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Abstract In this paper, we use elliptic nets to implement the optimized Ate pairings and optimal pairings on

the Barreto-Naehrig curves with embedding degree 12. In order to do the arithmetic of elliptic curves over finite

fields with elliptic nets, we first give some basic properties of elliptic nets associated to elliptic curves over finite

fields and the expression of Miller function in terms of elliptic nets. Then we give formulae to compute some

optimized pairings with elliptic nets, which is a new method to implement pairings. This method with elliptic

nets has time complexity comparable to Miller’s algorithm and it can be optimized.
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1 Introduction

Pairings on elliptic curves have been widely applied in the construction of cyptographic protocals, such

as identity based encryption [1], the tripartite Diffie-Hellman protocol [2], short signatures [3], public

key encryption with keyword search [4]. Consequently, pairing-base cryptography has developed rapidly

[5–8]. The efficiency of pairing-based cryptography is dependent on the costly computation of pairings

[9–11]. Miller’s algorithm is often used as a polynomial time algorithm for implementing pairings. Stange

[12] introduced another method to compute Tate pairing with elliptic nets.

An elliptic net is a function satisfying a certain recurrence relation and it is a generalization of elliptic

divisibility sequences [13–15]. With elliptic nets, Stange [16] gave another view of the discrete logarithm

problem on elliptic curves, Tate pairing and Weil pairing. Hence, it is a new approach. For elliptic nets

W (a, b) with two variables, Stange gave an elliptic net algorithm for calculating W (a, 0) and W (a, 1) with

initial values and proposed an algorithm for computing Tate pairing and Weil pairing with W (a, 0) and

W (a, 1). This new algorithm has the same loop length as Miller’s algorithm and it is rapidly developing.

The computation of pairing is the bottleneck to efficient pairing-based cryptography. A main method

to optimize the pairing computation is to construct pairing with short loop length [17–20]. Hess [18]

proposed the Ate pairing with shorter loop length than Tate pairing. Moreover, some pairing friendly
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elliptic curves [21,22] are used to construct pairing. In this paper, our main task is implementing these

pairings with elliptic nets, thus offering another view of these pairings.

The remainder of the paper is organized as follows. In Section 2, we review some results of elliptic

nets, pairings, Barreto-Naehrig curves and the methods of computing Tate pairing with elliptic nets. In

Section 3, we give some properties of elliptic nets over finite fields and discuss how to compute Miller

function with elliptic nets. Then we use elliptic nets to implement the optimized pairings. Section 4

concludes the paper.

2 Preliminary

2.1 Elliptic nets

Stange [12] introduced elliptic nets to pairing computation. In this subsection we give a review of some

results of elliptic nets.

An elliptic net is a function satisfying a recurrence identity. Its definition is given below.

Definition 1. Let A be a finitely generated free Abelian group and R be an integral domain. An elliptic

net is any map W : A → R such that the following recurrence holds for all p, q, r, s ∈ A:

W (p+ q + s)W (p− q)W (r + s)W (r) +W (q + r + s)W (q − r)W (p+ s)W (p)

+W (r + s+ p)W (r − p)W (q + s)W (q) = 0.

From the definition of elliptic net, we can get W (−p) = −W (p) for any p ∈ A. In particular, W (0) = 0.

Stange [12] constructed elliptic nets associated to elliptic curves over number fields, reduced them and

got elliptic nets associated to elliptic curves over finite fields. We list the relevant notations here for the

rest of the paper.

L A number field in C

EL An elliptic curve defined over L

R The ring of integers of L

P The prime of R of good reduction for EL

k the residue field of P

δ : EL(L) −→ Ek(k) The reduction map modulo P

δ : P 1(L) −→ P 1(k) The reduction map modulo P

P = σ(P ) The reduction of a pointP on EL(L)

O The infinite point for both EL(L) and Ek(k)

In order to define elliptic nets from elliptic curves, we begin with elliptic functions. Fix a complex

lattice ∧ corresponding to the elliptic curve EL. The Weierstrass sigma function is defined by

σ(z;∧) = z
�

ω∈∧,ω �=0

�
1− z

ω

�
e−

z
ω− 1

2 (
z
ω )2 .

