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Abstract This study proposes a robust video hashing for video copy detection. The proposed method, which

is based on representative-dispersive frames (R-D frames), can reveal the global and local information of a video.

In this method, a video is represented as a graph with frames as vertices. A similarity measure is proposed

to calculate the weights between edges. To select R-D frames, the adjacency matrix of the generated graph

is constructed, and the adjacency number of each vertex is calculated, and then some vertices that represent

the R-D frames of the video are selected. To reveal the temporal and spatial information of the video, all R-D

frames are scanned to constitute an image called video tomography image, the fourth-order cumulant of which

is calculated to generate a hash sequence that can inherently describe the corresponding video. Experimental

results show that the proposed video hashing is resistant to geometric attacks on frames and channel impairments

on transmission.
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1 Introduction

The fast spread of mobile devices, along with higher Internet bandwidth and cheaper storage, enables

end users to easily generate, store, and share large amounts of video content via the Internet. It is urgent

to secure copyrighted video contents from illegal use and detect them effectively. On the other hand, the

redundancy of Web video copies makes users spend significant amount of time searching for the videos

they need. Consequently, users have to repeatedly watch similar copies of videos that have been viewed

previously. This process is time-consuming as the users need to watch different versions of duplicate or

near-duplicate videos that stream over the Internet. In these cases, the detection of video copies in a

video database is one of the key issues in multimedia management.

Traditionally, watermarking techniques have been used to detect copies of images or videos [1,2]. These

techniques embed watermarks into the media. These watermarks are imperceptible and used for proving
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the authenticity of the media. However, the watermarks that are embedded into the media somewhat

distort the media. On the other hand, robust hashing techniques, also called fingerprinting, extract

the most important features of the media to calculate compact digests that allow for efficient content

identification without modifying the media.

In robust video hashing, the hash sequence is typically a short binary string taken as a persistent

fingerprint of the corresponding video. A video hash sequence is a digest of the video content. Moreover,

the video hash sequence is useful for the multimedia domain, because the same video content often

exists in various forms, e.g., different file formats and quality levels, etc. The ability of video hashing

to assign the same hash sequence to all versions makes it a promising solution for multimedia content

identification. The hash sequence is compact, and thus, searching through hash sequences is more efficient

than comparing video files directly.

A robust video hashing H that is sensitive to a secret key K can be described as follow:

1) H(K,V ) is uncorrelated with H(K,V ′) when two videos V and V ′ are dissimilar;

2) H(K,V ) is strongly correlated with H(K,Va) when V and Va are similar in content; and

3) H(K,V ) is uncorrelated with H(K ′, V ) when K �= K ′.
The key is important for video identification and it is owned by video management institutions.

This study proposes a robust video hashing for video copy detection. The major contributions of this

work are as follows:

1) A new notion called representative-dispersive frames (R-D frames) and a method to select these

frames are proposed. The video can be equivalent to a complete undirected weighted graph with frames

as the vertices and frame similarities as the edges. Hence, some graph algorithms can be applied to

the video. R-D frames contain two types of frames. The first type consists of representative frames

representing the main information of the video. The second type consists of dispersive frames dispersed

in different parts of the video. These dispersive frames represent the local structure of the video. An

adjacency matrix is constructed and adjacency numbers of vertices are calculated in the weight graph

mapped from the video to select the R-D frames.

2) A new method of hash generation using video tomography image is proposed. The temporal and

spatial information of videos are very important, and the video tomography image can mix the spatial

and temporal information together. The R-D frames are scanned to construct a video tomography image,

and the global feature extracted from the video tomography image generates a hash sequence. This hash

sequence is robust to temporal modification of videos because the temporal modifications, such as frame

loss and inserting, can only influence a minimum amount of the local information of the tomography

image.

2 Related work

Content-based video identification uses the content of the video to calculate a unique signature based on

various video features. Joly [3] presented a copy retrieval scheme based on local features and used the

features of key frames that had strong intensity in global motion. A video signature based on the centroid

of gradient orientations was proposed in [4], which was robust against various common video processings

including lossy compression and frame rate change but was vulnerable to geometric transformations.

