
. RESEARCH PAPER .
Progress of Projects Supported by NSFC

SCIENCE CHINA
Information Sciences

December 2012 Vol. 55 No. 12: 2800–2815

doi: 10.1007/s11432-012-4745-x

c© Science China Press and Springer-Verlag Berlin Heidelberg 2012 info.scichina.com www.springerlink.com

An in-depth investigation into the relationships
between structural metrics and unit testability

in object-oriented systems

ZHOU YuMing1,2, LEUNG Hareton3, SONG QinBao4, ZHAO JianJun5,

LU HongMin2, CHEN Lin1,2 & XU BaoWen1,2∗

1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210046, China;
2Department of Computer Science and Technology, Nanjing University, Nanjing 210046, China;

3Department of Computing, Hong Kong Polytechnic University, Hongkong 999077, China;
4Department of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;

5School of Software, Shanghai Jiaotong University, Shanghai 200240, China

Received June 22, 2012; accepted October 13, 2012

Abstract There is a common belief that structural properties of classes are important factors to determine

their unit testability. However, few empirical studies have been conducted to examine the actual impact of

structural properties of classes. In this paper, we employ multiple linear regression (MLR) and partial least

square regression (PLSR) to investigate the relationships between the metrics measuring structural properties

and unit testability of a class. The investigated structural metrics cover five property dimensions, including size,

cohesion, coupling, inheritance, and complexity. Our results from open-source software systems show that: (1)

most structural metrics are statistically related to unit testability in an expected direction, among which size,

complexity, and coupling metrics are the most important predictors; that (2) multivariate regression models

based on structural metrics cannot accurately predict unit testability of classes, although they are better able to

rank unit testability of classes; that (3) the transition from MLR to PLSR could significantly improve the ability

to rank unit testability of classes but cannot improve the ability to predict the unit testing effort of classes.

Keywords testability, metrics, object-oriented, testing effort, unit testing, prediction

Citation Zhou Y M, Leung H, Song Q B, et al. An in-depth investigation into the relationships between

structural metrics and unit testability in object-oriented systems. Sci China Inf Sci, 2012, 55: 2800–2815, doi:

10.1007/s11432-012-4745-x

1 Introduction

Recent years have seen an increasing interest in the testability of object-oriented software systems [1–9].

There is a common belief that, in object-oriented systems, structural properties of classes such as size,

cohesion, coupling, inheritance, and complexity are important factors to determine their unit testability

[2–5, 10, 11]. Previous research has focused on the theoretical relationships between structural metrics

used to measure these properties and the testability of object-oriented software, yet has also made the

point that these theoretical relationships need to be validated by empirical studies [10]. However, few

∗Corresponding author (email: bwxu@nju.edu.cn)

Zhou Y M, et al. Sci China Inf Sci December 2012 Vol. 55 No. 12 2801

empirical studies have so far investigated the actual impact of these structural metrics on object-oriented

software testability [1,6–9]. In practice, it is essential for software practitioners to have such quantitative

data [1]. First, managers could use them to allocate testing resources and to monitor testing activities.

Second, testers could use them to determine what code should be focused. Third, developers could use

them to identify the code that needs to be refactored for testability enhancement.

In this paper, we deeply analyze the relationships between structural properties and unit testability,

where units consist of the classes of an object-oriented software system. In this work, testability denotes

“attributes of software that bear on the effort needed to validate the software product” [11]. To identify

these relationships, we investigate most of structural metrics proposed in the literature to date, which

capture the size, cohesion, coupling, complexity, and inheritance properties of software products. More

specifically, in this study, we investigate 80 structural metrics including 8 size metrics, 24 cohesion metrics,

25 coupling metrics, 19 inheritance metrics, and 4 complexity metrics. For the analysis, we use not only

multiple linear regression (MLR) but also partial least square regression (PLSR) techniques. MLR is

the most commonly used regression technique that is easy to apply. It requires that the independent

variables have a low collinear and the number of independent variables is smaller than the number of

data points [12]. However, in software metrics data, the independent variables are often highly collinear

and sometimes even the number of independent variables is larger than the number of data points. In

this case, MLR is inappropriate or even not applicable. We hence also use PLSR in this study, as it

is especially appropriate for dealing with such data. The objective is two-fold. First, we aim to use

PLSR to build prediction models with a high accuracy. Second, we aim to introduce PLSR, a relatively

new modeling technique, to software metrics community by demonstrating its usefulness in dealing with

high dimensional and noisy data. The reason is that PLSR is little used in software metrics literature,

although it is extremely popular in various disciplines such as chemistry, economics, medicine, psychology,

and bioinformatics [12]. Based on MLR and PLSR, we attempt to answer the following questions:

(1) How are the metrics related to the effort that is required to unit test a class?

(2) Which metrics are strongly related to the effort that is required to unit test a class?

(3) How accurately do the metrics predict the effort involved in unit testing a class?

(4) Can partial least square regression models predict the effort involved in unit testing effort more

accurately than multiple linear regression models?

The rest of this paper is organized as follows. Section 2 describes the research method used in this

study, including data source, the independent variables, the dependent variable, the hypotheses about the

independent and dependent variables, and the data analysis procedure. Section 3 introduces the modeling

techniques used to build predictive models. Section 4 reports the experimental results. Section 5 concludes

the paper and outlines directions for future work.

2 Research method

In this section, we describe the systems used for this study, the dependent variable, the independent

variables, the hypotheses that we will investigate, and the data collection and analysis procedures.

2.1 Systems

The object-oriented software systems under study are Apache Ant 1.7.0 and JFreeChart 1.0.8. Ant 1.7.0

is a Java-based build tool which is being developed as a subproject of the Apache Web server. JFreeChart

1.0.8 is a Java chart library which makes it easy for developers to display professional quality charts. The

Ant 1.7.0 and JFreeChart 1.0.8 releases also respectively provide 192 and 306 test classes, each of which

tests a corresponding Java class. Each test class is a sub class of the JUnit TestCase class and hence can

be activated via the JUnit test driver. A test class can consist of a number of test cases, which may need

to use a common object structure. More specifically, a test class contains: (a) a number of test methods

with a name starting with test; and (b) the setUp and tearDown methods used to initialize and release a

common object structure (called the test fixture). In each test run, setUp and tearDown are respectively

2802 Zhou Y M, et al. Sci China Inf Sci December 2012 Vol. 55 No. 12

called before and after each test method. The purpose of this is to ensure that there is no side effect

between test runs. Each test method typically refines the test fixture, invokes the method under test,

and compares the actual results to expected results via a series of assertEquals methods. In our context,

a test class is called a unit test suite. Programmers design these test classes during development and run

them nightly. The one-to-one corresponding relationship between the test class and the tested Java class

provides a unique opportunity to investigate the relationships between the structural properties of tested

classes and their unit testability.

2.2 Independent variables

The independent variables consist of 8 size metrics, 24 cohesion metrics, 25 coupling metrics, 19 in-

heritance metrics, and 4 complexity metrics. They capture the most important structural properties

of classes in object-oriented software, including size, cohesion, coupling, inheritance, and complexity.

In [13], Briand et al. investigated a large number of size, cohesion, coupling, and inheritance metrics. We

selected the same metrics for our study, since they are the main OO metrics developed during the period

of 1990–1998. In particular, they have been extensively used in previous software engineering empirical

studies [14–19]. In addition, we included many OO metrics developed more recently [20–26]. All the

metrics are collected at the class-level.