To obtain an elliptic net from an elliptic curve, we still need a function Ψv. The function Ψv is defined

by

Ψv(z;∧) = σ(v1z1 + · · ·+ vnzn;∧)�n
i=1 σ(zi;∧)

2v2
i
−vi
�n

j=1
vj �

1�i<j�n σ(zi + zj;∧)vivj
.

For notational simplicity, we omit the arguments (z;∧) and write Ψv for Ψv(z;∧). An important property

of Ψv is that it is an elliptic function in every variable zi; that is, Ψv can be treated as a function over

En. Then we use the same notation Ψv for Ψv(P ;E), where P ∈ En.

The following theorem describes the symmetry of variables v and z, which is helpful for computation.
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Theorem 1. Fix a lattice ∧ ⊂ C corresponding to an elliptic curve. Let v ∈ Zn and z ∈ Cn. Let T be

an n× n matrix with entries in Z and transpose TT. Then

Ψv(T
T(z);∧) = ΨT (v)(z;∧)�n

i=1 ΨT (ei)(z;∧)
2v2

i
−vi
�

n

j=1
vj �

1�i<j�n ΨT (ei+ej)(z;∧)vivj
,

where ei is a vector with the ith entry 1 and other entries 0.

We will see that under some conditions Ψv forms an elliptic net.

Theorem 2. Let O be the infinite point of EL. Let P1, . . . , Pn be n points in EL(L), where each Pi is

distinct from O. Then Ψv(P1, . . . , Pn) forms an elliptic net as a function of v ∈ Zn.

To extend the relationship between elliptic nets and elliptic curves over finite fields, we should reduce

Ψv and get elliptic nets from elliptic curve Ek.

Theorem 3. Let P1, . . . , Pn ∈ EL(L). Then for each v ∈ Zn, there exists a function Ωv such that the

following diagram commutes:

En
L(L)

δ

��

Ψv �� P 1(L)

δ

��
En

k (k)
Ωv �� P 1(k).

Furthermore div(Ωv) = δ∗(div(Ψv)).

Then we can obtain elliptic nets from the elliptic curve Ek.

Theorem 4. Let P1, . . . , Pn ∈ EL(L), where each Pi is distinct from O. Then Ωv(P1, . . . , Pn;Ek) is an

elliptic net as a function of v ∈ Zn.

In the rest of the paper, we often use WP1,...,Pn(v) to denote Ψv(P1, . . . , Pn) or Ωv(P1, . . . , Pn) and

WP1,...,Pn(v) is the elliptic net proposed by Stange.

2.2 Pairings and Miller function

Let E be an elliptic curve defined over finite field Fq, where q is a power of prime number p. Consider

a large prime r such that r|E(Fq) and denote the embedding degree k, i.e., the smallest positive integer

such that r divides qk − 1. Let t be the trace of Frobenius map. Then #E(Fq) = q + 1 − t. Let O
be the infinite point of E. Consider points P,Q,R ∈ E(Fq) and an integer a. Then the Miller function

fa,P is a rational function satisfying div(fa,P ) = a〈P 〉 − 〈[a]P 〉 − (a − 1)〈O〉. We also define functions

lP,Q, vR, gP,Q such that

div(lP,Q) = 〈P 〉+ 〈Q〉+ 〈−P −Q〉 − 3〈O〉,
div(vP ) = 〈R〉+ 〈−R〉 − 2〈O〉,

div(gP,Q) = 〈P 〉+ 〈Q〉 − 〈P +Q〉 − 〈O〉 = div

�
lP,Q

vP+Q

�
.

These functions are used to compute the Miller function.

Let P ∈ E(Fq)[r] and Q ∈ E(Fk)/rE(qk). Then the Tate pairing [23] is defined by

τ(·, ·) : E(Fq)[r] × E(Fqk)/rE(Fqk) −→ F
×
qk
/
�
F
×
qk

	r
,

(P,Q) �−→ fr,P (Q).

The computation of Tate pairing is to compute the value of Miller function fr,P at Q. Miller’s algorithm

is often used to compute fr,P (Q) and the loop length is 	log2 r
. We will introduce Ate pairing with

shorter loop length.
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Let φ be the Frobenius map of E/Fq. Then

φ : E −→ E

(x, y) �−→ (xq, yq).

