
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

June 2014, Vol. 57 068202:1–068202:10

doi: 10.1007/s11432-013-4954-y

c© Science China Press and Springer-Verlag Berlin Heidelberg 2014 info.scichina.com link.springer.com

A new self-learning optimal control laws for a class of
discrete-time nonlinear systems based on ESN

architecture

SONG RuiZhuo∗, XIAO WenDong & SUN ChangYin

School of Automation and Electrical Engineering, University of Science and Technology Beijing,
Beijing 100083, China

Received December 13, 2013; accepted February 13, 2014

Abstract A novel self-learning optimal control method for a class of discrete-time nonlinear systems is pro-

posed based on iteration adaptive dynamic programming (ADP) algorithm. It is proven that the iteration costate

functions converge to the optimal one, and a detailed convergence analysis of the iteration ADP algorithm is

given. Furthermore, echo state network (ESN) architecture is used as the approximator of the costate function

for each iteration. To ensure the reliability of the ESN approximator, the ESN mean square training error is

constrained in the satisfactory range. Two simulation examples are given to demonstrate that the proposed

control method has a fast response speed due to the special structure and the fast training process.
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1 Introduction

Adaptive dynamic programming (ADP) is a very famous self-learning method, aiming to avoid the “curse

of dimensionality” closely related to dynamic programming method [1,2]. In the last few years, ADP

algorithms were developed in depth by Liu et al. [3–6], Powell [7], Jagannathan et al. [8,9], Lewis et al.

[10–13], Murray et al. [14], Si et al. [15,16], and so on. Dual heuristic dynamic programming (DHP)

is one of the most common algorithms in ADP, which derives from the gradient formalization of the

Hamilton-Jacobi- Bellman (HJB) equation, meaning that the critic network in the ADP structure is used

to approximate the gradient of the performance index function with respect to the system dynamic. The

feedforward neural networks such as back propagation (BP) neural networks and radial basis function

(RBF) neural networks are used as the approximator of ADP algorithm by most researchers [17–20].

But the BP neural network as a local search optimization method that usually converges to the local

minimum points. As for RBF neural network, the center point is difficult to be determined.

Many neural networks are used in the control problem of nonlinear systems [21–28]. For neural net-

works, the two major categories are feedforward network (FNN) and recurrent network (RNN). For the
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former, the implementation is static input-output mappings. It can approximate arbitrary nonlinear

functions by arbitrary accuracy. Furthermore, the RNN has at least one cyclic path. The theoretical

result shows that RNN can approximate arbitrary dynamical systems with arbitrary accuracy [29]. The

key part of RNN performance lies in the activities of recurrent units and their variations with time [30],

i.e. network state and network dynamics. So the RNN has universal approximation capability [31,32].

Echo state network (ESN) is a novel approach for RNN supervised training, which overcomes some

obstacles in many other approaches for training RNNs, such as slow convergence, complex implementation

of the learning algorithms, and the suboptimal solutions [33]. As we know, ESN is a constructive method

for supervised training of RNN. The learning process is simple and fast. The basic idea of ESN is to use

a large number of “reservoirs” as the supplier of some useful dynamics, and the desired output can be

combined from the “reservoirs”. Recursive least square method is used for the online training [34]. The

ESN was proposed by Jaeger [35,36], and developed by many scholars. Prokhorov [37] discussed the ESN

in a broader context of RNN applications, and highlighted challenges in practical applications. Rodan

et al. [38] presented the minimal complexity of reservoir construction for obtaining competitive models.

Xia et al. [39] introduced an augmented ESN, which was used as the nonlinear adaptive filter for the

complex-valued signals. Koprinkova-Hristova et al. [34] investigated the possibility for adaptive critic

online training using ESN.

Though the qualities of ESN have been studied by many researchers, and the ESN theory has made

great progress, to our knowledge, how to design the optimal control laws using the ESN in the framework

of ADP is still an open problem. There are the following three difficulties. 1) Difficulty in designing

the optimal control laws and the iteration control algorithm, 2) difficulty in proving the convergence of

the costate function, 3) difficulty in implementing the control scheme using ESN. In this paper, these

difficulties will be overcome one by one. First, the optimal control laws based on DHP algorithm are

established for the nonlinear systems. Then, the convergence analysis of iteration DHP algorithm is

given. It is proven that the control law makes the system asymptotically stable. Furthermore, some

theorems are given to demonstrate the boundedness and convergence of the iteration costate function.