2.3 Dependent variable

In this study, we use the size of the corresponding test class to indicate the effort involved in unit testing.

We use dLOCC (lines of code for class) to measure the size of a test class. The “d” prefixed to the name

of dLOCC denotes that it is the dependent variable in this study. dLOCC is the number of source lines of

code of a test class, where we do not count either blank lines or lines containing only comments. dLOCC

of a test class consists of two types of code: code initializing/releasing common object structures and code

executing test cases and comparing actual to expected results. As stated in [1], dLOCC reflects the test

suite size required to unit test a class. Indeed, this is the most commonly used proxy for unit testability

previous literature [1, 6–9]. Note that dLOCC is very different from SLOC. In this study, a number of

tested Java classes have associated test classes. SLOC is an independent variable, which counts source

lines of code of tested classes. However, dLOCC is a dependent variable, which counts source lines of

code of test classes.

2.4 Hypotheses

In this study, we aim to test the following hypotheses on the relationships between the metrics measuring

structural properties and unit testability.

(1) H-Size (for size metrics): A large class is likely to require more unit testing effort than a small class.

A large class contains more methods, parameters, or attributes than a small class. If a class contains

more attributes, this may increase the complexity of both the code for initializing and releasing the test

fixture and the code for examining whether a test case execution is successful. If a class contains more

methods, unit testing may require more complex test. If methods in a class contain more parameters,

this will increase the number of possible ways that methods can be invoked and consequently require

more complex test. If a class contains more lines of code, it is likely to be more difficult to understand

and test. Therefore, unit testing a large class is likely to require more effort.

(2) H-Cohesion (for cohesion metrics): A class with low cohesion is likely to require more unit testing

effort than a class with high cohesion. Weak cohesion indicates that a class may serve several unrelated

goals, which suggests inappropriate design. Encapsulating unrelated attributes/methods is likely to lead

to more complex test. Therefore, more effort is likely to be required to unit test a class with low cohesion.

(3) H-Coupling (for coupling metrics): A class with high coupling is likely to require more unit testing

effort than a class with a low coupling. A class having a high import coupling depends on many externally

provided services. When unit testing such a class, many stubs have to be developed to emulate the

behavior of any externally provided services that are not yet available. On the other hand, a class with

Zhou Y M, et al. Sci China Inf Sci December 2012 Vol. 55 No. 12 2803

high export coupling has a large influence on the system: many other classes rely on it. Such a class

will likely receive extra attention during testing and hence is also likely to require a larger test suite.

Therefore, more effort is likely to be required to unit test a class with high coupling.

(4) H-Inheritance (for inheritance metrics): A class with many ancestors/many descendents/deep in-

heritance hierarchy/many overridden methods/many overloaded methods is likely to require more unit

testing effort than a class with few ancestors/few descendents/shadow inheritance hierarchy/few overrid-

den methods/few overloaded methods. If a class has more ancestors or is situated deep in an inheritance

hierarchy, it will likely inherit more attributes/methods from its ancestors. More effort is hence likely

to be required to cover the inherited attributes/methods and the code used to examine whether a test

case execution is successful may also increase in complexity. If a class has more overridden methods, this

may increase the number of interactions between inherited and overridden methods (i.e. polymorphism).

More effort will likely be required to exercise such interactions. If a class has a greater number of over-

loaded methods, it is likely to be more difficult to understand and test. In addition, a class with more

descendents has a large influence on the system: many other classes inherit its attributes and methods.

Such a class will likely receive extra attention during testing and hence will likely require more complex

test. Therefore, it is likely that more effort is required to unit test a class with many ancestors/many

descendents/deep inheritance hierarchy/many overridden methods/many overloaded methods.

(5) H-Complexity (for complexity metrics): A highly complex class is likely to require more unit

testing effort than a low complexity class. If a class is highly complex (for example, its methods have

highly complex control flow structures and/or the interaction patterns between methods and attributes

are highly complex), it is likely to require more effort. The code used to examine whether a test case

execution is successful may also increase in complexity. Therefore, more effort is likely to be required to

unit test a highly complex class.

2.5 Data collection procedure

We used the reverse engineering tool, Understand for Java1), to collect the independent and dependent

variables for this study. Based on Understand’s Perl interface, we developed a Perl script to find tested

classes that have associated test classes. Of the 1186 Java classes in Ant 1.7.0, 192 such classes were

found. Of the 561 Java classes in JFreeChart 1.0.8, 306 such classes were found. We hence obtained

192 〈C,T〉 pairs from Ant 1.7.0 and 306 〈C,T〉 pairs from JFreeChart 1.0.8. Here, 〈C〉 is a tested Java

class and 〈T〉 is its associated test class. For each pair 〈C,T〉, we used the Perl script to collect the

independent variables from 〈C〉 and the dependent variables from 〈T〉 by accessing these two Understand

databases. We exclude 20 pairs from the 192 〈C,T〉 pairs for Ant 1.7.0 and 22 pairs from the 306 〈C,T〉
pairs for JFreeChart 1.0.8. The reason is that their tested classes have undefined cohesion metric values.

Consequently, we obtained 172 valid 〈C,T〉 pairs for Ant 1.7.0 and 284 valid 〈C,T〉 pairs for JFreeChart
1.0.8. In other words, we obtained 172 data points from Ant 1.7.0 and 284 data points from JFreeChart

1.0.8.

2.6 Data analysis procedure

At a high level, our analysis will proceed as follows:

(1) We first use univariate regression analysis to study the relationships between each of the inves-

tigated metrics and unit testing effort. The purpose of this is to identify metrics that are significantly

related to unit testing effort and to identify potentially useful predictors. For all univariate analysis,

we will examine the influential data points that could bias the result. We will use Cook’s distance as a

measure of the influence of a data point. In this study, a data point with a Cook’s distance that is greater

than 2 is regarded as an influential data point [17]. It is important to remove influential data points from

further analysis, as we want our results to be stable.

(2) We then use multivariate analysis to study the relationships between the investigated metrics and

unit testing effort when the metrics are used in a multivariate prediction model. We will use not only

1) Available from http://www.scitools.com.

2804 Zhou Y M, et al. Sci China Inf Sci December 2012 Vol. 55 No. 12

the most commonly used multiple linear regression but also a relatively new technique called partial least

square regression to build multivariate models. We have three reasons for using multivariate analysis.

First, we want to determine how well we can predict or estimate unit testing effort. Second, we want to

identify metrics that play a more predominant or significant practical role in unit testing effort prediction.

Third, we want to know whether PLSR is superior to MLR in building unit testing effort prediction

models. All results will be examined for the presence of influential data points.

(3) We apply cross-validation to estimate the predictive performance of the multivariate models when

they are applied to new data sets. We will use leave-one-out (LOO) cross-validation method. In an LOO

cross-validation, a data set consisting of n observations is divided into n parts, each part being used to

test the model built using the remainder of the data set.

3 Modeling techniques

In this section, we first introduce the two modeling techniques used in this study, multiple linear regression

and orthogonal signal correction based partial least square regression, at a high level . Then, we describe

the criteria for evaluating and comparing the prediction performance of these models.