Consider G1 = E[r]



ker(φ− [1]) and G2 = E[r]



ker(φ− [q]). For P ∈ G1 and Q ∈ G2, the Ate pairing

is defined by

Ate(·, ·) : G2 ×G1 −→ F
×
qk

(Q,P ) �−→ fT,Q(P )
qk−1

r ,

where T = t− 1.

The loop length of computing Ate pairing with Miller’s algorithm is 	log2 |t− 1|
. The pairing with

short loop length is what we need in pairing-based cryptography. The lower bound of the loop length

is log2 r/ϕ(k). For both security and efficiency, we should choose the right k, which is neither too big

nor too small. The elliptic curves with the right embedding degree are called the pairing friendly elliptic

curves. The Barreto-Naehrig curves [21] with embedding degree 12 are a family of elliptic curves getting

much attraction. The parameters of Barreto-Naehrig curves are given by

p(x) = 36x4 − 36x3 + 24x2 − 6x+ 1, t(x) = 6x4 + 1,

where p(x) is the size of the base field, t(x) is the trace and x is an integer.

The main algorithm to compute Tate pairing is Miller’s algorithm, which has polynomial time com-

plexity. In the following subsection, we introduce another algorithm proposed by Stange to compute Tate

pairing.

2.3 Computing Tate pairing with elliptic nets

Stange [12] gave a new approach to computing Tate pairing with elliptic nets.

Theorem 5. Let P be a r-torsion point in E(Fq) and Q ∈ E(Fqk). Then the Tate pairing can be

computed by the equation:

τ(P,Q) =
WP,Q(r + 1, 1)WP,Q(1, 0)

WP,Q(r + 1, 0)WP,Q(1, 1)
.

Then the computation of Tate pairing is converted into the computation of elliptic nets, that is, the

computation of WP,Q(a, b), where a ∈ Z and b = 0 or 1.

A double-and-add algorithm is given by Rachel Shipsey to compute terms of an elliptic divisibility

sequence. The algorithm described here is a generalization of Shipsey’s algorithm to compute WP,Q(a, b).

Let E be an elliptic curve defined overK with the equation E : y2 = x3+Ax+B, where the characteristic

of K is distinct from 2 and 3. Consider points P = (x1, x1) and Q(x2, y2) in E, where Q �= ±P . For

simplicity, we write W (a, b) for WP,Q(a, b). The initial values are given below:

W (1, 0) = 1,

W (2, 0) = 2y1,

W (3, 0) = 3x4
1 + 6Ax2

1 + 12Bx1 −A2,

W (4, 0) = 4y1
�
x6
1 + 5Ax4

1 + 20Bx3
1 − 5A2x2

1 − 4ABx1 − 8B2 −A3
	
,

W (0, 1) = W (1, 1) = 1,

W (2, 1) = 2x1 + x2 −
�
y2 − y1
x2 − x1

�2

,

W (−1, 1) = x1 − x2,

W (2,−1) = (y1 + y2)
2 − (2x1 + x2)(x1 − x2)

2.

Before computing W (a, b) with those initial values, we first introduce two basic algorithms.
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(k− 3, 0) (k− 2, 0) (k− 1, 0) (k, 0) (k + 1, 0) (k+ 2, 0) (k + 3, 0) (k + 4, 0)

(k− 1, 1) (k, 1) (k + 1, 1)

Figure 1 A block centred on k.

Definition 2. A block centred on k (shown in Figure 1) of the elliptic net W (a, b) consists of a first

vector of eight consecutive terms of the sequence W (i, 0) centred on terms W (k, 0) and W (k + 1, 0) and

a second vector of three consecutive terms W (i, 1) centred on the term W (k, 1).

Definition 3. Given a block V centred on k, Double(V ) is an algorithm that returns the block centred

on 2k.

Definition 4. Given a block V centred on k, DoubleAdd(V ) is an algorithm that returns the block

centred on 2k + 1.

With the definition of elliptic netW (a, b), Double(V ) and DoubleAdd(V ) can be calculated by formulae

below.