And then, the background and training method of ESN are given. The implementation scheme for DHP

using ESN architecture is also proposed. At last, the simulation examples are provided to demonstrate

the effectiveness of the proposed implementation scheme.

The rest of this paper is organized as follows. In Section 2, an overview of iteration DHP algorithm is

provided, and the convergence analysis is given. In Section 3, the training method of ESN is presented

in detail. The implementation process of DHP based on ESN architecture is proposed. In Section 4, two

examples about linear and nonlinear systems are given to demonstrate the advantage of the ESN method.

Finally, Section 5 concludes the paper.

2 The iteration DHP algorithm

2.1 A general framework for iteration DHP algorithm

Consider the following discrete-time nonlinear dynamical systems:

x(k + 1) = F (x(k), u(k)), (1)

where F (x(k), u(k)) = f(x(k))+ g(x(k))u(k), F (0, 0) = 0. The state x(k) ∈ R
n, f(x(k)) ∈ R

n, g(x(k)) ∈
R

n×m and the control u(k) ∈ R
m. F (x(k), u(k)) is function smooth and Lipschitz continuous on a

compact set Ω ∈ R
n. Here we assume that the system state is completely controllable and bounded on

Ω. Define the following optimal control problem:

inf
{u(k)}∞

k=0

J(x(k), u(k)) = inf
{u(k)}∞

k=0

{ ∞∑
k=0

(xT(k)Qx(k) + uT(k)Ru(k))

}
, (2)

where Q and R are positive definite.
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To solve the optimal control problem (2), the following assumption is necessary.

Assumption 1. For system (1), there exists constant matrices A ∈ R
n×n and B ∈ R

n×n, such that

A � ∂F (x(k), u(k))

∂x(k)
� B (3)

holds, implying ∂F (x(k),u(k))
∂x(k) −A and B − ∂F (x(k),u(k))

∂x(k) are positive semi-definite.

Let J∗(x(k)) = inf{u(k)}∞
k=0

J(x(k), u(k)) and u∗(k) denote the optimal performance index function

and the corresponding optimal control law, respectively. Based on Bellman’s principle of optimality, we

can have the following HJB equation:

J∗(x(k)) = inf
u(k)

{xT(k)Qx(k) + uT(k)Ru(k) + J∗(x(k + 1))}, (4)

and the optimal controller u∗(k) satisfies

u∗(k) = arg inf
u(k)

{xT(k)Qx(k) + uT(k)Ru(k) + J∗(x(k + 1))}. (5)

Define the costate function σ(x(k + 1)) = dJ(x(k+1))
dx(k+1) . Then the following relationship holds [40]:

σ(x(k)) = 2Qx(k) +

(
∂F (x(k), u(k))

∂x(k)

)T

σ(x(k + 1)). (6)

So we have

σ∗(x(k)) = 2Qx(k) +

(
∂F (x(k), u(k))

∂x(k)

)T

σ∗(x(k + 1)), (7)

and

u∗(k) = −1

2
R−1gT(x(k))σ∗(x(k + 1)), (8)

where σ∗(x(k + 1)) = dJ∗(x(k+1))
dx(k+1) .

To get the optimal control law, the following iteration DHP algorithm is used:

σ[i+1](x(k)) = 2Qx(k) +

(
∂F (x(k), u(k))

∂x(k)

)T

σ[i](x(k + 1)), (9)

and

u[i](k) = −1

2
R−1gT(x(k))σ[i](x(k + 1)), (10)

where σ[i](x(k + 1)) = dJ [i](x(k+1))
dx(k+1) , in which

J [i+1](x(k)) = inf
u(k)

{xT(k)Qx(k) + uT(k)Ru(k) + J [i](x(k + 1))}, (11)

with J [0](x(k)) = 0.

Below, a detailed convergence analysis of the proposed iteration DHP algorithm will be given.

2.2 Convergence analysis of the iteration DHP algorithm

Lemma 1 [41]. Define limi→∞ J [i](x(k)) = J∗(x(k)). Then J∗(x(k)), ∀k, satisfies HJB equation, i.e.,

J∗(x(k)) = inf
u(k)

{xT(k)Qx(k) + uT(k)Ru(k) + J∗(x(k + 1))}. (12)

It is clear that J [i+1](x(k)) is convergent [42], and the limitation satisfies HJB equation. Next, we will

analyze the convergence of the itaration costate function.
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Theorem 1. Define J [i+1](x(k)) as in (11) and J [0](·) = 0. Define σ[i+1](x(k)) as in (9). And σ∗(x(k))
is the optimal costate function as in (7). Then limi→∞ σ[i](x(k)) = σ∗(x(k)) holds.

