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Abstract It is difficult to track multiple maneuvering targets of which the number is unknown and time-

varying, especially when there is range ambiguity. The random finite sets (RFS) based probability hypothesis

density filter (PHDF) is an effective solution to the problem of multiple targets tracking. However, when tracking

multiple targets via the range ambiguous radar, the problem of range ambiguity has to be solved. In this paper,

a multiple model PHDF and data association (MMPHDF-DA) based method is proposed to address multiple

maneuvering targets tracking with range ambiguous radar in clutter. Firstly, by introducing the turn rate of

target and the discrete pulse interval number (PIN) as components of target state vector, and modeling the

incremental variable of the PIN as a three-state Markov chain, the problem of multiple maneuvering targets

tracking with range ambiguity is converted into a hybrid state filtering problem. Then, by implementing a novel

“track-estimate” oriented association with the filtering results of the hybrid filter, target tracks are provided

at each time step. Simulation results demonstrate that the MMPHDF-DA can estimate target state as well

as the PIN simultaneously, and succeeds in multiple maneuvering target tracking with range ambiguity in

clutter. Simulation results also demonstrate that the MMPHDF-DA can overcome the limitation of the Chinese

Remainder Theorem for range ambiguity resolving.
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1 Introduction

In recently years, the random finite set (RFS) [1] has proven to be an effective method for multiple targets

tracking. In the RFS framework, the state set and measurement set are modeled as RFSs so that the

problem of dynamically multiple targets tracking in clutter is cast in the Bayesian framework. However,

the RFS based optimal multiple targets Bayesian filter requires dealing with a combinatorial sum of high

dimensional integrals, and thus is vary computationally expensive and intractable in general.

To alleviate the intractability and reduce the complexity, the probability hypothesis density filter

(PHDF) [2–12] was devised as a suboptimal solution to the Bayesian multiple targets filter. The PHDF
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is an effective treatment for multiple targets tracking in clutter, which estimates targets number and

target states simultaneously. To give a recursive solution of the PHDF, particle filter approximation of

PHDF (Particle-PHDF) [3–5] and Gaussian mixture (GM) implementation of PHDF (GM-PHDF) [6–9]

were devised by Zajic, Vo and Ma et al. The RFS based approaches have been successfully used for many

real-world problems [10–13].

However, to provide precise velocities of targets, the airborne pulse Doppler (PD) radar usually adopts

the middle or high pulse repetition frequency (M/HPRF) working mode, which results in problem that the

range measurements of target are ambiguous [14] and makes the multiple maneuvering targets tracking

problem much more complex. As a result, the multiple maneuvering targets tracking with PD radar

involves estimating a time varying number target states based on a time varying number of ambiguous

measurements. This requires that the algorithm should be capable of resolving range ambiguity and

estimating the target number and target states simultaneously, and is an intractable problem to be

solved.

At present, there have been lots of data processing based researches on single target tracking with

range ambiguity and some effective methods have been proposed, such as Chinese Remainder Theorem

[15,16], permutation and combination method [17], multiple hypothesis (MH) [18], hybrid filter [19], and

so on. However, when tracking multiple targets in clutters with range ambiguity, the matching of range

gates of different PRFs before range ambiguity resolving is required. The existing literatures for multiple

targets tracking with range ambiguity mainly focus on target tracking with the precondition that the

matching has been done correctly, and not involve how to deal with the outliers due to wrong matching

[18]. The essence of this kind of methods is converting the problem of multiple targets tracking into

multiple single-target tracking. To make correct matching of range gates, correct associations between

targets and observations are required, which is also the difficulty of multiple targets tracking.

The distinct merit of the PHDF is that it can avoid the association between targets and measurements,

and hence the matching of target range gates before target tracking. Hence, the PHDF is a feasible

solution to multiple targets tracking with range ambiguity in theory. Under this consideration, the

authors proposed a PHDF based range ambiguity resolving and multiple targets tracking method in [20].