W (2k − 1, 0) = W (k + 1, 0)W (k − 1, 0)3 −W (k − 2, 0)W (k, 0)3,

W (2k, 0) =
W (k, 0)W (k + 2, 0)W (k − 1, 0)2 −W (k, 0)W (k − 2, 0)W (k + 1, 0)2

W (2, 0)
,

W (2k − 1, 1) =
W (k + 1, 1)W (k − 1, 1)W (k − 1, 0)2 −W (k, 0)W (k − 2, 0)W (k, 1)2

W (1, 1)
,

W (2k, 1) = W (k − 1, 1)W (k + 1, 1)W (k, 0)2 −W (k − 1, 0)W (k + 1, 0)W (k + 1, 0)2,

W (2k + 1, 1) =
W (k − 1, 1)W (k + 1, 1)W (k + 1, 0)2 −W (k, 0)W (k + 2, 0)W (k, 1)2

W (−1, 1)
,

W (2k + 2, 1) =
W (k + 1, 0)W (k + 3, 0)W (k, 1)2 −W (k − 1, 1)W (k + 1, 1)W (k + 2, 0)2

W (2,−1)
.

With Double(V ) and DoubleAdd(V ), we can compute W (m, 0) and W (m, 1) in elliptic nets. The algo-

rithm for the computation is shown in Algorithm 1.

Algorithm 1 Elliptic net algorithm

Input: Initial terms a = W (2, 0), b = W (3, 0), c = W (4, 0), d = W (2, 1), e = W (−1, 1), f = W (2,−1), g = W (1, 1) of an

elliptic net satisfying W (0, 1) = W (1, 0) = 1 and integer m = (dkdk−1 · · · d1)2 with dk = 1

Output: Elliptic net elements W (m, 0) and W (m, 1)

1. V ←− [[−a,−1, 0, 1, a, b, c, a3c− b3]; [1, g, d]]

2. for i = k − 1 down to 1 do

3. if di = 0 then

4. V ←− Double(V )

5. else

6. V ←− DoubleAdd(V )

7. end if

8. end for

9. return V [0, 3] and V [1, 1].

3 Computation of optimized pairings with elliptic nets

In this section, we will compute some optimized pairings with elliptic nets.

Theorem 6. Let v = (v1, v2, . . . , vn), where v1 = 1, v2, . . . , vn ∈ Z , P 2, P 3, . . . , Pn ∈ Ek(k) and ±P i

are all distinct and nonzero. Consider Ωv(P , P 2, . . . , Pn) as a function of P . Then

div(Ωv) =

�
−

n�
i=2

[vi]P i



−

n�
i=2

vi〈−P i〉 −
�
1−

n�
i=2

vi

�
〈O〉.
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Proof. Let Ek be the reduction modulo P and let Pi be the lifted point of Pi. In Theorem 3, we get

Ψv = Ψ(z, z2, . . . , zn;∧), where ∧ is the lattice corresponding to EL and zi is the complex number

corresponding to Pi. Consider Ψv as a function of the first variable of z. In Theorem 3, we consider

the projection of the first variable from En
L to En

k , and we still have the identity div(Ωv) = δ∗(div(Ψv)).

From the definition of Ψv, we have

Ψv(z, z2, . . . , zn;∧)

=
σ(z + v2z2 + · · ·+ vnzn;∧)

σ(z;∧)1−
�

n

i=2
vi
�n

i=2 σ(z + zi;∧)vi
�n

i=2 σ(zi;∧)
2v2

i
−
�

n

j=1
vivj �

2�i<j�n σ(zi + zj;∧)vivj
.

Then according to basic properties of σ function, we get div(σ(z;∧)) = 〈∧〉. Hence

div(Ψv) =

�
−

n�
i=2

[vi]zi + ∧



−
n�

i=2

vi〈−zi + ∧〉 −
�
1−

n�
i=2

vi

�
〈O〉.

Ψv is an elliptic function of z. Then we express divisors of the above equation as divisors of EL and get

div(Ψv) =

�
−

n�
i=2

[vi]Pi



−

n�
i=2

vi〈−Pi〉 −
�
1−

n�
i=2

vi

�
〈O〉.

Reducing this equation modulo P, we have

div(Ωv) =

�
−

n�
i=2

[vi]P i



−

n�
i=2

vi〈−P i〉 −
�
1−

n�
i=2

vi

�
〈O〉,

which finishes the proof.

From this theorem and some properties of elliptic nets, we can get the following corollary.