These methods more or less omitted the temporal variation in video to a certain extent. Therefore,

some researchers combined the spatiotemporal and motion characteristic, and introduced the concept of

robust hashing, wherein the similarity of robust hash sequences was taken as the measure of multimedia

file identification, such as images and videos. Zhou et al. [5] partitioned the brightness of the video

into blocks and used the partial differential characteristics of blocks with a new similarity measure to

generate video hashes. Coskun et al. [6] proposed two robust hash algorithms based on the discrete

cosine transform (DCT) for the identification of video copies. A method for modifying Coskun’s method

was proposed in [7]. This method generated video hashes based on temporally informative representative

images-DCT (TIRI-DCT). Law et al. [8] combined spatial feature points with the trajectory of interested

points to obtain robust hash. Xiang [9] proposed a robust hashing algorithm by using video luminance
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Figure 1 Framework of proposed method.

histogram in shape, which was robust to common geometric distortions and video processing operations.

Li [10] extended image hashing to video hashing and proposed a frame hash-based video hash construction

framework. Manifold learning-based video identification methods were proposed in [11,12]. Researchers

investigated video identification from different perspectives to improve its performance. Zhao et al. [13]

presented a frame fusion-based copy detection approach, which converted video copy detection to frame

similarity search and frame fusion under the assumption of temporal consistency. Douze [14] introduced

a video copy detection system that efficiently matched individual frames and then verified their spatio-

temporal consistency. Sun [15,16] proposed a video hashing algorithm with weighted matching based on

visual saliency, in which the weighted hash matching was defined in video hashing for the first time.

Current video hashing methods mostly extend hashing techniques that have been developed for images.

A video sequence generates hash with large dimensionality because it is composed of many frames, making

the database search computationally costly. To overcome this drawback, key frames are selected from

video and then fed to video hashing. However, the selection of key frames mainly depends on shot

boundary detection and sensitive camera parameters. The current study proposes a graph-based method

to select key frames called R-D frames to overcome the drawback discussed above. The R-D frames

are different from key frames as they represent not only the main contents of a video but also its local

information. Moreover, the selection of R-D frames is based on graph theory and is more robust than the

current shot boundary-based key frame selection. Another drawback of key frames-based video hashing

is the sensitivity of the key frames to frame drop and noise. In the proposed algorithm, the R-D frames

are mixed into a tomography image to generate video hashes. Therefore, a small drop in the number

of frames does not change the content of the tomograph image, and hence the hashes can be extracted

correctly.

3 Proposed algorithm

Figure 1 illustrates the flowchart of the proposed approach. First, the preprocessing is applied to videos

to obtain a fix number of frames. Then, the video is mapped to an undirected weight graph called

spatiotemporal graph based on a graph model. In this process, a similarity criterion based on spatiotem-

poral information is selected to calculate the weights of the edges. Some vertices were selected based on

adjacency matrix of the obtained graph. According to the selected vertices, the corresponding frames are

selected to constitute R-D frames, and then a tomography image is constructed using these R-D frames.

Finally, a robust video hash sequence from the obtained image is generated for matching.

3.1 Preprocessing

Preprocessing is used to resist to the changes in frame size and frame rate. The input video sequence

F (w, h, n) is first converted to a standard video signal F (144, 176, 10) in the experiments via smoothing

and subsampling, where w is the frame width, h is the frame height (w = 144 and h = 176 are the sizes of
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QCIF sequences widely used in the video processing community), and n is the frame rate. The changes

in resolution do not alter the content of video, and thus preprocessing is feasible.

3.2 Representative-dispersive frames

This subsection discusses the R-D frames. The video frames are taken as vertices of a graph, and then

the mature graph theory is used to search for the R-D frames.