This method uses all of the possible measurements for states update. Although of high efficiency, it

is very computationally intensive and cannot adapt the situation of maneuvering target tracking. This

paper proposes a novel algorithm based on the multiple model PHDF and data association (MMPHDF-

DA), which enables joint range ambiguity solving and multiple maneuvering targets tracking. In the

proposed algorithm, the ambiguous measurements are utilized for states update directly, which reduces

the computation load dramatically. Furthermore, by introducing the turn rate as components of target

state and setting up corresponding dynamic equations, the proposed method performs well in maneuvering

target tracking. It should be noticed that the multiple model setup in this paper is not the traditional

multiple target moving model [4], but the incremental variable of the PIN transitional model, which is

also an innovation of this paper and plays a very important part in range ambiguity resolving. The

effectiveness of the proposed algorithm is verified by simulation results.

2 Background and problem formulation

In this section, a short review of RFS and the PHDF for multiple targets filtering are presented.

2.1 Multiple targets filtering

Define a random set stochastic process X = {Xk|k ∈ N} and a random set stochastic process Z =

{Zk|k ∈ N
+}. The multiple target states are modeled by RFS Xk = {x1

k, . . . ,x
Mk

k } ⊂ Es, where Es

is the state space, Mk is the targets number, and xi
k is the ith state of target. The multiple target

measurements are given by RFS Zk = {z1
k, . . . , z

Nk

k } ⊂ Eo, where Eo is the measurement space, Nk is

the measurements number, and zj
k is the jth measurement of target.
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The problem of multiple targets filtering is how to estimate the states X̂k = {x̂1
k, . . . , x̂

N̂k

k } based

on the observations Z1:k = {Z1, . . . ,Zk}, where N̂k is the estimated targets number, and x̂i
k is the ith

estimated target state.

2.2 The PHDF

Let Dk−1|k−1(x) = Dk−1|k−1(x|Z1:k−1) denote the PHD at time k− 1, and Dk−1|k(x) = Dk−1|k(x|Z1:k)

denote the predicted PHD at time k, given the single target state vector x and observations Z1:k, the

prediction equation and update equation are respectively given by [2]

Dk|k−1(x) = γk(x) +

∫
Φk|k−1(x|xk−1)Dk−1|k−1(xk−1)dxk−1, (1)

and

Dk|k(x) =

[
vk(x) +

∑
z∈Zk

ψk,z(x)

κk(z) +
〈
Dk|k−1, ψk,z

〉
]
Dk|k−1(x), (2)

with vk(x) = 1 − PD,k(x), ψk,z(x) = PD,k(x)gk(z|x), Φk|k−1(x|xk−1) = ek|k−1(xk−1)fk|k−1(x|xk−1) +

bk|k−1(x|xk−1), and κk(z) = λkck(z), where PD,k(xk) and ek|k−1(xk−1) respectively denote the target

detection and target survival probability, γk(·) and bk|k−1(·|xk−1) respectively denote the PHD of new

birth target Γk and spawned target Bk|k−1(xk−1), fk|k−1(·|xk−1) and gk(·|xk) respectively denote the

single target transition function and single target likelihood, while λk and ck(·) respectively represent the

false alarms number per scan and clutter points probability distribution, and 〈·, ·〉 is the inner product

defined as

〈ϕ, φ〉 =
∫
ϕ(x)φ(x)dx. (3)

In general, neither of the integrals of (1) and (2) has closed solution, which can be implemented by

the particle filter based numerical methods [3–5].

2.3 Range ambiguity

Assume that Rmax is the maximum range of interest, Fr is the PRF used by the radar. The maximum

unambiguous range Ru,max corresponding to Fr is given by

Ru,max =
C

2Fr
, (4)

where C is the speed of light. Let (rk, θk, dk) denote the true position of target, where rk, θk and dk
respectively denote the range, bearing and Doppler of target. Then the range measurement generated by

radar will appear to be rk,amb = mod(rk, Ru,max), where the function mod(x, y) denotes the remainder

of x/y. Consequently, the true range of target must be one of the values given by the set

{rik|rik = (i− 1)×Ru,max + rk,amb; i = 1, 2, . . . , Nu,max}, (5)

where

Nu,max = Floor

(
Rmax

Ru,max

)
(6)

denotes the maximum unambiguous number corresponding to PRF Fr and the function Floor(x) means

to get the nearest integer equal to or less than x. The value i ∈ {1, 2, . . . , Nu,max} is defined as the pulse

interval number (PIN) corresponding to PRF Fr such that rik reflects the true range of target at time k.