Corollary 1. Let v = (v1, v2, . . . , vn), where v1 = 1, v2, . . . , vn ∈ Z, P 2, . . . , Pn ∈ Ek(k) and ±P i are

all distinct and nonzero. Consider Ωv(−P , P 2, . . . , Pn) as a function of P . Then

(1) div(Ωv(−P, P 2, . . . , Pn)) = 〈�n
i=2[vi]P i〉 −

�n
i=2 vi〈P i〉 − (1−�n

i=2 vi)〈O〉 .
(2) div(Ω1,a,b(−P, P 1, P 2)) = 〈[a]P 1 + [b]P 2〉 − a〈P 1〉 − b〈P 2〉 − (1− a− b)〈O〉, where a, b ∈ Z.

(3) When P 2 is a m-torsion point, we have

div

�
1

Ω1,m,0(−P , P 1, P 2)

�
= m〈P 2〉 −m〈O〉.

Proof. (1) can be directly obtained from Theorem 6; in (1), by setting n = 3, v2 = a and v3 = b, we get

(2) immediately; (3) can be got from (2).

Theorem 7. Let v = (v1, v2, . . . , vn) , vi ∈ Z and P = (P 1, P 2, . . . , Pn), where vi ∈ Z and Pi ∈ Ek(k).

Then

Ωv(T
T(P )) =

ΩT (v)(P )�n
i=1 ΩT (ei)(P )

2v2
i
−vi
�

n

j=1
vj �

1�i<j�n ΩT (ei+ej)(P )vivj
,

where ei is a vector with the ith entry 1 and other entries 0.

Proof. This theorem can be obtained by Theorems 1 and 3.

Corollary 2. Let S, P,Q ∈ Ek(k), where S +Q �= O. Let a be an integer. Then

Ω1,a,0(S +Q,P,Q) =
Ω1,a,1(S, P,Q)

Ω1,0,1(S, P,Q)1−aΩ0,1,0(S, P,Q)a2−aΩ1,1,1(S, P,Q)a
.
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Proof. Consider

T =

�
1 0 0

0 1 0

1 0 1

�
, P = (S, P,Q), v = (1, a, 0).

This corollary follows from Theorem 7.

Theorem 8. Let a, b ∈ Z, z1, z2, z3 ∈ C and z1, z2, z1 + z2 /∈ ∧. Then
(1) Ψa,0(z1, z2) = Ψa(z1);

(2) Ψ1,a,0(z1, z2, z3) = Ψ1,a(z1, z2);

(3) Ψ1,a,1(z1, z1, z2) =
Ψ1+a,1(z1,z2)

Ψ2(z1)a
;

(4) Ψa,b(z1, z1) =
Ψa+b(z1)
Ψ2(z1)ab .

Proof. (1) and (2) can be obtained from the definition of Ψv(z);

Ψ1,a,1(z1, z1, z2) =
σ((1 + a)z1 + z2)

σ(z1)a
3−3aσ(z2)−aσ(2z1)aσ(z1 + z2)1+a

=
σ((1 + a)z1 + z2)

σ(z1)2(1+a)2−(1+a)(a+2)σ(z2)2−(a+2)σ(z1 + z2)1+a

1

σ(2z1)aσ(z1)−4a
=

Ψ1+a,1(z1, z2)

Ψ2(z1)2
,

which gives (3);

Ψa,b(z1, z1) =
σ((a+ b)z1)

σ(z1)2a
2−a(a+b)+2b2−b(a+b)σ(2, z1)ab

=
σ((a+ b)z1)

σ(z1)a
2−2ab+b2σ(2z1)ab

=
σ((a+ b)z1)

σ(z1)2(a+b)2−(a+b)2

1

[σ(2z1)/σ(z1)2
2 ]ab

=
Ψa+b(z1)

Ψ2(z1)ab
,

which gives (4).

Corollary 3. Let a ∈ Z and P1, P2, P3 ∈ Ek(k), where P1, P2 and P1 +P2 are all distinct from O. Then

(1) Ωa,0(P1, P2) = Ωa(P1);

(2) Ω1,a,0(P1, P2, P3) = Ω1,a(P1, P2);

(3) Ω1,a,1(P1, P1, P2) =
Ω1+a,1(P1, P2)

Ω2(P1)2
;

(4) Ωa,b(P1, P1) =
Ωa+b(P1)

Ω2(P1)ab
.

Proof. This corollary can be obtained by Theorem 3 and 8.