3.1 Multiple linear regression

Multiple linear regression (MLR) is the most commonly used technique to model the linear relationship

between a dependent variable y and k independent variable xj (j = 1, . . . , k). For a data set with n data

points (i.e. sample size), the model can be written as

y = 1b0 +Xb+ e,

where 1 is an n× 1 uniform column vector (i.e. each element is 1),

y =

⎡
⎢⎢⎢⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎥⎥⎥⎦
, X =

⎡
⎢⎢⎢⎢⎢⎣

x11 x12 · · · x1k

x21 x22 · · · x2k

...
...

...

xn1 xn2 · · · xnk

⎤
⎥⎥⎥⎥⎥⎦
, b =

⎡
⎢⎢⎢⎢⎢⎣

b1

b2
...

bk

⎤
⎥⎥⎥⎥⎥⎦
, and e =

⎡
⎢⎢⎢⎢⎢⎣

e1

e2
...

en

⎤
⎥⎥⎥⎥⎥⎦
.

Here yi (i = 1, . . . , n) is the ith value of y, xij is the ith value of xj , b0 is the intercept of the regression

model, bj is the regression coefficient for xj , and ei is the ith random error term (assumed independent,

with zero mean and common variance σ2). MLR requires that (a) n > k; and (b) there are no collinearities

between the independent variables.

In this study, we use SPSS 18.02) to build MLR models. When building an MLR model, we employ

the most commonly used stepwise selection method to ensure that the model only includes important

independent variables. At the same time, we use Cook’s distance to exclude influential data points (whose

presence or absence has a strong impact on the coefficients of the model) from the model fit. In our study,

a data point with a Cook’s distance that is greater than 2 is regarded as an influential data point [17].

Also, we use VIF to examine whether the model has a high multi-collinearity. In case several independent

variables in the model have a VIF greater than 10, the one with the largest VIF will be removed [27].

This process is repeated until all the independent variables in the final model have a VIF below 10.

3.2 Partial least square regression

Partial least square regression (PLSR) is a generalization of MLR. It was first developed by Wold in the

1960s to address econometric path modeling [28] and was subsequently adopted in the 1980s for regression

problems in chemometric and spectrometric modeling [29]. The advantage of PLSR is that it can analyze

2) Available from http://www.spss.com.

Zhou Y M, et al. Sci China Inf Sci December 2012 Vol. 55 No. 12 2805

high dimensional and noisy data where the number of independent variables is comparable to or larger

than the number of data points and/or when the independent variables are highly collinear.

The underlying idea of PLSR is to successively extract a small number of components from the original

set of independent variables under two conditions: (a) these successively extracted components have

maximum covariance with the unexplained part of the dependent variable; and (b) these components are

orthogonal, i.e. they are mutually independent linear combinations of the original set of independent

variables. These components (also called factors or latent variables) then replace the original set of

independent variables to build ordinary linear regression models for the dependent variable. Consequently,

ordinary linear regression can still be performed even if the number of original independent variables is

far larger than the number of data points and/or the original independent variables are highly collinear.

One important problem for PLSR is the determination of h, i.e. how to select the proper number of

the PLS components. For a PLSR model, using more extracted components helps to improve the model

fit to the training data set. However, using too many components may cause “over-fitting”, i.e. the

model fits the training data set very well but has little or no predictive power for unknown data set. In

PLSR, the cross-validation coefficient of determination Q2 (i.e. cross-validated R2) is used to determine

the number of PLS components that should be extracted from the data.

In particular, PLSR uses a metric called variable importance in the projection (VIP) to evaluate

the influence on the dependent variable y of each independent variable xj (j = 1, . . . , k). Indeed, VIP

quantifies the influence on the dependent variable of an independent variable summed over all components

relative to the total sum of squares of the model. Since the average of squared VIP scores for all

independent variable is equal to 1, the “greater than one rule” is the most commonly used variable

selection criterion in practice [30].

Prior to generating the PLSR model, a multivariate calibration method called orthogonal signal cor-

rection (OSC) can be used to remove variation in the independent variables that is unrelated to the

dependent variable [31]. In OSC, the removed part (i.e. OSC component) is mathematically orthogo-

nal to the dependent variable. OSC cannot only improve the prediction performance [31] but also can

simplify the structure and interpretation of the resulting PLSR model [32].

In this study, we use SIMCA-P+ 12.0.13) to build PLSR models. For a given data set, SIMCA-P+

can: (a) run the OSC algorithm to pre-process the data, where the number of OSC components can be

specified by the users; (b) run the PLSR algorithm to build a PLSR model, where the number of PLS

components is automatically determined using cross-validation; (c) compute the VIP values for individual

independent variables. We use the following strategy to build the PLSR model on a data set D:

(1) Let g = min(k, 10), where k is the number of independent variables in D.

(2) Let i = 1, j = 1, and MaxQ2 = 0.

(3) Use the OSC algorithm with i OSC components to pre-processD. The resulting data set is denoted

by Di.

(4) Use the PLSR algorithm to build the PLSR model Mi based on Di. If the Q2 of Mi is larger than

MaxQ2, then assign it to MaxQ2 and let j = i.

(5) If i < g, let i = i+ 1 and return to step (3); otherwise, continue to step (6).

(6) Rebuild the PLSR model Mj with Dj on the condition that only those independent variables with

a VIP value larger than 1 are used. Repeat this step until the Q2 of Mj cannot be further improved.

3.3 Model evaluation criteria

For each model investigated on Ant 1.7.0, we will have 172 predicted values presenting the effort required

to unit test classes. For each model investigated on JFreeChart 1.0.8, we will have 284 predicted values

presenting the effort required to unit test classes. These will come from either the model fit or from

a LOO cross-validation. We will assess the performance of the models from two points of view: effort

prediction accuracy and class ranking capability.

(1) Effort prediction accuracy. We use the following criteria to evaluate the degree to which the effort

that the model predicted matches the effort actually exerted:

3) Available from http://www.umetrics.com.

2806 Zhou Y M, et al. Sci China Inf Sci December 2012 Vol. 55 No. 12

• Predicted correlation coefficient (PR). PR is the Pearson correlation coefficient between the predicted

effort and the actual effort. We use Williams’s T2 test to determine whether two models are significantly

different in terms of PR [33, 34].

• Absolute residual error (ARE). For a class i, let yi be its actual effort and ŷi the predicted effort

from the prediction model. Then, AREi = |yi − ŷi|. We use both the paired t-test and the Wilcoxon

signed-rank test to determine whether two models are significantly different in terms of their AREs.

• Magnitude of relative error (MRE). MRE is a normalized ARE. For a class i, MREi = |yi − ŷi| /yi.
We use both the paired t-test and the Wilcoxon signed-rank test to determine whether two models are

significantly different in terms of MREs.

• Prediction at level q (PRED(q)). PRED(q) = k/n, where n is the total number of classes in the

system and k is the number of classes whose MRE is less than or equal to q/100. We use McNemar’s test

to determine whether two models are significantly different in terms of PRED(q) [35]. In this study, we

let q = 25 and q = 50 because they are often used in previous literature [36].

(2) Class ranking capability. In practice, prediction models are also used rank classes. More specifically,

classes are ranked from the highest to the lowest, according to the predicted effort required to unit test

a class. In order to determine how well a prediction model ranks classes, we therefore introduce three

reference models:

• Random model—in this model, the order of the classes is completely random. A comparison of the

prediction model with the Random model indicates if following the prediction model is better than not

employing any model at all.