3.2.1 Graph model of video

A video is represented as a weighted, undirected graph called spatiotemporal graph of the video. Let

G = (V,E,W ) denote the spatiotemporal graph, where V and E are vertex set and edge set, respectively,

and W = (wij) is the weight matrix of the edges. Given that spatial similarity and temporal similarity

are two important elements used for calculating the weight, an exponential function that measures the

weight can be expressed as follows:

wij = exp (−k · sim(i, j) · |fj − fi|) , (1)

where k is an importance factor used to avoid too small value of exponent, and is set at 10 in the

experiments, sim(i, j) is the luminance similarity, and |fj − fi| is the time difference between the ith and

jth frames.

According to Eq. (1), the weight computation considers both the luminance similarity and temporal

frame distance, and thus, it is called the spatiotemporal graph.

Certain features, such as pixel values and texture, are used to calculate sim(i, j). However, luminance

histograms are used to calculate spatial similarity because they can well describe the distribution of pixels

and exhibits good robustness. The pixel set of each frame is first denoted by P , and then the luminance

similarity sim(i, j) is calculated as

sim(i, j) = maxmin
u∈P

{Hi(u), Hj(u)}, (2)

where Hi(u) and Hj(u) are the normalized luminance histogram values of the ith and jth frames, respec-

tively.

Then, the graph is further simplified by removing edges that exceed a certain threshold. The threshold

t is set to the mean of all the weights of the edges in the experiments. The obtained graph is used to

select R-D frames.

3.2.2 Representative-dispersive frame selection

The selection of R-D frames is based on the spatiotemporal graph model. The frames of a video can

be taken as vertices of the corresponding graph; therefore, finding R-D frames in the video is similar to

finding representative and dispersive vertices in the obtained graph. Some classic algorithms in graph

theory can be used in such process.

Two definitions are listed as follows.

Adjacency matrix: A matrix R = {rij}N×N is called adjacency matrix of spatiotemporal graph G,

where N is the number of vertices in the graph. rij = 1, when eij ∈ E; otherwise, rij = 0. In particular,

rii = 1.

Therefore, the elements of adjacency matrix are 1 or 0.

Adjacency number: Given an adjacency matrix R, the adjacency number si of the ith vertex in graph

G can be expressed as si =
∑

j rij .

The selection of representative frames searches for the vertices that are of larger adjacency numbers

in the graph, given that more vertices are adjacent to them. The detection algorithm is based on the

following two-step model:

1) Construct an adjacency matrix R = (rij)N×N of the spatiotemporal graph G.
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2) Calculate the adjacency number of each vertex, and then save the adjacency numbers as a set

A = {a1, a2, . . . , aN}. The adjacency number of each vertex is compared with a threshold to determine

whether the frame the vertex represents is a representative frame or not. If the adjacency number ai
is larger than a given threshold, then the ith frame is considered as a representative frame. A globally

automatic threshold is introduced in the proposed scheme. Let μa and σa denote the mean and the

standard deviation of the adjacency number set, and set the threshold at μa+aσa, where a is a constant,

set at 0.3.

Dispersive frame selection aims to locate the frames that are dispersed in different parts of a video.

Dispersive frames should be as different from one another as possible because they each represent the

local property of a corresponding part of a video. To do so, the vertices that represent dispersive frames

in the spatiotemporal graph should be disconnected.

In graph theory, a subset S of V is called an independent set of G if no two vertices of S are adjacent in

G. Therefore, the corresponding vertices of the dispersive frames form an independent set. As is known,

the independent set is not unique for the graph, neither is the dispersive frames set. Thus, a heuristic

method is proposed to obtain a unique set of dispersive frames. This method aims to find an independent

set that may not be a maximum but is unique. The process consists of the following two steps:

1) Calculate the adjacency number of each vertex in the adjacency matrix R. If the adjacency number

of the ith row is the biggest, then convert every element of the ith row and ith column to zero.

2) Repeat 1) until the biggest adjacency number in the matrix R is 1; that is, the corresponding

vertices of G whose adjacency numbers are 1 are only joined by themselves. After which, an independent

set in the graph is obtained, and the vertices in this set correspond to the dispersive frames.

Consequently, the R-D frames of the video are obtained using the algorithms above. In the R-D frames,

the representative frames represent the entire main information of the video, while the dispersive frames

reveal the local properties of the video.