Eq. (5) demonstrates that the true range of target must be one of ranges represented by (5); however, it

is impossible to get the true range of target directly.
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Figure 1 The hybrid estimation system.

3 System setup

Assume that the range measurements generated by the radar are ambiguous. According to the hybrid

filtering system, Figure 1 shows the general block diagram of the proposed method.

The dynamic model and measurement model are described as follows.

3.1 Dynamic model

Let xs,k = [xk ẋk yk ẏk ωk]
T be the state of target at time k, where (xk, yk), (ẋk, ẏk) and ωk respectively

denote the position, velocity and turn rate of target, and [·]T represents the transpose of a matrix [·].
The state propagation from time k to k + 1 is given by

xs,k+1 = Fs,kxs,k +Gs,kVs,k, (7)

with

Fs,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 sinωkT
ωk

0 − 1−cosωkT
ωk

0

0 cosωkT 0 − sinωkT 0

0 1−cosωkT
ωk

1 sinωkT
ωk

0

0 sinωkT 0 cosωkT 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (8)

and

Gs,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T 2
/
2 0 0

T 0 0

0 T 2
/
2 0

0 T 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9)

respectively denoting the transition matrix and the distribution matrix of process noise, where T is the

sampling interval, and Vs,k is process noise with zero mean and covariance

Qs,k =

⎡
⎢⎢⎣
ax,max/3 0 0

0 ay,max/3 0

0 0 σ2
ω

⎤
⎥⎥⎦ , (10)

where ax,max and ay,max are the maximum accelerations in x direction and y direction, respectively, and

σω is the stand deviation for turn rate.

Let ΔPINk = PINk+1 − PINk denote the incremental variable of PINk, where PINk is the PIN corre-

sponding to the PRF at time k. Assuming that the increase or decrease of target range can not exceed
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the maximum unambiguous range in one sampling interval. Let mk = 1, 2, 3 respectively denote that

PINk moves backward to the previous one pulse interval, and target maintains the current pulse interval

and target moves forward to the next one pulse interval. Then state model of PINk can be reasonably

simplified into

PINk+1 =

⎧⎪⎪⎨
⎪⎪⎩

PINk − 1, mk = 1,

PINk, mk = 2,

PINk + 1, mk = 3,

(11)

and ΔPINk can be obtained as follows:

ΔPINk =

⎧⎪⎪⎨
⎪⎪⎩

−1, mk = 1,

0, mk = 2,

1, mk = 3.

(12)

Take the PIN as an element of the state vector, i.e.,

xk = [xs,k PINk]
T . (13)

The extended dynamic equation is given by

xk+1 = Fkxk +BΔPINk + Vk, (14)

with

Fk =

[
Fs,k OT

1×5

O1×5 1

]
, (15)

and

Vk =

[
Gs,kVs,k

uk

]
, (16)

where O1×5 is a 1× 5 zero vector, B = [0 0 0 0 0 1]
T
and uk = 0.

Since mk takes one discrete value out of S ={1, 2, 3} at a random time step, it can be modeled by a

three-state Markov chain [21] with

πpq � P (mk = q|mk−1 = p), p, q ∈ S, (17)

denoting the model transitional probability that mk switches from p at time k − 1 to q at time k. In

summary the transitional probability matrix is given by

∏
m

=

⎡
⎢⎢⎣
π11 π12 π13

π21 π22 π23

π31 π32 π33

⎤
⎥⎥⎦ , (18)

which is assumed to be known and the initial model probabilities denoted by ϕ1 = P{m0 = 1}, ϕ2 =

P{m0 = 2} and ϕ3 = P{m0 = 3} satisfying ϕ1 + ϕ2 + ϕ3 = 1 are also assumed to be known.

3.2 Measurement model

Let zk,amb = [rk,amb θk dk]
T be the ambiguous measurement generated by the radar at time k, where

rk,amb, θk and dk respectively denote the ambiguous range, bearing and Doppler measurements of target.