• Best model—in this model, the order of classes is based on their actual unit testing effort (this is the

theoretical best model). A comparison of the prediction model with the Best model gives an indication

of how far the prediction model is from being perfect.

• Simple size model—a common belief is that unit testing a large class tends to require more effort.

In practice, however, the Simple size model is often used because of its simplicity. A comparison of the

prediction model with the Simple size model gives an indication of whether it is necessary to develop

complex prediction models.

We use three complementary methods of comparison to evaluate the ranking capability of the unit

testing effort prediction models. The first method is to use an Alberg diagram to plot the percentage

of the cumulative unit testing effort against the percentage of classes that have to be analyzed when

the classes are ranked in decreasing order according to the effort predicted by the models. The second

method is to use both the paired t-test and the Wilcoxon signed-rank test to determine whether two

prediction models are significantly different in terms of class ranking capability. The third method is to

quantify the models’ ranking performance. The ranking performance of a model related to a preferred

cutoff percentile value c is defined as φ(c) = Ĝ(c)/G(c) [37], where Ĝ(c) and G(c) are respectively the

percentages of the cumulative unit testing effort accounted for by classes above c in the rankings given

by the prediction model and the Best model.

All the statistical tests used in this study are two-tailed. The level of statistical significance α provides

an insight into the accuracy of testing. The selection of α may depend on the analyst and the property

of the investigated problem. In this study, we set α = 0.05.

4 Experimental results

In this section, we report the experimental results. In Subsection 4.1, we show the results of univariate

linear regression analysis. In Subsection 4.2, we present the results of multivariate analysis using two

regression methods, namely, multivariate linear regression and partial least square regression.

4.1 Univariate analysis

In Subsections 4.1.1–4.1.5, we report the results of univariate analysis for the size, cohesion, coupling,

inheritance, and complexity metrics, respectively.

Zhou Y M, et al. Sci China Inf Sci December 2012 Vol. 55 No. 12 2807

Table 1 Univariate analysis results for size metrics

Metric
Ant 1.7.0 JFreeChart 1.0.8

N Coeff. Std. err. p-value R2 N Coeff. Std. err. p-value R2

NAIMP 172 6.239 0.832 <0.001 0.249 284 4.409 0.546 <0.001 0.188

NMIMP 172 3.023 0.406 <0.001 0.246 284 2.694 0.199 <0.001 0.395

NMpub 172 3.144 0.531 <0.001 0.171 284 2.955 0.218 <0.001 0.395

NMNpub 172 7.762 1.158 <0.001 0.209 284 12.962 1.728 <0.001 0.166

NumPara 171 2.866 0.343 <0.001 0.295 284 2.014 0.155 <0.001 0.375

SLOC 172 0.281 0.029 <0.001 0.360 284 0.238 0.017 <0.001 0.412

Stmt 172 0.426 0.045 <0.001 0.347 284 0.355 0.025 <0.001 0.414

StmtExe 172 0.661 0.069 <0.001 0.353 284 0.540 0.029 <0.001 0.406

4.1.1 Univariate analysis for size metrics

In Tables 1–5, columns “N”, “Coeff.”, “Std. err.”, “p-value”, and “R2” state for each metric the number of

observations used for univariate analysis (after excluding influential data points), the estimated regression

coefficient, the standard error, the p-value, and R2.

Table 1 presents the results for the size metrics. We make the following observations:

(1) The coefficients of all size metrics are positive and very significant. The results strongly support

the hypothesis H-Size that a large class is more likely to require more unit testing effort.

(2) All size metrics except NAIMP and NMNpub have a larger R2 on JFreeChart 1.0.8 than on Ant

1.7.0.

(3) Metrics (SLOC, Stmt, and StmtExe) available only after implementation are better predictors than

those available before implementation.

(4) SLOC and Stmt respectively have the largest R2 on Apache Ant and JFreeChart 1.0.8. Our study

shows that they are strong predictors for unit testing effort.

4.1.2 Univariate analysis for cohesion metrics

Table 2 presents the results for the cohesion metrics. We make the following observations:

(1) Many cohesion metrics have expected and significant associations with unit testing effort on both

systems. As expected, the coefficients for the inverse cohesions LCOM1 to LCOM3 are positive and

significant, those for the straight cohesion metrics Co′, Coh, CAMC, CAMCs, iCAMCs, SNHDs, and

iSNHDs are negative and significant. However, the coefficients of Co and DCD are not significant.

Overall, the results support the hypothesis H-Cohesion that a class with low cohesion is more likely to

require more unit testing effort.

(2) Although the coefficients of ICH, NHD, NHDs, and iNHDs are very significant, the positive corre-

lations between them and the dependent variable are not expected. As argued in [13], ICH is very likely

not a cohesion metric because: (a) unlike most cohesion metrics, it is based on method invocation and

pays no attention to class attributes; and (b) it is additive. NHD, NHDs, and iNHDs are based on the

number of agreements between methods on usage of parameter types. Previous research has reported that

NHD and its variants have a very strong negative correlation with CAMC [21]. This is further confirmed

by our study: on Ant 1.7.0, the Spearman correlation coefficients of NHD, NHDs, iNHDs with CAMC

are respectively −0.973, −0.942, and −0.883; on JFreeChart 1.0.8, the Spearman correlation coefficients

of NHD, NHDs, iNHDs with CAMC are respectively −0.939, −0.919, and −0.888. Our empirical results

indicate that NHD and its variants are very likely not cohesion metrics.

(3) LCOM2 has the largest R2 on Ant 1.7.0, and ICH has the largest R2 on JFreeChart 1.0.8.

4.1.3 Univariate analysis for coupling metrics

Table 3 presents the results for the coupling metrics. We make the following observations:

2808 Zhou Y M, et al. Sci China Inf Sci December 2012 Vol. 55 No. 12

Table 2 Univariate analysis results for cohesion metrics

Metric
Ant 1.7.0 JFreeChart 1.0.8

N Coeff. Std. err. p-value R2 N Coeff. Std. err. p-value R2

LCOM1 170 0.131 0.017 <0.001 0.262 284 0.033 0.003 <0.001 0.309

LCOM2 169 0.173 0.020 <0.001 0.304 284 0.034 0.003 <0.001 0.300

LCOM3 172 5.362 0.888 <0.001 0.177 284 9.127 0.643 <0.001 0.416

LCOM4 172 6.956 2.411 0.004 0.047 284 3.268 3.150 0.300 0.004

Co 172 −6.882 33.081 0.835 <0.001 284 8.874 14.251 0.534 0.001

Co′ 172 −154.095 36.447 <0.001 0.095 284 −88.172 25.206 0.001 0.042

LCOM5 172 157.492 42.578 <0.001 0.074 284 17.643 26.080 0.499 0.002

Coh 172 −190.341 37.674 <0.001 0.131 284 −110.00 31.354 0.001 0.042

TCC 172 −55.927 28.040 0.048 0.023 284 −14.224 18.762 0.499 0.002

LCC 172 2.620 24.654 0.915 <0.001 284 49.382 19.607 0.012 0.022

ICH 172 1.449 0.215 <0.001 0.211 284 1.883 0.129 <0.001 0.431

OCC 172 4.180 34.294 0.903 <0.001 284 56.146 20.747 0.007 0.025

PCC 172 -4.082 32.915 0.901 <0.001 284 71.537 19.524 <0.001 0.045

DCD 172 −52.873 28.047 0.061 0.020 284 −12.471 18.755 0.507 0.002

DCI 172 5.992 25.453 0.814 <0.001 284 58.919 19.553 0.003 0.031

CAMC 172 −237.093 49.783 <0.001 0.118 284 −321.244 65.989 <0.001 0.078

CAMCs 172 −214.075 38.911 <0.001 0.151 284 −280.872 45.442 <0.001 0.119

iCAMCs 172 −227.783 41.406 <0.001 0.151 284 −299.444 46.814 <0.001 0.127

NHD 172 236.501 42.137 <0.001 0.156 284 254.398 40.491 <0.001 0.123

NHDs 172 372.461 68.436 <0.001 0.148 284 300.087 51.997 <0.001 0.106

iNHDs 172 372.000 64.728 <0.001 0.163 284 328.168 49.435 <0.001 0.135

SNHD 172 −21.871 14.614 0.136 0.013 284 −38.209 10.813 <0.001 0.042

SNHDs 172 −55.638 25.372 0.030 0.028 284 −99.419 15.728 <0.001 0.124

iSNHDs 172 −49.185 22.814 0.032 0.027 284 −103.056 16.987 <0.001 0.115

(1) The coefficients of all coupling metrics are positive as expected and almost all of them are significant

at α = 0.05. The results strongly support the hypothesis H-Coupling that a class with high coupling is

more likely to require more unit testing effort.

(2) All export coupling metrics predict unit testing effort on Ant 1.7.0 better than JFreeChart 1.0.8.

(3) All import coupling metrics predict unit testing effort on JFreeChart 1.0.8 better than on Ant

1.7.0.

(4) OMMEC and NIH-ICP respectively have the largest R2 value on Ant 1.7.0 and JFreeChart 1.0.8.

4.1.4 Univariate analysis for inheritance metrics

Table 4 presents the results for the inheritance metrics. We make the following observations:

(1) On Ant 1.7.0, the coefficients of NOD, NMA, SPA, SPD, SP, DPD, and OVO are positive as

expected and are significant at α = 0.05. On JFreeChart 1.0.8, the coefficients of CLD, NMO, NMA,

PII, SPD, DPA, DPD, DP, and OVO are positive as expected and are significant at α = 0.05. In other

cases, the coefficients of the inheritance metrics are not significant. Therefore, the results support the

hypothesis H-Inheritance that a class with more ancestors/descendents, deeper inheritance hierarchy, or

more overridden/overloaded methods is more likely to require more unit testing effort.

(2) On Ant 1.7.0, all inheritance metrics except NMA have a small R2. On JFreeChart 1.0.8, all

inheritance metrics except NMO, NMA, and OVO have a small R2.

(3) On Ant 1.7.0, NMA has the largest R2. On JFreeChart 1.0.8, OVO has the largest R2.

Zhou Y M, et al. Sci China Inf Sci December 2012 Vol. 55 No. 12 2809

Table 3 Univariate analysis results for coupling metrics

Metric
Ant 1.7.0 JFreeChart 1.0.8

N Coeff. Std. err. p-value R2 N Coeff. Std. err. p-value R2

CBO 172 3.435 0.581 <0.001 0.171 284 2.787 0.398 <0.001 0.148

RFC 172 0.077 0.039 0.049 0.023 284 0.141 0.046 0.003 0.032

RFC1 172 0.279 0.125 0.027 0.028 284 0.152 0.050 0.003 0.032

MPC 171 1.050 0.208 <0.001 0.131 283 1.329 0.127 <0.001 0.281

MPC′ 172 0.193 0.037 <0.001 0.137 283 0.214 0.023 <0.001 0.231

DAC 172 19.409 4.710 <0.001 0.091 283 19.120 2.438 <0.001 0.180

DAC′ 172 27.301 5.906 <0.001 0.112 284 33.838 4.486 <0.001 0.168

ICP 172 0.431 0.097 <0.001 0.104 283 0.633 0.060 <0.001 0.284

IH-ICP 172 1.478 0.311 <0.001 0.117 284 1.074 0.193 <0.001 0.099

NIH-ICP 172 0.460 0.124 <0.001 0.075 283 0.928 0.078 <0.001 0.333

ACMIC 172 33.324 28.465 0.243 0.008 N/A

OCAIC 172 16.888 5.845 0.004 0.047 284 43.141 5.413 <0.001 0.184

OCAEC 172 5.246 0.995 <0.001 0.141 284 0.911 4.303 0.833 0.000

OCMIC 172 4.260 1.348 0.002 0.055 284 5.925 0.615 <0.001 0.248

OCMEC 172 1.283 0.374 0.001 0.065 284 0.687 0.408 0.094 0.010

AMMIC 172 2.398 0.532 <0.001 0.107 284 2.541 0.384 <0.001 0.134

DMMEC 171 2.034 0.690 0.004 0.049 282 0.521 0.229 0.024 0.018

OMMIC 172 1.054 0.282 <0.001 0.076 283 1.881 0.178 <0.001 0.285

OMMEC 170 0.998 0.162 <0.001 0.184 283 0.693 0.140 <0.001 0.080

CC 172 0.628 0.150 <0.001 0.094 284 0.956 0.089 <0.001 0.290

AMC 172 0.972 4.967 0.845 ¡0.001 284 6.287 2.464 0.011 0.023

UCL 172 2.686 0.583 <0.001 0.111 284 2.665 0.226 <0.001 0.329

Table 4 Univariate analysis results for inheritance metrics

Metric
Ant 1.7.0 JFreeChart 1.0.8

N Coeff. Std. err. p-value R2 N Coeff. Std. err. p-value R2

DIT 172 −4.620 6.166 0.455 0.003 284 1.747 4.843 0.719 <0.001

CLD 172 19.708 10.979 0.074 0.019 284 26.960 9.976 0.007 0.025

NOC 172 −0.004 1.483 0.998 <0.001 284 4.377 3.301 0.186 0.006

NOD 169 20.514 5.787 0.001 0.070 283 1.193 1.960 0.543 0.001

NMO 172 −0.040 3.002 0.990 <0.001 284 12.048 2.083 <0.001 0.106

NMI 172 −0.149 0.211 0.480 0.003 284 0.015 0.067 0.227 <0.001

NMA 172 3.132 0.411 <0.001 0.255 284 2.687 0.209 <0.001 0.370

SIX 172 −36.804 60.983 0.547 0.002 284 14.999 28.743 0.602 0.001

PII 172 133.409 103.080 0.197 0.010 284 131.480 53.524 0.015 0.017

SPA 172 24.012 11.066 0.031 0.027 284 0.478 14.331 0.973 <0.001

SPD 171 26.109 9.410 0.006 0.044 284 18.236 8.256 0.028 0.017

SP 172 13.791 5.680 0.016 0.034 284 13.806 7.166 0.055 0.013

DPA 172 −0.409 2.704 0.880 ¡0.001 284 6.738 1.504 <0.001 0.066

DPD 171 6.750 2.172 0.002 0.054 284 1.718 0.536 0.001 0.035

DP 172 1.701 1.204 0.160 0.012 284 2.300 0.500 <0.001 0.070

OVO 172 7.592 1.879 <0.001 0.088 282 10.352 0.725 <0.001 0.422

2810 Zhou Y M, et al. Sci China Inf Sci December 2012 Vol. 55 No. 12

Table 5 Univariate analysis results for complexity metrics

Metric
Ant 1.7.0 JFreeChart 1.0.8

N Coeff. Std. err. p-value R2 N Coeff. Std. err. p-value R2

WMC 172 1.402 0.165 <0.001 0.299 284 1.094 0.078 <0.001 0.410

CDE 172 49.750 7.053 <0.001 0.226 284 50.526 5.739 <0.001 0.216

CIE 172 41.490 6.460 <0.001 0.195 284 35.842 4.728 <0.001 0.169

CCE 172 26.709 6.755 <0.001 0.084 284 16.783 3.533 <0.001 0.074

4.1.5 Univariate analysis for complexity metrics

Table 5 presents the results for the complexity metrics. We make the following observations:

(1) The coefficients of all complexity metrics are positive as expected and are very significant. The

results strongly support the hypothesis H-Complexity that a class with high complexity is more likely to

require more unit testing effort.

(2) The metric CDE available before implementation is a better predictor than the metrics CIE and

CCE available only after implementation.

(3) WMC has the largest R2 values (0.299 and 0.410, respectively) for predicting unit testing effort.

4.2 Multivariate analysis

We apply linear regression and partial least square regression techniques to build two multivariate regres-

sion models from those metrics that show a p-value below 0.05 in the univariate analysis. These models

will allow us to: (a) investigate the feasibility of building prediction models using structural metrics and

their relative performances; (b) identify those metrics which are practical significant in terms of unit

testing effort prediction when used in combination; and (c) compare PLSR to MLR for modeling unit

testing effort. In 4.2.1, we present the multivariate regression model, including MLR and PLSR models.

In 4.2.2, we evaluate the prediction performance of these multivariate models.

4.2.1 Model fit

Table 6 (a) and (b) respectively present the results of applying MLR combined with stepwise variable

selection method on the metrics available on Ant 1.7.0 and JFreeChart 1.0.8. In this table, column “Beta”

states for each metric the standardized regression coefficient. The larger the absolute value of the Beta,

the stronger the impact of the independent variable on the effort required to unit test a class. As can

be seen, the MLR model on Ant 1.7.0 consists of six metrics: two size metric and four coupling metrics.

The most important predictor in this model is StmtExe. The R2 value is 0.540 and all the variables have

a VIF smaller than 6. The MLR model on JFreeChart 1.0.8 consists of eleven metrics: one size metric,

three cohesion metrics, five coupling metrics, and two inheritance metrics. The most important predictor

in this model is OVO. The R2 value is 0.646 and all the variables have a VIF smaller than 10. We can

see that both MLR models include StmtExe and DAC.

Table 7 (a) and (b) respectively present the results of applying PLSR combined with VIP based

variable selection method on the metrics available from Ant 1.7.0 and JFreeChart 1.0.8 that have been

preprocessed by OSC. We used ten OSC components to remove variation in the structural metrics that

is unrelated to the dependent variable on Ant 1.7.0 and nine OSC components on JFreeChart 1.0.8. As

a result, we obtained two OSC-preprocessed data sets. We used the OSC-preprocessed data sets to build

two PLSR models: one for Ant 1.7.0 and the other for JFreeChart 1.0.8, which are shown in Table 7 (a)

and (b), respectively. As can be seen, the PLSR model on Ant 1.7.0 consists of eight OSC-preprocessed

metrics: four size metrics, two cohesion metrics, one inheritance metric, and one complexity metric. The

most important predictor in this model is the OSC-preprocessed LCOM2. The R2 and Q2 values of the

model are respectively 0.731 and 0.716. The PLSR model on JFreeChart 1.0.8 includes only two OSC-

preprocessed metrics: LCOM1 and LCOM2. The most important predictor is the OSC-preprocessed

Zhou Y M, et al. Sci China Inf Sci December 2012 Vol. 55 No. 12 2811

Table 6 MLR models. (a) Ant 1.7.0; (b) JFreeChart 1.0.8

(a)

Metric Coefficient Std. err. Beta p-value

Constant 22.796 8.026 0.005

StmtExe 0.960 0.119 0.862 <0.001

NIHICP −0.526 0.189 −0.313 0.006

OCAEC 3.882 0.762 0.277 <0.001

NMNpub 2.559 1.221 0.151 0.038

UCL −2.673 1.002 −0.332 0.008

DAC′ 12.5724 6.239 0.154 0.046

(b)

Metric Coefficient Std. err. Beta p-value

Constant 18.087 10.475 0.085

OVO 8.469 0.848 0.779 <0.001

ICH 1.077 0.222 0.376 <0.001

LCOM2 −0.034 0.006 −0.545 <0.001

AMC 11.687 2.202 0.279 <0.001

PCC 40.052 13.211 0.119 0.003

DAC −3.958 1.915 −0.105 0.040

RFC −0.134 0.048 −0.169 0.006

StmtExe 0.445 0.094 0.525 <0.001

OCAIC −16.979 5.665 −0.169 0.003

DPD −1.081 0.379 −0.118 0.005

IHICP −0.481 0.227 −0.141 0.035

Table 7 PLSR models. (a) Ant 1.7.0; (b) JFreeChart 1.0.8

(a)

Metric Coefficient VIP

Constant 90.529

LCOM2 0.112 1.134

LCOM1 0.099 1.130

NMA 0.922 0.971

SLOC 0.034 0.954

NMIMP 0.785 0.953

Stms 0.043 0.949

WMC 0.059 0.945

StmsExe 0.059 0.940

(b)

Metric Coefficient VIP

Constant 111.479

LCOM1 0.040 1

LCOM2 0.043 0.999

LCOM1. The R2 and Q2 values of this model on JFreeChart 1.0.8 are respectively 0.752 and 0.747,

which is better than those of the model on Ant 1.7.0.

Table 8 presents the goodness of fit for MLR and PLSR models. We provide the PR, mean/median

ARE, mean/median MRE, PRED(25), and PRED(50) for MLR and PLSR models (indicated by the

columns). We also provide the results of statistical tests for determining whether there is a significant

difference between MLR and PLSR models on the same system (indicated by the column “p-value”).