The robustness of the selection of the R-D frames depends on the robustness of the edge weights in

the spatiotemporal graph. Assume Δs (without loss of generality, let Δs > 0 ) is the change after some

spatial modifications on the videos. Then, the weight w′
ij after spatial modifications can be expressed as

follows:

w′
ij = exp (−k · (sim(i, j) + Δs) · |fj − fi|) . (3)

The ratio of change to weight Δrw is given by

Δrw =
w′

ij − wij

wij
=

exp(−k · sim(i, j) · |fj − fi|)(exp(−k ·Δs · |fj − fi|)− 1)

exp(sim(i, j) · |fj − fi|)
= exp(−k ·Δs · |fj − fi|)− 1. (4)

Given that k = 10 and the minimum of |fj − fi| is 0.1, as calculated based on the frame rate, we have

Δrw = exp(−k ·Δs · |fj − fi|)− 1 � exp(−Δs)− 1 � Δs, (5)

where Δs is a small value and the change ratio of weight is even smaller according to (5). Similar

results can also be obtained under temporal modifications. Furthermore, the binarization of weights

enhances the robustness of the graph as well. Therefore, the selection of R-D frames not only contains

the spatiotemporal information of a video but also provides robustness against minor modifications.

The size of the adjacency matrix is somewhat large for computation because videos consist of many

frames. However, the adjacency matrix is a sparse matrix with numerous zeros, and thus, the complexity

of storage and computation is reduced dramatically.

3.3 Hash generation

This subsection discusses the process of hash generation based on R-D frames, which includes video to-

mography image generation and hash computation. The feature of video is extracted from the tomography

image, and then hash values are generated by this feature through hash computation.
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Figure 2 The process of generating a video tomography image.

3.3.1 Video tomography image

The generation of a hash sequence from each R-D frame is difficult because the number of R-D frames

remains substantial even when it is smaller than the number of frames. Moreover, the hash sequence

may vary when some R-D frames are lost under temporal modifications. Thus, a new image called video

tomography image is generated from all R-D frames, and the high-order cumulant of R-D frames, which

is a global feature and is robust to common modifications, is used to calculate the hash sequence.

Video tomography is an image obtained by projecting a certain horizontal or vertical line in each

video frame into one image, as described in [17]. Video tomography has been primarily explored for

summarization and camera work detection in movies. Video tomography transforms a video sequence

composed of a 3D data set (a time sequence of 2D frames) into a 2D image. A tomography image is

obtained by taking a fixed line from each of the frames in a clip and then arranging them from top to

bottom or left to right. For example, let V = {f1, f2, . . . , fn} denote a video with n frames and take the

brightness component of each frame fk as an image with size w × h. The brightness of the pixel (i, j)

is denoted by fk(i, j), where i and j are the coordinates of the row and column, respectively. The video

tomography of V is an image I of size n× w such that

I (:, k) = [diag(fk), idiag(fk)]
T, 1 � k � n, (6)

where diag(fk) and idiag(fk) are diagonal elements in two directions, as shown in Figure 2.

Determining the feature selected by the video tomography image is important for video copy detection.

A direct selection is concerned with the pixels of the image, but these pixel are fragile and are altered

after modifications. Hence, a more robust feature should be applied. This study uses the fourth-order

cumulant as the feature of the video tomography image.

Cumulant is a quantity in statistics that measures deviation from Gaussian and is often used for

evaluating the non-Gaussianity of a signal. The r-order cumulant of a zero-mean stationary process X is

CrX , which is generally called high-order cumulant when r � 3.

Supposing zero-mean random variables X and Y are independent and Y is Gaussian, according to the

properties of high-order cumulant, we have

Cr(X+Y ) = CrX + CrY = CrX , r � 3. (7)

The Gaussian noise can be separated by high-order cumulant. Content-preserving modifications, such

as lossy compression, scaling, and low-pass filtering, can be modeled as Gaussian noises added to the

content of a video [18] as they do not change the perceptual content of the video. Therefore, the content-

preserving modifications can be separated when the higher-order cumulant is taken as the feature of

video content. A robust feature can be constructed from a video tomography image by using a high-order

cumulant.