Then the measurement equation is given by

zk,amb =

⎡
⎢⎢⎢⎢⎣

√
(xk − xs)2 + (yk − ys)2 − PINkRu,max

arctan

(
yk − ys
xk − xs

)

xkẋk + ykẏk√
(xk − xs)2 + (yk − ys)2

⎤
⎥⎥⎥⎥⎦+Wk, (19)
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Figure 2 The proposed method.

where (xs, ys) is the location of the radar, Ru,max is the maximum unambiguous range, and Wk is

independent, zero-mean while Gaussian measurement noise with variance

Rk =

⎡
⎢⎢⎣
σ2
r 0 0

0 σ2
θ 0

0 0 σ2
d

⎤
⎥⎥⎦ , (20)

with σr, σθ and σd respectively denoting the stand deviation for range, bearing, and Doppler measure-

ments.

4 Particle implementation

In this section, the recursive Bayesian solution of the hybrid systems described in the previous section

will be implemented with the MMPHDF-DA, which can directly approximate the state and measurement

equations required by (14) and (19). As presented in Figure 2, the implementation of proposed method

mainly includes three parts: MMPHDF with range ambiguity, “track-estimate” DA with the outputs of

MMPHDF and estimates revision with the updated target tracks.

As is well known, the estimated states are more precise than the measurements, and thus, the associa-

tion with the outputs of the PHDF rather than the initial measurements should give better performance.

Thus, we consider a “track-estimate” based DA method here. The basic procedures of the MMPHDF-DA

are as follows:

Let {xp
k,m

p
k, w

p
k}Lk

p=1 and �k = {τqki,k
|q = 1, . . . ,Trk} respectively denote the particle set and target

track set at time k, where xp
k, m

p
k, w

p
k(p = 1, . . . , Lk) and Lk respectively denote the particle state, PIN

changing model, particle weight and number of particles, τqkq ,k
denote the qth track, kq is the initialized

time step, and Trk is the target tracks number. Given the target tracks set �k−1 = {τqkq,k−1|q =

1, . . . ,Trk−1} and the particle set {yp
k−1, w

p
k−1}Lk−1

p=1 , the main procedure of the proposed MMPHDF-DA

method are presented as follows:

Step 1. Initialization at k = 0.

Let L0 be the particles number representing one target and N̂0 be the expected initial target number,

∀p ∈ {1, . . . , L0} sample xp
0|0 from D0|0 and set k = 1. The weight associated with each particle is N̂0/L0.

Step 2. Prediction.

This step contains two procedures.

∀p ∈ {1, . . . , Lk−1}, sample the PIN incremental model variable mp
k|k−1 according the mp

k−1|k−1 and

the model transitional matrix
∏

m;

∀p ∈ {1, . . . , Lk−1}, sample xp
k|k−1 from the proposal density qk(·|xp

k−1,m
p
k|k−1,Zk,amb), and evaluate

the predicted weight

wp
k|k−1 =

Φk|k−1(x
p
k|k−1|xpk−1)

qk(x
p
k|k−1|xp

k−1,Zk,amb)
; (21)

∀p ∈ {Lk−1 + 1, . . . , Lk−1 + Jk}, sample the model variable mp
k|k−1 according the initial model proba-

bilities ϕ1, ϕ2 and ϕ3;

∀p ∈ {Lk−1 + 1, . . . , Lk−1 + Jk}, sample xp
k|k−1 from the proposal density pk(·|mp

k|k−1Zk,amb), and

assign a weight

wp
k|k−1 =

1

Jk

γk(x
p
k|k−1)

pk(x
p
k|k−1|Zk,amb)

(22)
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to each new born particle.

Step 3. Update.

After the new ambiguous measurement set Zk,amb is available, the associated weights are updated with

the single target likelihood function.

∀z ∈ Zk,amb, compute

Ck(z) =

Lk−1+Jk∑
p=1

ψk,z(x
p
k|k−1)w

p
k|k−1; (23)

∀p ∈ {1, . . . , Lk−1 + Jk}, update particle weights [3]

wp
k|k =

⎡
⎣1− PD(xp

k|k−1) +
∑

z∈Zk,amb

ψk,z(x
p
k|k−1)

κk(z) + Ck(z)

⎤
⎦wp

k|k−1. (24)

Step 4. Resampling [21].