These statistical tests include the Williams’s T2 test for comparing PRs, the paired t-test for comparing

mean AREs/MREs, the Wilcoxon signed-rank test for comparing median AREs/MREs, and the McNe-

2812 Zhou Y M, et al. Sci China Inf Sci December 2012 Vol. 55 No. 12

Table 8 Good-of-fit: Comparison of MLR and PLSR models

Ant 1.7.0 JFreeChart 1.0.8

MLR PLSR p-value MLR PLSR p-value

PR 0.735 0.855 <0.001 0.812 0.867 <0.001

ARE
Mean 44.935 37.790 0.017 38.811 34.943 0.049

Median 26.492 26.823 0.217 26.602 24.340 0.259

MRE
Mean 0.893 0.853 0.623 0.453 0.439 0.518

Median 0.431 0.428 0.684 0.310 0.265 0.368

PRED
25 0.285 0.320 0.511 0.384 0.482 0.003

50 0.541 0.547 1 0.757 0.732 0.381

Table 9 LOO cross-validation: Comparison of MLR and PLSR models

Ant 1.7.0 JFreeChart 1.0.8

MLR PLSR p-value MLR PLSR p-value

PR 0.672 0.845 <0.001 0.762 0.863 <0.001

ARE
Mean 48.494 38.946 0.005 41.757 35.275 0.004

Median 26.767 27.400 0.176 27.078 24.432 0.044

MRE
Mean 0.931 0.870 0.491 0.480 0.442 0.091

Median 0.455 0.439 0.604 0.320 0.266 0.111

PRED
25 0.273 0.308 0.551 0.373 0.475 0.002

50 0.535 0.541 1 0.715 0.732 0.583

mar’s test for comparing PREDs. A p-value below 0.05 indicates that there is a significant difference

between the MLR and PLSR models and otherwise there is no significant difference between them. As

can be seen, on both systems, the PLSR model is significantly better than the MLR model in terms of

PR and mean ARE. However, there is no significant different between them in terms of median ARE,

mean/median MRE, and PRED(50). The overall results suggest that the transition from MLR to PLSR

cannot help to significantly improve model building.

4.2.2 Model evaluation

In this section, we investigate the prediction performance of PLSR and MLR multivariate prediction

models based on LOO cross-validation. The main goal is to better understand the predictive power of

these models when they are applied to data sets other than the one from which the models were derived.

Table 9 presents the results from LOO cross-validations of MLR and PLSR dLOCC models, which

follows the same structure as Table 8. We make the following observations:

(1) For any model on Ant 1.7.0, the mean MRE is larger than 0.80, median MRE is larger than 0.40,

and PRED(25) is less than 0.35. For any model on JFreeChart 1.0.8, the mean MRE is larger than 0.4,

median MRE is larger than 0.25, and PRED(25) is less than 0.50;

(2) For the models on Ant 1.7.0, the transition from MLR to PLSR brings a significant improvement

in terms of PR and mean ARE. For the models on JFreeChart 1.0.8, the transition from MLR to PLSR

brings a significant improvement in terms of PR, mean/median ARE, and Pred(25). In addition, for all

models, the transition from MLR to PLSR does not bring a significant improvement in MRE.

By the usual effort estimation standard, the prediction performance of a model is considered good if

it has a Pred(25) equal to or larger than 0.75. From a practical perspective, the cross-validation results

indicate that (a) the unit testing effort of a class cannot be accurately predicted based on structural

metrics alone; and (b) the transition from MLR to PLSR does not significantly improve the prediction

accuracy of the effort for unit testing a class.

We next analyze class ranking capability of MLR/PLSR models. Figure 1 (a) and (b) respectively

Zhou Y M, et al. Sci China Inf Sci December 2012 Vol. 55 No. 12 2813

MLR model
PLSR model
SLOC model
Best model
Random model

0 20 40 60 80 100
0

20

40

60

80

100

%
of

dL
O

C
C

% of classes

c0

c1

c2

c3

c4

(a)

MLR model
PLSR model
SLOC model
Best model
Random model

0 20 40 60 80 100
0

20

40

60

80

100

%
of

dL
O

C
C

% of classes

c0

c1

c2

c3

c4

(b)

Figure 1 Alberg diagrams associated with MLR/PLSR models. (a) Ant 1.7.0; (b) JFreeChart 1.0.8.

shows the Alberg diagrams that compare the ranking capability of the MLR and PLSR models on Ant

1.7.0 and JFreeChart 1.0.8. On each Alberg diagram, we include three reference models: the Random,

Best, and Simple size (SLOC) models. In this context, for the Best model, the order of classes is

given by their actual dLOCC. We use SLOC as the simple size metric. The line c0, c1, c2, c3, and c4
in Figure 1, respectively, represent the percentage of the cumulative dLOCC with respect to the class

rankings produced by the Best model, the Random model, the Simple size model, the MLR model, and

the PLSR model. We make the following observations:

(1) On each Alberg diagram, c2, c3, and c4 are between c0 and c1. This indicates that all the MLR,

PLSR, and Simple size models have a better class ranking capability than the Random model;

(2) In Figure 1(a), c2 and c3 interweave, while c4 is closer to c0 than c2 and c3 to c0 in most cases. We

performed both paired t-test and Wilcoxon signed-rank test between all pairs of data values in c2 and

c3 that fall above the following representative cutoff percentile values: top 10 percent, top 20 percent,

top 30 percent, and top 40 percent. The results show that c3 is significantly better than c2 for the cutoff

point top 10 and 20 percents and there is no significant difference for the cutoff points top 30 and 40

percents. This implies that the Simple size model is better than the MLR model when ranking classes.

When similar analysis was performed on c4 and c3 or c4 and c2, the p-values for all cutoff points are less

than 0.05. This indicates that the PLSR model is significantly better than both the Simple size and MLR

models when ranking classes.

(3) In Figure 1(b), c4 is closer to c0 than c3 to c0, while c3 is closer to c0 than c2 to c0 in top ranking.

The results of both paired t-test and Wilcoxon signed-rank test on c2, c3 and c4 show that for all the

representative cutoff percentile values, the PLSR model is significantly better than the MLR model, which

is significantly better than the Simple size model, when ranking classes.

Overall, the results indicate that (a) the MLR and PLSR models both offer a significant improvement

of ranking capability over the Random model; (b) the MLR and PLSR models both offer a significant

improvement of ranking capability over the Simple size model; and (c) PLSR models offer a significant

improvement of ranking capability over MLR models.

Figure 2 (a) and (b) respectively visualize the ranking performance φ(c) of MLR and PLSR models

relative to the Best model for the representative cutoff percentile values on Ant 1.7.0 and JFreeChart

1.0.8. From Figure 2 (a) and (b), we make the following observations:

(1) All the MLR/PLSR dLOCC models and the Simple size models show an improvement of 30% in

φ(c) over the Random model when c varies between 5% and 40%;

(2) PLSR model shows an improvement in φ(c) over the MLR and Simple size (SLOC) models for all

c values between 5% and 30%. In particular, the improvement decreases with the increase of c;

(3) The best model, i.e. PLSR dLOCC code model, shows a robust and high φ(c) (> 85%) when c

varies between 5% and 40%.

The overall results indicate that: (a) when used to rank classes, even the Simple size model has

a large improvement in ranking performance over the Random model for the range of c of interest; (b)

2814 Zhou Y M, et al. Sci China Inf Sci December 2012 Vol. 55 No. 12

MLR model
PLSR model
SLOC model
Random model

0 10 20 30 40
10

30

50

70

90

Pe
rf

or
m

an
ce

φ
(c
)

% of classes (c)
(a)

MLR model
PLSR model
SLOC model
Random model

0 10 20 30 40
10

30

50

70

90

Pe
rf

or
m

an
ce

φ
(c
)

% of classes (c)
(b)

Figure 2 Ranking performance comparison of different prediction models from LOO CV. (a) Ant 1.7.0; (b) JFreeChart

1.0.8.

multivariate regression models, especially PLSR code models, can produce a high and robust class ranking

performance, even though they are inaccurate quantitative models.