Proof. According to the definitions of the costate function and the vector function derivative, we can

have

σ[i](x(k)) =
dJ [i](x(k))

dx(k)

= lim
Δx→0

J [i](x(k) + Δx)− J [i](x(k))

Δx
. (13)

Letting i → ∞, we obtain

lim
i→∞

σ[i](x(k)) = lim
i→∞

lim
Δx→0

J [i](x(k) + Δx)− J [i](x(k))

Δx

= lim
Δx→0

lim
i→∞

J [i](x(k) + Δx)− J [i](x(k))

Δx

= lim
Δx→0

J∗(x(k) + Δx)− J∗(x(k))
Δx

=
dJ∗(x(k))
dx(k)

. (14)

As σ∗(x(k)) = dJ∗(x(k))
dx(k) , so (14) can be rewritten as

lim
i→∞

σ[i](x(k)) = σ∗(x(k)). (15)

The proof is completed.

From Theorem 1, we can conclude that the DHP algorithm is convergent, which means the iteration

control law u[i](k) also converges to u∗(k). Here we give the following theorems to demonstrate the

asymptotic stability of system (1) under u∗(k).

Theorem 2. Let u∗(k) be as in (5) and J∗(x(k)) be as in (4). Then the optimal control u∗(k) stabilizes
the system (1) asymptotically.

Proof. AsQ and R are both positive definite matrices, J∗(x(k)) is considered as the candidate Lyapunov

function.

With expression (4), we obtain

J∗(x(k + 1))− J∗(x(k)) = −{
xT(k)Qx(k) + (u∗(k))TRu∗(k)

}
� 0. (16)

So the feedback system (1) is asymptotically stable, which means that the state x(k) is convergent,

i.e., as k → ∞, x(k) → 0. The proof is completed.

Base on Theorem 2, we will prove that the costate function σ[i] is bounded.

Theorem 3. Let σ[i+1](x(k)) be as in (9) for system (1). Then there exists a constant Y > 0, such

that the norm of σ[i+1](x(k)) is bounded by Y , ∀x(k), i.e., |σ[i+1](x(k))| < Y , ∀i.
Proof. Since J [0](x(k)) = 0, we can easily know that σ[0](x(k)) = 0. So |σ[0](x(k))| < Y , for i = 0.

Suppose that |σ[j](x(k))| � Y0 < Y , for i = j. Then for i = j + 1, we have

|σ[j+1](x(k))| =
∣∣∣∣∣2Qx(k) +

(
∂F (x(k), u(k))

∂x(k)

)T

σ[j](x(k + 1))

∣∣∣∣∣
� |2Qx(k)|+

∣∣∣∣∣
(
∂F (x(k), u(k))

∂x(k)

)T
∣∣∣∣∣Y0. (17)

As the state x(k) is bounded, by Assumption 1, we have

|σ[j+1](x(k))| � |2Qx(k)|+
∣∣∣∣∣
(
∂F (x(k), u(k))

∂x(k)

)T

−BT +BT

∣∣∣∣∣Y0
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� |2Qx(k)|+ |BT|Y0

< Y. (18)

This completes the proof. So σ[i](x(k)) is convergent in the region (−Y, Y ).

Theorem 4. For system (1), let σ[i+1](x(k)) be as in (9). Then for k → ∞, we have limk→∞ σ[i](x(k)) =

0, ∀i.
Proof. For i = 0, we have σ[0](x(k)) = 0, ∀x(k). That is, limk→∞ σ[0](x(k)) = 0.

Suppose that limk→∞ σ[j](x(k)) = 0, for i = j. From Theorem 2, we have x(k) → 0 and u(k) → 0, as

k → ∞. So we can get x(k + 1) → 0, as k → ∞. Then for i = j + 1, we have

lim
k→∞

σ[j+1](x(k)) = lim
k→∞

(
2Qx(k) +

(
∂F (x(k), u(k))

∂x(k)
−B

)T

σ[j](x(k + 1))

)
+BTσ[j](x(k + 1))

� lim
k→∞

(2Qx(k)) + lim
k→∞

(BTσ[j](x(k + 1)))

= 0. (19)

On the other hand, we have

lim
k→∞

σ[j+1](x(k)) = lim
k→∞

(
2Qx(k) +

(
∂F (x(k), u(k))

∂x(k)
−A

)T

σ[j](x(k + 1))

)
+ATσ[j](x(k + 1))

� lim
k→∞

(2Qx(k)) + lim
k→∞

(ATσ[j](x(k + 1)))

= 0. (20)

So we can get

0 � lim
k→∞

σ[j+1](x(k)) � 0, (21)

which means limk→∞ σ[j+1](x(k)) = 0. Thus, we have limk→∞ σ[i](x(k)) = 0. This completes the proof.