In this study, the fourth-order cumulant is used as the feature of the video tomograph image defined
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as follows:

C4X(k, l,m) = E{X(n)X(n+ k)X(n+ l)X(n+m)}
−C2X(k)C2X(l −m)− C2X(l)C2X(k −m)− C2X(m)C2X(k − l), (8)

where E(·) is a mathematical expectation and C2X is the second-order cumulant denoted by C2X(k) =

E{X(n)X(n+ k)}.
Given that fourth-order cumulant are three-dimensional, they are only calculated along a line by setting

l and m to zero in (8) to obtain a compact hash.

The fourth-order cumulant of the luminance component in a video tomography image is calculated and

is considered as the feature of the tomography image. However, this cumulant contains excessive cumulant

coefficients with some redundancy. Therefore, DCT is applied and then the largest M coefficients that

contain most of the energy are selected to represent the image. Ref. [19] provided a theoretic framework

for analyzing binary hash-based content identification systems and showed that a 256-bit hash sequence

can perform well if the number of videos in a database does not exceed 230. Therefore, M is set to 256,

and the first M DCT coefficients of the fourth-order cumulant are denoted by c = {ck}1×256. The vector

c is used to generate the hash sequence and a matching tag that can reduce the matching range. Let μc

and σc be the mean value and the variance of c, respectively. In this study, the matching tag is denoted

by Tq = μc + b× σc, where b = 0.6.

3.3.2 Hash computation

A robust hash function is the key issue of the proposed scheme. In the proposed algorithm, a random

vector whose entries are uniformly distributed random variables in [0,1] is generated first, and then

the mean of the vector is subtracted from each element of the vector. Then, the vector is defined as

p = {pm}1×256 and is taken as a key.

The hash sequence h = {hm}1×256 with a threshold θ is generated as follows:

hm =

{
1, if |c

m
· pm| � θ ,

0, if |c
m
· pm| < θ,

1 � m � 256, (9)

where cm is the DCT coefficient of the cumulant. For each video, a threshold θ is calculated as follows:

θ = median(|c
m
· pm|), 1 � m � 256, (10)

where median(·) is a function for calculating the median of a vector. The hash sequence h and the

matching tag constitute the video signature s = {Tq,h} that is used to identify the video. For convenience,

the hash sequence of the corresponding video is s, even though Tq is not binary.

3.4 Video matching

The process of matching consists of two steps. First, the matching tag Tq is used to scan all matching

tags of the videos in the database, and then the hash sequences whose tag values are between Tq − ξ and

Tq + ξ (ξ = 0.2Tq) are selected to form a group that is significantly smaller than the original database.

Then, a finer matching is used to compare the query hash sequences and the sequences in the selected

group. The video is identified when the bit error rate (BER) is below a given threshold α. BER is defined

as

BER = d/l, (11)

where d is the number of different bits between the query and original hash sequences, and l is the length

of the hash sequence. For convenience, the BER can be taken as the metric since the hash sequences are

binary.

The median-based quantization used in the generation of hash sequence guarantees that the bits “1”

and “0” each represents a half of each hash sequence, respectively. The number of different values between
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Table 1 BER statistics

Modify type
BER with original (%) BER with different videos (%)

Proposed method DCT-based TIRI-based Proposed method DCT-based TIRI-based

Noises 0.41 0.48 0.76 48 51 49

Brightness 0.31 0.1 0.6 49 50 49

Media filtering 3.3 4.12 3.76 49 48 51

Frame rotation 0.01 0.01 0.43 52 49 48

Frame drop 0.52 6.79 1.61 49 50 51

Frame shift 0.19 0.29 3.75 53 51 49

Scaling 1.13 1.53 1.42 53 49 52

Compression 5.6 5.98 5.62 49 48 49

two video hash sequences is approximately half of the length of sequence in finer matching. On the other

hand, for two similar videos, the threshold α directly determines the false positive rate Pf , which is the

probability that two video sequences are incorrectly declared to be equal. A smaller α indicates a smaller

probability Pf . On the other hand, a small value of α will negatively affect the false negative probability

Pn, which is the probability that two signals are equal but unidentified. The selection of threshold can

be seen in [19,20]. In the current study, the threshold is set to 0.16.

