̄2 > 0 are design constants; θ̃2 = θ∗2 − θ2; ŵi is the estimate of w∗
i , and

w̃i = w∗
i − ŵi, (i = 2, . . . , n).

The time derivative of V2 along with (33) is

V̇2 = V̇1 + χ2χ̇2 +
1

γ2
θ̃T2

˙̃
θ2 +

1

γ̄2
w̃2

˙̃w2

� −r1‖e‖2 − c1χ
2
1 + χ1χ2 +

σ1

γ1
θ̃T1 θ1 +

σ̄1

γ̄1
ε̃1ε̂1 + M1

+χ2

[

x̂3 +H2 − ∂α1

∂y
e2 − ∂α1

∂y
(δ1 +Δf1) + ŵ2 tanh(χ2/κ2

)

]

+ |χ2|w∗
2 − w∗

2χ2 tanh(χ2/κ2
)

+
1

γ2
θ̃T2 (γ2χ2ϕ2(x̂2, x̂3,f )− θ̇2) +

1

γ̄2
w̃2

(
γ̄2χ2 tanh(χ2/κ2

)− ˙̂w2

)
. (34)
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By using the Young’s inequality, one has

−χ2
∂α1

∂y
e2 − χ2

∂α1

∂y
(δ1 +Δf1) � 3

2
(∂α1/∂y)

2χ2
2 + ‖e‖2 + 1

2
δ∗21 +

1

2
|Δf1|2

� 3

2
(∂α1/∂y)

2χ2
2 +

1

2
δ∗21 + (m2

1 + 1)‖e‖2 +m2
2τ

2
2,0. (35)

By using Lemma 2 and substituting (35) into (34) yields

V̇2 = V̇1 + χ2χ̇2 +
1

γ2
θ̃T2

˙̃
θ2

� − r2‖e‖2 − c1χ
2
1 + χ1χ2 +

σ1

γ1
θ̃T1 θ1 +

σ̄1

γ̄1
ε̃1ε̂1 +M2 + χ2[x̂3 +H2 +

3

2
(
∂α1

∂y
)2χ2 + ŵ2 tanh(χ2/κ2

)]

+
1

γ2
θ̃T2 (γ2χ2ϕ2(x̂2, x̂3,f )− θ̇2) +

1

γ̄2
w̃2(γ̄2χ2 tanh(χ2/κ2

)− ˙̂w2), (36)

where r2 = r1 − 1−m2
1 and M2 = M1 +

1
2δ

∗2
1 +m2

2τ
2
2,0 + w∗

2κ
′
2.

Take x̂3 as a virtual control, and choose intermediate control function α2, the adaptation laws for θ2
and ŵ2 as

α2 = −χ1 − c2χ2 − 3

2
(∂α1/∂y)

2χ2 −H2 − ŵ2 tanh(χ2/κ2
), (37)

θ̇2 = γ2χ2ϕ2(x̂2, x̂3,f )− σ2θ2, (38)

˙̂w2 = γ̄2χ2 tanh(χ2/κ2
)− σ̄2ŵ2, (39)

where σ2 > 0 and σ̄2 > 0 are design parameters.

From (20), (36)–(39), (36) can be rewritten as

V̇2 � −r2‖e‖2 +M2 −
2∑

k=1

ckχ
2
k + χ2χ3 +

2∑

k=1

σi

γi
θ̃Tk θk +

σ̄1

γ̄1
ε̃1ε̂1 +

σ̄2

γ̄2
w̃2ŵ2. (40)

Step i (3 � i � n− 1): The similar procedures to step 2 are employed recursively at step i. The time

derivative of χi is

χ̇i = ˙̂xi − α̇i−1

= x̂i+1 + kie1 + θTi ϕi(x̂i, x̂i+1,f ) + θ̃Ti ϕi(x̂i, x̂i+1,f ) + wi − ∂αi−1

∂y
ẏ −

i−1∑

k=1

∂αi−1

∂x̂k

˙̂xk

−∂αi−1

∂ε̂1
˙̂ε1 −

i−1∑

k=2

∂αi−1

∂ŵk

˙̂wk −
i−1∑

k=1

∂αi−1

∂θk
θ̇k −

i∑

k=1

∂αi−1

∂y
(k−1)
r

y(k)r

= x̂i+1 + kie1 + θTi ϕi(x̂i, x̂i+1,f ) + θ̃Ti ϕi(x̂i, x̂i+1,f ) + wi −
i−1∑

k=1

∂αi−1

∂x̂k
[x̂k+1 + θTk ϕi(x̂k, x̂k+1,f )]