Theorems 2–4 show that feedback system (1) is asymptotically stable under the control u∗(k). When

k → ∞, the state x(k) → 0 and the costate function σ[i](x(k)) → 0. After a comprehensive analysis of

the optimal control and the iteration costate function, the implementation method based on ESN will be

given.

3 Implementation of iteration DHP algorithm using ESN architecture

In this section, we introduce the implementation process of getting the costate function σ[i] using ESN

architecture. First, we give a brief introduction of ESN architecture.

3.1 Introduction of ESN architecture

In this paper, the ESN consists of K input units h(k) = (h1(k), h2(k), . . ., hK(k))T, N internal units

s(k) = (s1(k), s2(k), . . ., sN (k))T and L output units y(k) = (y1(k), y2(k), . . ., yL(k))
T, where k is the

time step.The basic network architecture used in this paper is as in Figure 1.

Here the connection weights for input units are denoted by Win ∈ R
N×K , the connection weights for

internal units are denoted by W ∈ R
N×N , and the connection weights for output units are denoted by

Wout ∈ R
L×(K+N+L). Wback ∈ R

N×L denotes the weights between the output units and the internal

units and is the optionally project.

The activation of internal units is updated according to

s(k + 1) = φ(Winh(k + 1) +Ws(k) +Wbacky(k)), (22)

where φ is the reservoir activation function. The output is computed by

y(k + 1) = ϕ(Wout(h(k + 1), s(k + 1), y(k))), (23)
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K input units L input units

N internal units

Figure 1 The basic ESN architecture.

Plant ESN
Iteration

control

(x, σ)

x(k) u(k)σ(k)

Figure 2 The process of DHP algorithm using ESN.

where ϕ is the output transfer function, (h(k+1), s(k+1), y(k)) is the concatenation of the input, internal,

and previous output activation vectors. Especially for k = 0, the network output is y0 = 0. In this paper,

we let y(k + 1) = ϕ(Wouts(k + 1)) for convenience.

3.2 The training process of ESN

In this paper, the ESN training process is presented as follows.

1) Give the training input/output data length T and the sequence (h(1), y(1)), (h(2), y(2)), . . .,

(h(T ), y(T )). Give randomly generated input weights Win and output back propagation weights Wback.

Give arbitrary network state s0, K, N and L.

2) Let W0 be a random internal weight matrix W0, and let a be the spectral radius of W0. Then we

have W1 = 1/aW0, and W = αW1, where 0 < α < 1. So we get the internal units weight matrix W .

3) The network is driven by the training data from 0 to T .

4) Given the washout time K0, collect the network states (s(K0), s(K0 + 1), . . ., s(T ))T for T/10 <

K0 < T , as the new row into M ∈ R
(T−K0+1)×N .

5) Collect (ϕ−1(y(K0)), ϕ
−1(y(K0 + 1)), . . ., ϕ−1(y(T )))T as the new row into U ∈ R

(T−K0+1)×L.

6) Get the output weight matrix Wout = (M−1U)T, which minimizes the the mean square training

error (MSE) between the desired output and the actual output.

7) Set the output of the ESN at y(k + 1) = ϕ(Wouts(k + 1)).

This completes the ESN training.

3.3 The implementation process of DHP algorithm

In this paper, the ESN is used for getting the costate function σ[i](x(k)) for each iteration. The process

of the algorithm implementation is as shown in Figure 2.

To implement the process of DHP algorithm, the system state is used as the input of ESN, and the

costate function σ[i](x(k)) is considered as the ESN output. First, the T pairs input/output sequences are

used to train the ESN and get the output weight matrix Wout. So for time step k, we can get σ∗(x(k)),
and u∗(k). Driving the system plant by u∗(k), we obtain x(k + 1), and repeating the training process,

we have σ∗(x(k + 1)), u∗(k + 1) and x(k + 2). When k → ∞, the state x(k) → 0, the costate function
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Figure 3 The control trajectory of system (24). Figure 4 The trajectory of σ(x(k)).
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Figure 5 The state trajectories of system (24) by the

proposed method with ESN.
Figure 6 The state trajectories of system (24) by

the method with BP.