Compute the mass of particles

N̂k|k =

Lk−1+Jk∑
p=1

wp
k|k, (25)

and resample particle set {xp
k|k−1,m

p
k|k−1, w

p
k|k
/
N̂k|k}Lk−1+Jk

p=1 to get {xp
k,m

p
k, w

p
k

/
N̂k|k}Lk

p=1, where Lk

is particles number used by the filter at time k. Then, the estimated targets number is approximated by

N̂k = round(N̂k|k), where the function round(x) means to get the integer nearest to x.

Step 5. Estimation.

If N̂k �= 0, analyze the resampled particle set {xp
k}Lk

p=1 with the k -mean algorithm, and obtain N̂k

clusters {x′p
k}Lk,n

p=1 (n = 1, . . . , N̂k), where x′p
k ∈ {xp

k}Lk
p=1, and Lk,n is the particles number of the nth

cluster satisfying
∑N̂k

n=1 Lk,n = Lk. The estimated target states X̂k = {x̂k,n}N̂k
n=1 and covariance Q̂k =

{Q̂k,n}N̂k
n=1 are given by

x̂k,n =
1

Lk,n

Lk,n∑
p=1

x′p
k, n = 1, . . . , N̂k, (26)

Q̂k,n =
1

Lk,n

Lk,n∑
p=1

(x′p
k − x̂k,n)

T(x′p
k − x̂k,n), n = 1, . . . , N̂k. (27)

Step 6. “Track-estimate” association.

∀m ∈ {1, 2, . . . ,Trk−1} and ∀n ∈ {1, 2, . . . , N̂k}, define the statistical distance between the mth track

and the nth estimate

d2mn(γ) =
[
ŷk,n − ŷk|k−1,m

]T
S−1
k,m

[
ŷk,n − ŷk|k−1,m

]
, (28)

where ŷk,n− ŷk|k−1,m is the innovation, ŷk|k−1,m and Sk,m are the predicted state and filtering covariance

of the mth track, and the square root g =
√
γ is the “σ data” of gate [22].

The basic ideas of the “track-estimate” association method are as follows:

(1) If N̂k = 0 and Trk−1 = 0, jump to step 7;

(2) If N̂k > 0 and Trk−1 = 0, ∀x̂k,n ∈ X̂k, initialize a track with the 3/4 logic method [22];

(3) If N̂k = 0 and Trk−1 > 0, ∀τmkr ,k−1 ∈ �k−1, terminate τmkr ,k−1 if τmkr ,k−1 is a temporary track,

otherwise, obtain the temporary track τmkr ,k
by updating τmkr ,k−1 with the predicted state x̂k|k−1,m;

(4) If N̂k > 0 and Trk−1 > 0, ∀m ∈ {1, 2, . . . ,Trk−1} and ∀n ∈ {1, 2, . . . , N̂k}, compute the statistical

distance d2mn(γ) between track τmkr ,k−1 and estimate x̂k,n according to (28), and then

• ∀τmkr ,k−1 ∈ �k−1, if ∃x̂k,n ∈ X̂k, s.t. d
2
mn(γ) � γ, obtain the track τmkr ,k

by updating τmkr ,k−1 with

state x̂, and save τmkr ,k
into �k, where the state x̂ satisfies

x̂ = arg min
x̂k,n∈X̂k

d2mn(γ); (29)
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• ∀τmkr ,k−1 ∈ �k−1, if there is no x̂k,n ∈ X̂k, s.t. d
2
mn(γ) � γ, terminate τmkr ,k−1 if τ

m
kr ,k−1 is a temporary

track, otherwise, obtain the temporary track τmkr ,k
by updating τmkr ,k−1 with the predicted state x̂k|k−1,m;

• ∀x̂k,n ∈ X̂k, if x̂k,n is not used for the update of any track, x̂k,n is used as track head for track

initialization.