−∂αi−1

∂ε̂1
˙̂ε1 −

i−1∑

k=2

∂αi−1

∂ŵk

˙̂wk −
i−1∑

j=1

kj
∂αi−1

∂x̂j
e1 −

i−1∑

k=1

∂αi−1

∂θk
θ̇k −

i∑

k=1

∂αi−1

∂y
(k−1)
r

y(k)r

−∂αi−1

∂y
[x̂2 + θT1 ϕ1(x̂1, x̂2,f ) + e2 + δ1 +Δf1]

= x̂i+1 +Hi + θ̃Ti ϕi(x̂i, x̂i+1,f ) + wi − ∂αi−1

∂y
e2 − ∂αi−1

∂y
(δ1 +Δf1), (41)

where Hi = kie1 + θTi ϕi(x̂i, x̂i+1,f )−
∑i−1

k=1
∂αi−1

∂x̂k
[x̂k+1 + θTk ϕk(x̂k, x̂k+1,f )]− ∂αi−1

∂ε̂1
˙̂ε1 −

∑i−1
k=2

∂αi−1

∂ŵk

˙̂wk −
∑i−1

j=1 kj
∂αi−1

∂x̂j
e1 −

∑i−1
k=1

∂αi−1

∂θk
θ̇k −

∑i
k=1

∂αi−1

∂y
(k−1)
r

y
(k)
r − ∂αi−1

∂y [x̂2 + θT1 ϕ1(x̂1, x̂2,f )]. Consider the following

Lyapunov function candidate:

Vi = Vi−1 +
1

2
χ2
i +

1

2γi
θ̃Ti θ̃i +

1

2γ̄i
w̃2

i , (42)
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where γi > 0 and γ̄i > 0 are design constants and θ̃i = θ∗i − θi.

The time derivative of Vi along with (41) is

V̇i � V̇i−1 + χi[x̂i+1 +Hi + wi − ∂αi−1

∂y
e2 − ∂αi−1

∂y
(δ1 +Δf1) + ŵi tanh(χi/κi

)] + |χi|w∗
i

−w∗
i χi tanh(χi/κi

) +
1

γi
θ̃Ti (γiχiϕi(x̂i, x̂i+1,f )− θ̇i) +

1

γ̄i
w̃i(γ̄iχi tanh(χi/κi

)− ˙̂wi). (43)

Again by using Young’s inequality, we have

−χi
∂αi−1

∂y
e2 − χi

∂αi−1

∂y
(δ1 +Δf1) �

3

2
(
∂αi−1

∂y
)2χ2

i +
1

2
δ∗21 + (m2

1 + 1)‖e‖2 +m2
2τ

2
2,0. (44)

By using Lemma 2 and substituting (44) into (43), (43) becomes

V̇i � −ri‖e‖2 −
i−1∑

k=1

ckχ
2
k + χi−1χi +

i−1∑

k=1

σk

γk
θ̃Tk θk +

σ̄1

γ̄1
ε̃1ε̂1 +

i−1∑

k=2

σ̄k

γ̄k
w̃kŵk +Mi

+χi

[

x̂i+1 +Hi +
3

2

(
∂αi−1

∂y

)2

χi + ŵi tanh(χi/κ)

]

+
1

γi
θ̃Ti (γiχiϕi(x̂i, x̂i+1,f )− θ̇i)

+
1

γ̄i
w̃i(γ̄iχi tanh(χi/κ)− ˙̂wi), (45)

where ri = r1 − (i− 1)(1 +m2
1) and Mi = M1 + (i− 1)(12δ

∗2
1 +m2

2τ
2
2,0) +

∑i
j=2 w

∗
jκ

′
j .

Choose intermediate control function αi, adaptation laws for θi and ŵi as

αi = −χi−1 − ciχi − 3

2
(
∂αi−1

∂y
)2χi −Hi − ŵi tanh(χi/κi

), (46)

θ̇i = γiχiϕi(x̂i, x̂i+1,f )− σiθi, (47)

˙̂wi = γ̄iχi tanh(χi/κi
)− σ̄iŵi, (48)

where σi > 0 and σ̄i > 0 are design parameters.

Substituting (46)–(48) into (45), we have

V̇i � −ri‖e‖2 −
i∑

k=1

ckχ
2
k + χiχi+1 +

i∑

k=1

σk

γk
θ̃Tk θk +

σ̄1

γ̄1
ε̃1ε̂1 +

i∑

k=2

σ̄k

γ̄k
w̃kŵk +Mi. (49)

Step n: In the final design step, the actual control input u appears.