5 Conclusions and future work

Based on Ant 1.7.0 and JFreeChart 1.0.8, we employed multiple linear regression technique and partial

least square regression technique to investigate the relationships between structural metrics and the re-

quired unit testing effort of classes. We analyzed 80 structural metrics, including size, cohesion, coupling,

inheritance, and complexity metrics. We find that most of structural metrics are statistically related

to unit testing effort of classes in an expected direction, among which size, complexity, and coupling

metrics are the most important predictors. We also find that they are unable to accurately predict the

required effort for unit testing a class. However, when used for unit testability ranking of classes, they

have a high ranking capability. Furthermore, our results show that the transition from MLR to PLSR

can significantly improve the capability for unit testability ranking of classes but not the prediction of

unit testing effort of individual classes. In the future work, we will replicate this study to validate the

findings using more projects and across testing frameworks. In addition, the usefulness of these metrics

for unit testability prediction may depend on the programming language used. There is, therefore, also

a need to validate our findings in other object-oriented programming languages such as C++ and C#.

Acknowledgements

This work was partially supported by National Natural Science Foundation of China (Grant Nos. 90818027,

91018005, 61272082, 61073029, 61170071, 61003020) and Hong Kong Competitive Earmarked Research Grant

(Grant No. PolyU5225/08E).

References

1 Bruntink M, Deursen A. An empirical study into class testability. J Syst Software, 2006, 79: 1219–1232

2 Binder R V. Design for testability in object-oriented systems. Commun ACM, 1994, 37: 87–101

3 Baudry B, Traon Y. Measuring design testability of a UML class diagram. Inf Software Technol, 2005, 47: 859–879

4 Jungmayr S. Improving testability of object-oriented systems. PhD dissertation. der FernUniversität in Hagen, 2003

5 Jungmayr S. Testability measurement and software dependencies. In: Proceedings of the 12th International Workshop

on Software Measurement, Magdeburg, 2002. 179–202

6 Bruntink M, Deursen A. Predicting class testability using object-oriented metrics. In: Proceedings of the 4th IEEE

International Workshop on Source Code Analysis and Manipulation, Chicago, 2004. 136–145

7 Singh Y, Saha A. A metric-based approach to assess class testability. In: Proceedings of the 9th International Confer-

ence Agile Processes in Software Engineering and Extreme Programming, Limerick, 2008. 224–225

Zhou Y M, et al. Sci China Inf Sci December 2012 Vol. 55 No. 12 2815

8 Badri L, Badri M, Toure F. Exploring empirically the relationship between lack of cohesion and testability in object-

oriented systems. In: Proceedings of International Conference on Advances in Software Engineering, Jeju Island, 2010.

78–92

9 Badri L, Badri M, Toure F. An empirical analysis of lack of cohesion metrics for predicting testability of classes. Int

J Softw Eng Appl, 2011, 2: 69–85

10 Mouchawrab S, Briand L C, Labiche Y. A measurement framework for object-oriented software testability. J Syst

Software, 2005, 47: 979–997

11 ISO. International Standard ISO/IEC 9126, Information Technology—Software Product Evaluation: Quality Charac-

teristics and Guidelines for Their Use, 1991

12 Wang H W. Partial Least Square Regression: Method and Applications (in Chinese). Beijing: National Defense

Industry Press, 1999

13 Briand L C, Wüst J, Daly J W, et al. Exploring the relationships between design measures and software quality in

object-oriented systems. J Syst Software, 2000, 51: 245–273

14 Basili V R, Briand L C, Melo W L. A validation of object-oriented design metrics as quality indicators. IEEE Trans

Softw Eng, 1996, 22: 751–761

15 Chidamber S R, Darcy D P, Kemerer C F. Managerial use of metrics for object-oriented software: an exploratory

analysis. IEEE Trans Softw Eng, 1998, 24: 629–639

16 Zhou Y, Leung H, Xu B. Examining the potentially confounding effect of class size on the associations between

object-oriented metrics and change-proneness. IEEE Trans Softw Eng, 2009, 35: 607–623

17 Subramanyan R, Krisnan M S. Empirical analysis of CK metrics for object-oriented design complexity: Implications

for software defects. IEEE Trans Softw Eng, 2003, 29: 297–310

18 Gyimóthy T, Ference R, Siket L. Empirical validation of object-oriented metrics on open source software for fault

prediction. IEEE Trans Softw Eng, 2005, 31: 897–910

19 Koru A G, Tian J. Comparing high-change modules and modules with the highest measurement values in two large-scale

open-source products. IEEE Trans Softw Eng, 2005, 31: 625–642

20 Aman H, Yamasaki K, Yamada H, et al. A proposal of class cohesion metrics using sizes of cohesive parts. In: Welzer

T, Yamamoto S, Rozman I, eds. Knowledge-based Software Engineering. Amsterdam: IOS Press, 2002. 102–107

21 Counsell S, Swift S, Crampton J. The interpretation and utility of three cohesion metrics for object-oriented design.

ACM Trans Softw Eng Methodol, 2006, 15: 123–149

22 Bansiya J, Etzkorn L, Davis C, et al. A class cohesion metric for object-oriented designs. J Object-Oriented Program,

1999, 11: 47–52

23 Miller B K, Hsia P, Kung D C. Object-oriented architecture measures. In: Proceedings of the 32nd Annual Hawaii

International Conference on System Sciences, Hawaii, 1999. 1–18

24 Benlarbi S, Melo W L. Polymorphism measures for early risk prediction. In: Proceedings of the 21st International

Conference on Software Engineering, Los Angeles, 1999. 334–344

25 Bansiya J, Davis C, Etzkorn L. An entropy-based complexity measure for object-oriented designs. Theory Pract Object

Syst, 1999, 5: 111–118

26 Badri L, Badri M. A proposal of a new class cohesion criterion: An empirical study. J Object Technol, 2004, 3: 145–159

27 Belsley D, Kuh E, Welsch R. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New

York: John Wiley and Sons Inc., 1980

28 Wold H. Soft modeling: the basic design and some extensions. In: Systems Under Indirect Observation, Vols. I and

II. Amsterdam: North-Holland, 1982. 1–54

29 Wold S, Sjöström M, Eriksson L. PLSR-regression: a basic tool of chemometrics. Chemometrics Intell Lab Syst, 2001,

58: 109–130

30 Chong I G, Jun C H. Performance of some variable selection methods when multicollinearity is present. Chemometrics

Intell Lab Syst, 2005, 78: 103–112

31 Wold S, Antti H, Lindgren F, et al. Orthogonal signal correction of near-infrared spectra. Chemometrics Intell Lab

Syst, 1998, 44: 175–185

32 Yu H, MacGregor J F. Post processing methods (PLS-CCA): simple alternatives to preprocessing methods (OSC-PLS).

Chemometrics Intell Lab Syst, 2004, 73: 199–205

33 Williams E J. The comparison of regression variables. J R Stat Soc Ser B-Stat Methodol, 1959, 21: 396–399

34 Steiger J H. Tests for comparing elements of a correlation matrix. Psychol Bull, 1980, 87: 245–251

35 Mittas N, Angelis L. Comparing cost prediction models by resampling techniques. J Syst Softw, 2008, 81: 616–632

36 Lucia A D, Pompella E, Stefanucci S. Assessing effort estimation models for corrective maintenance through empirical

studies. Inf Softw Technol, 2005, 47: 3–15

37 Khoshgoftaar T M, Liu Y, Seliya N. A multiobjective module-order model for software quality enhancement. IEEE

Trans Evol Comput, 2004, 8: 593–608