σ[i](x(k)) → 0 and the control law u[i](k) → 0. The feedback system is asymptotically stable under the

control law u∗.

4 Simulation study

In this section, two examples are used to demonstrate the detailed processes of ESN. The first example

is a linear dynamical system. The second example is a nonlinear system.

4.1 Example 1

Consider the linear system as follows:

x(k + 1) = Ax(k) +Bu(k), (24)

where A = [ 0
0.3

0.1
−0.9 ] and B = [ 01 ].

Obviously, Assumption 1 holds for system (24). To train ESN, we select the internal units N = 100,

input units K = 2 and output units L = 2. The weight matrixes W0, Win and Wback are chosen

from (−0.15, 0.15) randomly. According to Subsection 3.2, we can get W . We select φ = tanh and

ϕ = tanh. The initial input of internal units s0 is selected from (−0.1, 0.1). Firstly, we train T = 400

pairs input/output data, and select the washout time K0 as 201. Then we can obtain Wout. After 30

times iteration, the optimal control for time step k is reached. For initial system state x(0) = [0.5;−0.5],

the system runs 20 steps. To verify the approximation effect, the mean squared training error is calculated

within 3.5e−31. So we get the control trajectory in Figure 3. Figure 4 shows that for any time step k, the

costate function σ[i](x(k)) is bounded, and it converges to zero as k → ∞. To verify the approximation

effect, the system state trajectories obtained by the proposed method with ESN are shown in Figure

5, which converge within 20 time steps. To compare the control effect, we use BP neural network as

the approximator. The initial weights of BP neural network are chosen randomly from [−0.1, 0.1], and

the learning rate is 0.02. Then for the same initial system state x(0) = [0.5;−0.5], the system state

trajectories are obtained by the method with BP neural network as in Figure 6, which converge within 60

time steps. The feedback control system in Figure 5 has a faster response speed than the one in Figure

6. Therefore, the results obtained by the algorithm in this paper are satisfactory. Obviously the ESN is

able to implement the iteration DHP algorithm and has good effect.
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Figure 7 The trajectory of σ(x(k)). Figure 8 The control trajectory of system (25).
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Figure 9 The state trajectories of system (25) by the

proposed method with ESN.
Figure 10 The state trajectories of system (25) by

the method with BP.

4.2 Example 2

Consider the following discrete nonlinear system:

x(k + 1) = F (x(k), u(k))

= f(x(k)) + g(x(k))u(k), (25)

where f(x(k)) = [ 0.7x1(k) exp (x2(k))
2

0.3(x2(k))3−0.3x1(k)
], g(x(k)) = [ 0.50.8 ].

For system (25), as the states are bounded, we can say Assumption 1 holds. In the ESN training process,

the internal units is N = 100, input units is K = 2 and output units is L = 2. The weight matrixes

W0, Win, Wback and the initial input of internal units s0 are selected from (−0.15, 0.15), respectively. We

select T = 400 pairs input/output data, and washout time K0 = 201 to train the ESN and get Wout.

The internal units activation function and output units activation function are selected as φ = tanh and

ϕ = tanh. To implement the DHP algorithm, the maximal iteration step is chosen as 30. The system

plant runs 20 steps with the initial system state x(0) = [0.5;−0.5]. The mean squared training error is

obtained within 1.4e− 31. Then we get the trajectories of the costate function σ as given in Figure 7.

They converge to zero as k → ∞. The control trajectory is shown in Figure 8. The trajectories of the

system state obtained by the proposed method with ESN are shown in Figure 9, which converge within

5 time steps. Similarly, to compare the control effect, we use BP neural network as the approximator

for system (25). The initial weights of BP neural network are chosen randomly from [−0.01, 0.01], and

the learning rate is 0.01. Then for the same initial system state x(0) = [0.5;−0.5], the system state

trajectories are obtained by the method with BP neural network in Figure 10, which converge within 20

time steps. Obviously, the response speed in Figure 9 is faster than that in Figure 10. From the figures,

we can see that the results obtained by the algorithm in this paper are more satisfactory than others.

5 Conclusion

A novel iteration DHP control scheme based on ESN architecture for a class of discrete-time nonlinear

systems was proposed in this paper. First, the iteration DHP algorithm and the convergence analysis

were given. Then, the fundamental training process of ESN, and the implementation process of DHP

algorithm are proposed. At last, the simulation examples are given to validate the presented optimal

control algorithm.
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