The time derivative of χn is

χ̇n = ˙̂xn − α̇n−1 = u+Hn + θ̃Tnϕn(x̂n, uf ) + wn − ∂αn−1

∂y
e2 − ∂αn−1

∂y
(δ1 +Δf1), (50)

where Hn = kne1 + θTnϕn(x̂n, uf)−
∑n−1

k=1
∂αn−1

∂x̂k
[x̂k+1 + θTk ϕk(x̂k, x̂k+1,f )]− ∂αn−1

∂ε̂1
˙̂ε1 −

∑n−1
k=2

∂αn−1

∂ŵk

˙̂wk −
∑n−1

j=1 kj
∂αn−1

∂x̂j
e1−

∑n−1
k=1

∂αn−1

∂θk
θ̇k−

∑n
k=1

∂αi−1

∂y
(k−1)
r

y
(k)
r − ∂αn−1

∂y [x̂2+θT1 ϕ1(x̂1, x̂2,f )]. We consider the overall

Lyapunov function candidate as

Vn = Vn−1 +
1

2
χ2
n +

1

2γn
θ̃Tn θ̃n +

1

2γ̄n
w̃2

n, (51)

where γn > 0 and γ̄n > 0 are design constants.

By setting i = n, the control u and adaptation laws for θn and ŵn are described by

u = −χn−1 − cnχn −Hn − 3

2
(
∂αn−1

∂y
)2χn − ŵn tanh(χn/κn

), (52)

θ̇n = γnϕn(x̂n, uf )χn − σnθn, (53)
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˙̂wn = γ̄nχn tanh(χn/κn
)− σ̄nŵn. (54)

By (51)–(54), and in the same procedures done previously in step i, one can obtain

V̇n � −rn‖e‖2 −
n∑

k=1

ckχ
2
k +

n∑

k=1

σk

γk
θ̃Tk θk +

σ̄1

γ̄1
ε̃1ε̂1 +

n∑

k=2

σ̄k

γ̄k
w̃kŵk +Mn, (55)

where rn = r1 − (n− 1)(1 +m2
1) and Mn = M1 + (n− 1)(12δ

∗2
1 +m2

2τ
2
2,0) +

∑n
j=2 w

∗
jκ

′
j.

By using Young’s inequality, one has the following inequalities:

σk

γk
θ̃Tk θk =

σk

γk
θ̃Tk (−θ̃k + θ∗k) � − σk

2γk
θ̃Tk θ̃k +

σk

2γk
|θ∗k|2, (56)

σ̄1

γ̄1
ε̃1ε̂1 � − σ̄1

2γ̄1
ε̃21 +

σ̄1

2γ̄1
ε∗21 , (57)

σ̄k

γ̄k
w̃kŵk � − σ̄k

2γ̄k
w̃2

k +
σ̄k

2γ̄k
w∗2

k . (58)

Substituting (56)–(58) into (55) results in

V̇n � −rn‖e‖2 −
n∑

k=1

ckχ
2
k −

n∑

k=1

σk

2γk
θ̃Tk θ̃k −

σ̄1

2γ̄1
ε̃21 −

n∑

k=2

σ̄k

2γ̄k
w̃2

k +Mn

+

n∑

k=1

σk

2γk
|θ∗k|2 +

σ̄1

2γ̄1
ε∗21 +

n∑

k=2

σ̄k

2γ̄k
w∗2

k . (59)

Let

rn > 0, (60)

c = min{2rn/λmin(P ), 2ci, σi, σ̄i; i = 1, . . . , n}, (61)

λ = Mn +
n∑

k=1

σk

2γk
|θ∗k|2 +

σ̄1

2γ̄1
ε∗21 +

n∑

k=2

σ̄k

2γ̄k
w∗2

k . (62)

Then Eq. (59) becomes

V̇ � −cV + λ. (63)

Eq. (63) can be further rewritten as

V (t) � V (0)e−ct +
λ

c
. (64)

From (64), and in the same proof as [1–13] it can be shown that for each i = 1, 2, . . . , n, the signals xi(t),

x̂i(t), e(t), θi, ε̂1, ŵi and u(t) are SGUUB, and there exists a time T such that for all t � T , the state

observer and tracking errors satisfy |ei(t)| � μ and |y(t)− yr(t)| � μ, where μ > (2λ/c)1/2.

The above design and analysis are summarized in the following theorem.

Theorem 1. Suppose Assumptions 1 and 2 hold. Then the fuzzy adaptive output tracking design scheme

described by the state observer (12), intermediate control functions (46), control law (52) and parameter

adaptive laws (47) and (48) can guarantee that all the signals of the closed-loop system are SGUUB, and

the observer and tracking errors converge to a small neighborhood of the origin by appropriate choice of

the design parameters.