4 Experimental results and analysis

4.1 Experimental design

The test videos downloaded from http://www.open-video.org/ were used to evaluate the performance

of the proposed video hashing. The performance of the proposed video hashing is compared with those

of the methods in [6,7,11,12], and the results are summarized in Section 2. The following two types of

experiments are designed:

1) Evaluating the robustness and discrimination. Two hundred different videos with some modifications

over the original sequences are used to evaluate the proposed scheme. The results are compared with the

methods in [6] (DCT-Based), [7] (TIRI-Based), and [11]. The mean results are shown in Figure 3 and

Table 1.

2) Evaluating the performance on precision and recall. The queries are constructed using copies of

videos in the database (some videos that were not in the database were also selected). The task of the

system is to evaluate the rate of correct returns to fingerprint queries. The precision rate Pr and recall

rate Re are defined as follows:

Pr =
Ntp

Nmp
× 100%, (12)

Re =
Ntp

Nep
× 100%, (13)

where Ntp, Nmp, and Nep represent the number of true positives, matched video clips and total video

copies, respectively. Figure 4 shows a comparison of the proposed system with those in [6,7,12] in terms

of precision and recall rates.

4.2 Experimental results

Figure 3 shows the robustness of the proposed method under different modifications, wherein the proposed

method was found to be more robust than the method in [11].

In Table 1, the matching performances of the original hashes and the hashes extracted from manip-

ulated videos are given for the proposed method and the methods in [6,7]. The BER is the rate of the
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methods in [6] and [7] under different attacks.

mismatching bits. The proposed method is below the threshold, and the BER has been improved for

almost all the video operations. In particular, the BER of the proposed method is 6% lower than that of

the method in [6] under the condition of frame dropping, indicating the better performance of the pro-

posed method under temporal modifications. The last three columns of Table 1 show the discriminability.

The BERs of the three methods with different videos in content are approximately 50% , indicating that

the proposed method has the same good discrimination as the other two methods. The process of the

determination of the BER for discrimination is described in detail in [6].
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Figure 4 shows the performances of four algorithms, including DCT-based [6], TIRI-basd [7], method

in [12], and the proposed method. The selection of the threshold α is very important for a video hash-

ing algorithm. An appropriate α can keep both the recall rate and precision rate sufficiently and high

simultaneously. In this study, an α of 0.16 was chosen as appropriate, as shown in Figure 4(a). Fig-

ure 4(a) shows the mean performances of precision and recall according to different thresholds, wherein

the proposed method was shown to outperform the methods in [6,7,12] in terms of both precision and

recall. Figure 4(b) shows the performance of recall under different attacks (threshold of 0.16), wherein all

the other three algorithms exhibit good performance on the common attacks, but the proposed method

performs better on some modifications, such as time shift and frame loss, because it generates hashes

from the tomography image, which is insensitive to temporal information. Based on the view of average

under the proposed modification, the average recall rate of proposed algorithm is 99.3%.

5 Conclusions and future research

This study presented a scheme of robust video hashing for video copy detection. In the proposed scheme,

the R-D frames are first selected based on a graph model and then projected into a video tomogra-

phy image. The hash values are generated from the cumulant coefficients of video tomography image.

Experimental results show that the proposed video hashing has good robustness and discriminability.

A preliminary study on graph model for video was conducted. However, further research is necessary.

As one of the important issues in video hashing, the definition of weights of edges in the graph model

is denoted in this study by using geometrical information. Besides geometrical information, the visual

perception of video should also be considered. In future research, we will conduct an extensive study on

the definition of weights based on visual perception.

In addition, the efficiency of indexing in a very large video dataset should be improved. As part of our

future research, we will conduct a detailed analytical study on the indexing of such scheme.
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