Step 7. Estimates revision

If there are tracks updated by the estimates in step 6, the estimated number and estimated states

of targets are revised by the updated tracks. Let k = k + 1, and jump to step 2 until the radar stops

working.

5 Simulations

To investigate the effectiveness of the MMPHDF-DA proposed for multiple maneuvering targets tracking

with range ambiguity, a multiple maneuvering targets tracking scenario is simulated.

5.1 Scenario

For simplicity, consider a two-dimensional tracking scenario. Assume that the targets are observed in

clutters over the surveillance region S. The targets move according to dynamic equation proposed in

subsection 3.1. The initial state of newborn target follows a Gaussian distribution, of which the mean x0

and covariance Qb are given by

x0=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

30 km

0 km/s

30 km

0 km/s

0 rad/s

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, Qb= Diag

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 km2

0.5 (km/s)2

1 km2

0.5 (km/s)
2

(π/6)2(rad/s)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (30)

For simplicity, we assume there are no spawning targets.

Assume that the radar can provide the target ambiguous range, bearing and Doppler measurements.

The MMPHDF uses the single target transition function and initial state density as importance sampling

proposal densities. The initial model probabilities ϕ1 = ϕ2 = ϕ3 = 1/3 and model transition matrix are

given by

∏
m

=

⎡
⎢⎢⎣

0.80 0.20 0

0.10 0.80 0.10

0 0.20 0.80

⎤
⎥⎥⎦ , (31)

The choice of the model transition matrix implies that the increase or decrease of radial range of target

during one sampling interval cannot exceed the unambiguous range. The remainding main parameters

are shown in Table 1.

Figure 3 shows the real positions of a simulated scenario with 3 tracks. Figure 4 displays the x positions

and y positions of the tracks given in Figure 3 respectively.

5.2 Effectiveness verification

To verify the effectiveness of MMPHDF-DA, comparisons with the PHDF methods proposed in [20] are

made without considering clutters.

Figures 5 and 6 respectively show the filtering results given by the PHDF and MMPHDF-DA, where

the crosses “×” are true positions of targets, the small circles “o” are estimates of target given by the

PHDF, and the lines with circles “-o-” are estimates of target tracks given by the MMPHDF-DA. Figure

7 gives the comparisons between the true targets number and estimated targets number given by the two

methods at each time step. Figure 8 shows the Wasserstein distance [23] (multiple targets miss distance)
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Table 1 Parameters for simulation

Item Value

Location of radar (km, km) (0, −10)

Total simulation step (s) 50

Maximum range of interest (km) 120

Pulse repetition interval (kHz) 31.25

Sampling interval (s) 1

Average target birth rate per scan 0.2

Target survival probability 0.95

Probability of detection 0.95

Stand deviation for turn rate (rad/s) 0.35

Stand deviation for range measurement (km) 0.2

Stand deviation for bearing measurement (rad) 0.0087

Stand deviation for Doppler measurement (km/s) 0.04

Probability of gate in association 0.95

Particles number for representing a target 3000

Particles number for searching new targets 4000
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Figure 3 Three true tracks generated by the simula-

tion.
Figure 4 Target tracks given in Figure 3 and ambigu-

ous measurements generated by the radar.
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Figure 5 Target states estimates given by the PHDF. Figure 6 Target tracks estimates given by the

MMPHDF-DA.
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Figure 7 Target numbers estimates against time step. Figure 8 Multiple targets miss distance for the esti-

mates.

Table 2 Simulation results for different maximum ranges of interest

PHDF MMPHDF-DA

Rmax (km) Average errors (km) Average time (s) Average errors (km) Average time (s)

60 1.8339 6.5813 0.6044 1.8876

80 1.9335 8.9967 0.5145 2.0388

100 1.9483 10.9621 0.6962 2.0621

for the estimates of tracks given in Figure 3. It should be noted that the miss distance presented in Figure

8 grow suddenly at some time steps, which can be explained by the fact that the estimated numbers of

targets are unequal to the true numbers of targets at those time steps.