Remark 5. According to the definition of A and (9), the parameters ki, i = 1, 2, . . . , n are chosen to

make A a stable matrix, i.e., the all real parts al of eigenvalues of A (denoted by λl = −al + bli) satisfy

that al > 0, l = 1, 2, . . . , n. By (13), if the parameters ki are chosen to make al larger, the observer error

vector can be made smaller.

According to Refs. [4–9,11–13] and from (61) and (64), increasing the values of the design parameters

ci, γi, γ̄i, λ, σi and σ̄i, i = 1, 2, . . . , n and decreasing the value of κi can decrease the observer errors and

tracking errors. However, if ci, γi, γ̄i, λ, σi and σ̄i are larger and κi is smaller, control energy will become

larger. Therefore, in practical applications, the design parameters should be chosen suitably to achieve a

better transient performance and control action.
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Remark 6. The proposed adaptive control approach can be used for a large class of SISO nonlinear sys-

tems with immeasurable states, including the following class of uncertain SISO strict-feedback nonlinear

systems:

ẋ1 = f1(x1) + g1(x1)x2,

ẋ2 = f2(x2) + g2(x2)x3,

· · · ,
ẋn−1 = fn−1(xn−1) + gn−1(xn−1)xn,

ẋn = fn(xn) + gn(xn)u,

y = x1.

(65)

Let fi(xi, xi+1) = f̄i(xi) + ḡi(xi)xi+1, i = 1, 2, . . . , n − 1; fn(xn, u) = f̄n(xn) + ḡn(xn)u. Then Eq. (65)

can be expressed in the form of (2).

Remark 7. It is worth mentioning that some observer based adaptive fuzzy backstepping control ap-

proaches have been recently developed by [10]-[13] for a special class of uncertain SISO strict-feedback

nonlinear system (65). They require that fi(xi, xi+1) = f̄i(xi) + xi+1 and fn(xn, u) = f̄n(xn) + u; that

is, the virtual and control gains are known constants. Thus, they cannot be applied to the SISO strict-

feedback nonlinear systems (65) with virtual and control gains being unknown continuous functions.

5 Simulation example

In this section, a simulation example is presented to show effectiveness of the proposed adaptive fuzzy

control approach.

Example 1 ([17,21]). Consider the nonlinear system

ẋ1 = x1 + x2 + x3
2/5, ẋ2 = x1x2 + u+ u3/7, y = x1. (66)

The famous van der Pol oscillator is taken as the reference model:

ẋd1 = xd2, ẋd2 = −xd1 + β(1 − x2
d1)xd2, yr = xd1, (67)

which yields a limit cycle trajectory when β > 0 (β = 0.2 in the simulation) for initial states starting

from points other than (0, 0). Let xd1(0) = 0.5 and xd2(0) = 0.8.

Remark 8. Note that the variable is assumed to be immeasurable; thus the adaptive NN and fuzzy

approaches in [15–21] cannot be applied to control the nonlinear system (66). Meanwhile, system (66) is

a nonlinear system in pure-feedback form; thus the control approaches in [10–13] cannot be applied to

control this system.

The control objective is to make the output of system (66) follow the reference trajectory yr generated

from the van der Pol oscillator (67).

Choose fuzzy membership functions as μF l
2
(x̂1, x̂2f ) = exp[− (x̂1−6+2l)2

2 ]×exp[− (x̂2f−3+l)2

4 ], μF l
2
(x̂1, x̂2,

uf ) = exp[− (x̂1−6+2l)2

2 ] × exp[− (x̂2−3+l)2

5 ] × exp[− (uf−9+3l)2

7 ], l = 1, . . . , 5. Construct fuzzy logic sys-

tems (5) according to (3) and (4). Choose the Butterworth low-pass filter as HL(s) = 1/(s2+1.414s+1).

The controller and parameter adaptive laws are given as follows:

α1 = −c1χ1 − χ1 − θT1 ϕ1(x̂1, x̂2,f )− ε̂1 tanh(χ1/κ1
) + ẏr, (68)

θ̇1 = γ1ϕ1(x̂1, x̂2,f )χ1 − σ1θ1, (69)

˙̂ε1 = γ̄1χ1 tanh(χ1/κ1
)− σ̄1ε̂1, (70)

u = −χ1 − c2χ2 − 3

2

(
∂α1

∂y

)2

χ2 −H2 − ŵ2 tanh(χ2/κ2
), (71)
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Figure 1 x1 (solid line) and yr (dash-dotted) of Case 1.
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Figure 2 x1 (solid line) and x̂1 (dash-dotted) of Case 1.
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Figure 3 x2 (solid line) and x̂2 (dash-dotted) of Case 1.
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Figure 4 u of Case 1.
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Figure 5 ‖θ1‖ (solid line) and ‖θ2‖ (dash-dotted) of Case 1.
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Figure 6 x1 (solid line) and yr (dash-dotted) of Case 2.