Theorem 9. Let a ∈ Z, P,Q ∈ Ek(k) and DP = 〈−Q〉 − 〈−Q− P 〉. Then

fa,Q(DP ) =
WQ,P (1 + a, 1)

WQ,P (1 + a, 0)

WQ,P (1, 0)
1+a−a2

WQ,P (2, 0)
a

WQ,P (1, 1)1−aWQ,P (2, 1)a
.

Proof. From Corollary 1, we have

div

�
1

Ω1,a,0(−S,Q, P )

�
= a〈Q〉 − 〈aQ〉 − (a− 1)〈O〉,

Consider Ω1,a,0(−S,Q, P ) as an elliptic function of S. Then

div

�
Ω1,0,0(−S,Q, P )

Ω1,a,0(−S,Q, P )

�
= a〈Q〉 − 〈aQ〉 − (a− 1)〈O〉.

Consider fa,Q(S) such that

fa,Q(S) =
Ω1,0,0(−S,Q, P )

Ω1,a,0(−S,Q, P )
.
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Compute the value of fa,Q at 〈−S〉 − 〈−S − P 〉,
fa,Q(−S)

fa,Q(−S − P )
=

Ω1,0,0(S,Q, P )Ω1,a,0(S + P,Q, P )

Ω1,a,0(S,Q, P )Ω1,0,0(S + P,Q, P )
.

From Corollary 1, we have

fa,Q(−S)

fa,Q(−S − P )
=

Ω1,0,0(S,Q, P )Ω1,a,1(S,Q, P )

Ω1,a,0(S,Q, P )Ω1,0,1(S,Q, P )1−aΩ0,1,0(S,Q, P )a2−aΩ1,b,1(S,Q, P )a
,

Let S = Q. Then

fa,Q(DP ) =
Ω1,0,0(Q,Q, P )Ω1,a,1(Q,Q, P )

Ω1,a,0(Q,Q, P )Ω1,0,1(Q,Q, P )1−aΩ0,1,0(Q,Q, P )a2−aΩ1,b,1(Q,Q, P )a
,

From Corollary 3, we have

fa,Q(DP ) =
Ω1(Q)Ω1+a,1(Q,P )/Ω2(Q)a

Ω1,a(Q,Q)[Ω1,1(Q,P )/Ω2(Q)a]1−aΩ0,1(Q,Q)a2−a[Ω2,1(Q,P )/Ω2(Q)2]a

=
Ω1(Q)Ω1+a,1(Q,P )

Ω1,a(Q,Q)Ω1,1(Q,P )1−aΩ0,1(Q,Q)a2−aΩ2,1(Q,P )a

=
Ω1(Q)Ω1+a,1(Q,P )

[Ω1+a(Q)/Ω2(Q)a]Ω1,1(Q,P )1−a[Ω1(Q)/Ω2(Q)a]a2−aΩ2,1(Q,P )a

=
Ω1(Q)1+a−a2

Ω1+a,1(Q,P )Ω2(Q)a

Ω1+a(Q)Ω1,1(Q,P )1−aΩ2,1(Q,P )a
=

Ω1+a,1(Q,P )

Ω1+a(Q)

Ω1(Q)1+a−a2

Ω2(Q)a

Ω1,1(Q,P )1−aΩ2,1(Q,P )a
.

Hence

fa,Q(DP ) =
WQ,P (1 + a, 1)

WQ,P (1 + a, 0)

WQ,P (1, 0)
1+a−a2

WQ,P (2, 0)
a

WQ,P (1, 1)1−aWQ,P (2, 1)a
,

which completes the proof.

Theorem 10. Let E be an elliptic curve defined over Fq and T = t−1. Then we have a bilinear pairing:

AteT (·, ·) : G2 ×G1 −→ F
×
qk

(Q,P ) �−→
�
WQ,P (1 + T, 1)

WQ,P (1 + T, 0)

WQ,P (1, 0)
1+q−q2WQ,P (2, 0)

q

WQ,P (1, 1)1−qWQ,P (2, 1)q

� qk−1
r

.

Proof. From [18] and Theorem 9, we have a pairing:

(Q,P ) �−→
�
WQ,P (1 + T, 1)

WQ,P (1 + T, 0)

WQ,P (1, 0)
1+T−T 2

WQ,P (2, 0)
T

WQ,P (1, 1)1−TWQ,P (2, 1)T

�qk−1
r

.