Simulation results are demonstrating that:

(1) The MMPHDF-DA performs well in range ambiguity resolving and multiple maneuvering targets

tracking, while the performance of PHDF degrade rapidly when the target is maneuvering;

(2) only one PRF is adopted by the radar in the simulation, which means that the MMPHDF-DA

overcomes the limitation of range ambiguity resolving with the Chinese Remainder Theorem that three

or more than three PRFs are required and the numbers of range cells corresponding to PRFs must be

coprime.

5.3 Simulation with different parameters

To analyze the quality of the proposed algorithm, simulations with different maximum range of interest

Rmax, probability of detection PD and average clutter per scan λk are made. The simulations are carried

out on a computer with quad 2.66 GHz Intel CoreTM 2 processors and 3 GB RAM.

Setting the average clutter per scan λk = 0 and the probability of detection PD = 0.95, Table 2 shows

the average multiple targets miss distance (average error) and average running time per step of the PHDF

and MMPHDF-DA when the maximum range of interest varies from 60 km to 100 km.

Table 2 shows that:

(1) The average miss distance of the MMPHDF-DA is much less than that of the PHDF despite the

maximum range of interest.

(2) The average running time of the PHDF almost grows linearly with the maximum range of interest.

This is because the PHDF uses all of the possible measurements for states update, while the number

of possible measurements is related to the maximum range of interest and the maximum unambiguous

range.

(3) The MMPHDF-DA uses the ambiguous measurements directly for states update; thus the average

running time is hardly affected by the maximum range of interest.
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Table 3 Simulation results for different probabilities of detection

PHDF MMPHDF-DA

PD Average errors (km) Average time (s) Average errors (km) Average time (s)

0.65 2.0728 10.3725 1.2167 4.4231

0.80 1.9025 7.7420 1.0888 3.1533

0.95 1.8339 6.5813 0.6044 1.8876
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Figure 9 PHDF results (λk = 15). Figure 10 MMPHDF-DA results (λk = 15).

(4) Setting the average clutter per scan λk = 0 and the maximum range of interest Rmax = 60 km,

Table 3 shows the average multiple targets miss distance (average error) and average running time per

step of the PHDF and MMPHDF-DA when the probability of detection varies from 0.65 to 0.95.

Table 3 shows that:

(1) The average miss distance of the MMPHDF-DA is much less than that of the PHDF despite the

probability of detection.

(2) Both of the average miss distance and the average running time of PHDF and MMPHDF-DA

grow with the decrease of the probability of detection. This is because the processing time of the PHDF

kernel based method grows linearly with the estimated number of targets, while both of the PHDF and

MMPHDF are prone to obtain lots of false target estimates when the probability of detection is low.

Setting the maximum range of interest Rmax = 60 km, the probability of detection , and the average

clutter per scan λk = 15, Figures 9 and 10 present the simulation results of the PHDF and the MMPHDF-

DA, respectively. The crosses “×” are the true positions of targets, the dots “·” are the clutters, the

small circles “o” are the estimates of target given by the PHDF, and the lines with circles “-o-” denote

estimates of target tracks given by the MMPHDF-DA. Figures 9 and 10 demonstrate that the PHDF

can not identify targets effectively, while the MMPHDF-DA gives a nice performance in dense clutters

environment.

6 Conclusion

In this paper, the problem of multiple maneuvering targets tracking with range ambiguity is studied and a

novel algorithm for joint range ambiguity resolving and multiple targets tracking based on the MMPHDF-

DA is proposed. By extending the target state vector with the discrete PIN and modeling the dynamic

equation with the discrete incremental variable of PIN, the problem of multiple maneuvering targets

tracking with range ambiguity is converted into a hybrid state estimation problem. The proposed method

can overcome the limitation of the Chinese Remainder Theorem and solve range ambiguity and multiple

maneuvering targets tracking simultaneously. Simulation results demonstrate that the MMPHDF-DA

algorithm can provide multiple targets tracks in the presence of clutters together with range ambiguity.
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Compared with the PHDF, the average processing time of the proposed method has been reduced

greatly, but it still cannot meet the real-time requirements of the dynamic system. As a result, the

computation load is still a problem to be solved. A work will also involve the detection and tracking

multiple weak targets with range ambiguous radar and the demonstration of the technique on real data.
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