θ̇2 = γ2χ2ϕ2(x̂2, x̂3,f )− σ2θ2, (72)

˙̂w2 = γ̄2χ2 tanh(χ2/κ2
)− σ̄2ŵ2. (73)

To illustrate the effects of the main design parameters k1, k2, c1, c2, κ1 and κ2 on the control performances,

in the simulation , two kinds of the design parameter selections are considered.

Case 1: Choose k1 = 10, k2 = 12, c1 = 7, c2 = 5, κ1 = κ2 = 0.1, γ1 = 2, γ̄1 = 4, γ2 = 3, γ̄2 = 5,

σ1 = σ2 = 0.12, σ̄1 = σ̄2 = 0.14.

Case 2: Choose k1 = 5, k2 = 6, c1 = 4, c2 = 3, κ1 = κ2 = 0.2 and the other design parameters are

chosen the same as case 1.

For the above two cases, the initial conditions are chosen as x1(0) = 0.5, x2(0) = 0, x̂1(0) = 0,

x̂2(0) = 0, ε̂1(0) = 0, ŵ2(0) = 0, θT1 (0) = [0, 0, 0, 0, 0], θT2 (0) = [0, 0, 0, 0, 0]. The simulation results for

case 1 and case 2 are shown by Figures 1–5, and Figures 6–10, respectively, where Figures 1 and 6 show

the trajectories of state y and yr. Figures 2 and 7 show the trajectories of state x1 and its estimate

x̂1. Figures 3 and 8 show the trajectories of state x2 and its estimate x̂2 and Figures 4 and 9 show the

trajectory of input u. Figures 5 and 10 show the trajectories of both ‖θ1‖ and ‖θ2‖.
To further compare with the control performances between Case 1 and Case 2, define the performance
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Figure 7 x1 (solid line) and x̂1 (dash-dotted) of Case 2.

0 10 20 30 40 50
s

4

3

2

1

0

−1

−2

−3

−4

Figure 8 x2 (solid line) and x̂2 (dash-dotted) of Case 2.
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Figure 9 u of Case 2.
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Figure 10 ‖θ1‖ (solid line) and ‖θ2‖ (dash-dotted) of Case 2.

Table 1 Performance comparisons between Case1 and Case 2 with the tracking error, observer errors and control indexes

Performance comparisons Case 1 Case 2

I1 2.141 15.632

I2 3.375 12.589

I3 1.811 2.070

I4 81.342 41.132

indexes of the observer errors as I1 =
∑n

k=1 |x1(k)− x̂1(k)| and I2 =
∑n

k=1 |x2(k)− x̂2(k)|. The tracking
error and control indexes are defined as I3 =

∑n
k=1 |y(k)− yr(k)| and I4 =

∑n
k=1 |u(k)|, where n is the

number of sampling data. The tracking error, observer errors and control indexes are calculated from

0 to 50s with a sampling period of 1s (note that the sampling operation is only adopted to obtain the

tracking error, observer errors and control indexes).

From Figures 1–10 and Table 1, one can conclude that the larger the design parameters k1, k2, c1
and c2 are, and the smaller the design parameters κ1 and κ2 are, the faster the convergence rates of

the tracking and the observer errors are. However, if k1, k2, c1 and c2 are chosen larger, and κ1 and κ2

are chosen smaller, the control energy will become larger. Therefore, in practice, to achieve satisfactory

control performances, an appropriate choice of the design parameters is necessary.

6 Conclusion

In this paper, a fuzzy adaptive output feedback control approach has been developed for a class of SISO

uncertain pure-feedback nonlinear systems with immeasurable states. Fuzzy logic systems are utilized

to approximate the unknown nonlinear functions, and the filtered signals are introduced to circumvent

algebraic loop systems encountered in the implementation of the controller. A fuzzy state adaptive

observer is designed to estimate the immeasurable states. Based on the adaptive backstepping design

technique, a fuzzy adaptive output feedback control is developed. It is proven that the proposed control
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approach can guarantee that all the signals of the resulting closed-loop system are SGUUB, and the

observer and tracking errors converge to a small neighborhood of the origin by appropriate choice of the

design parameters.
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