Note that T ≡ q mod r and WQ,P (1, 0),WQ,P (2, 0),WQ,P (1, 1),WQ,P (2, 1) ∈ F
×
qk
. Hence AteT (·, ·) is a

bilinear pairing.

Theorem 11. Let S be an integer such that S ≡ q mod r. Let N = gcd(sk − 1, qk − 1) > 0, L =

(sk − 1)/N and CS ≡�k−1
i=0 Sk−1−iqi mod N . Then we have a bilinear pairing:

AteS(·, ·) : G2 ×G1 −→ F
×
qk

(Q,P ) �−→
�
WQ,P (1 + S, 1)

WQ,P (1 + S, 0)

WQ,P (1, 0)
1+q−q2WQ,P (2, 0)

q

WQ,P (1, 1)1−qWQ,P (2, 1)q

�CS
qk−1
N

.

If k|#Aut(E), then

Atetwist
S (·, ·) : G1 ×G2 −→ F

×
qk
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(P,Q) �−→
�
WP,Q(1 + S, 1)

WP,Q(1 + S, 0)

WP,Q(1, 1)
q−1

WP,Q(2, 1)q

�CS
qk−1
N

.

For r � L, both AteS(·, ·) and Atetwist
S (·, ·) are nondegenerate.

Proof. From [19] and Theorem 9, we have

(Q,P ) �−→
�
WQ,P (1 + S, 1)

WQ,P (1 + S, 0)

WQ,P (1, 0)
1+S−S2

WQ,P (2, 0)
S

WQ,P (1, 1)1−SWQ,P (2, 1)S

�CS
qk−1
N

.

Note that S ≡ q mod r. The above equation still holds by substituting q for S. Therefore AteS(·, ·) is a
bilinear pairing. If k|#Aut(E), then from [19] we have

(P,Q) �−→
�
WP,Q(1 + S, 1)

WP,Q(1 + S, 0)

WP,Q(1, 0)
1+S−S2

WP,Q(2, 0)
S

WP,Q(1, 1)1−SWP,Q(2, 1)S

�CS
qk−1
N

is a bilinear pairing. Note that WP,Q(1, 0),WP,Q(2, 0) ∈ F×
q and S ≡ q mod r. Elements in F×

q and

(F×
q )

r contribute nothing to the value of the pairing. Hence the above pairing can be simplified. We have

(P,Q) �−→
�
WP,Q(1 + S, 1)

WP,Q(1 + S, 0)

WP,Q(1, 1)
q−1

WP,Q(2, 1)q

�CS
qk−1
N

;

that is, Atetwist
S (·, ·) is a bilinear pairing. When r � L, by [19], AteS(·, ·) and Atetwist

S (·, ·) are nondegenerate.
Theorem 12. Consider Barreto-Naehrig curves with embedding degree 12, which are the pairing friendly

elliptic curves. Then we have a bilinear pairing:

S(·, ·) : G2 ×G1 −→ F
×
p12

(Q,P ) �−→
��

WQ,P (1 + x, 1)

WQ,P (1 + x, 0)

WQ,P (1, 0)
1+x−x2

WQ,P (2, 0)
x

WQ,P (1, 1)1−xWQ,P (2, 1)x

�
gxQ,pxQ(P )gp3xQ,p10xQ(P )gxQ+pxQ,p3xQ+p10xQ(P )}

p12−1
r .

Proof. With [24] and Theorem 9, we can prove this theorem.

4 Conclusion

In this paper, we express Miller function in terms of elliptic nets and use elliptic nets to compute some

optimized pairings, which is a new approach to computing pairings. This method has a comparable loop

length with Miller’s algorithm. Since there is a Miller function corresponding to a pairing, elliptic nets

can be used to compute all the pairings. In the elliptic net algorithm, the cost of Double is the same

as that of DoubleAdd while the cost of DoubleAdd is almost twice that of Double in Miller’s algorithm.

Then elliptic nets can be against side channel attacks. Further, this method with elliptic nets can be

further improved and it can serve as an alternative for Miller’s algorithm. The elliptic net is a new tool

for elliptic curves, and we hope it can be applied into some areas of cryptography.
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