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Abstract Software trustworthiness has become one of the key restrictions for software service quality and the

development of the software industry. However, trustworthiness attributes interlace structured and dynamical

coupling relations, which causes great barriers for trustworthiness measurements of large-scale software. Ac-

cording to the dynamical evolutionary characteristics of software trustworthiness attributes, this paper proposes

a new approach for optimizing the trustworthiness measurement in terms the kernel trustworthiness attributes,

and improves a downsize-optimized statistical analysis method for software trustworthiness attributes based on

their nonlinear relations. The improved method considerably simplifies the trustworthiness assessment of large-

scale software. Using theoretical analysis and numerical simulations, the feasibility of this method is verified

using two typical examples that illustrate the realization of the trustworthiness measurement.
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1 Introduction

As information transmission environments become more open and dynamic, research on the trustworthi-

ness of large-scale software has become increasingly crucial for the development and application of modern

software technology. Since the 1980s, IBM, Intel, Microsoft and other leading occidental enterprises and

institutions have launched correlative research on trusted computing to establish trustworthiness criteria

and theoretical platforms, such as TPM, palladium and open trusted computing [1–4]. Software trustwor-

thiness is considered to be an integrated demonstration and assessment of various attributes that affect

trusted software evolution, such as reliability, safety and security, correctness, timeliness, availability, and

maintainability [5–7]. At present, enhanced functionality and comprehensive use of large-scale software

have promoted trustworthiness attribute based research at the frontiers of information science and IT

industry [8,9].

Trustworthiness attributes of large-scale software interlace structured and dynamical coupling relations.

In particular, the nonlinear relations lead to extremely high trustworthiness complexity. Take aircraft
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control software and power grid detection software as examples. The length of the code in such software

ranges from hundreds of thousands to millions, and in general there are over 100 functions and multiple

layers of structure provided [10–12]. Currently, the majority of research on trustworthiness modeling

and measurement uses discrete methods, including the stratified estimate method, the sub-attributes

modeling method, and the key-redundancy degree method [13–15]. These methods judge trustworthiness

by separate analysis or simple synthesis of the subsections of the entire software life cycle. As a software

system evolves dynamically, certain kinds of behavioral characteristics and relationships of trustworthiness

attributes appear to be dynamic, stochastic and nonlinear, which may lead to extremely high complexity

of software trustworthiness whose analysis is beyond the applicability of the existing static and discrete

methods.

In recent years, a number of dynamic continuous models and statistical analysis methods for software

systems have been developed (see, e.g., [16,17]). For trustworthiness of large-scale software [18,19],

dynamical evolution models were initially studied by using the characteristics of the evolution process

during the whole software life cycle, and exact statistical analysis methods, dynamical quantitative indices

and assessment mechanisms for software trustworthiness have since been developed.

Although there are generic evolution models and trustworthiness measurement methods, trustworthi-

ness assessment for large-scale software is still nontrivial in practical applications. This is because all of

the attributes need to be calculated and analyzed in the measurement process. Based on the dynamical

evolutionary characteristics of software trustworthiness attributes (STAs) and using nonlinear relations

between large-scale STAs, this paper proposes a new approach for optimizing trustworthiness measure-

ment in terms of the kernel trustworthiness attributes, and establishes a downsize-optimized statistical

analysis method for STAs, which improves on the invariant measurement method [18,19]. Our method

considerably simplifies the trustworthiness assessment of large-scale software.

2 Characters of kernel trustworthiness attributes

Software trustworthiness often involves a great number of attributes. This is true, for instance, for

large-scale software systems dealing with enormous amounts of data, complex functional components,

frequent transfer of resources and high performance standards. Extensive dynamical interactions among

STAs may lead to structural complexity and nonlinear coupling relations, thus increasing the evolution

complexity of software systems. Therefore, it becomes difficult to use current measurement methods for

involved complexity analysis. For example, in the invariant-measure based statistical analysis method

[19], trustworthiness assessment relies on the calculation of the average return frequency:

μF = lim
n→∞

1

nm

n∑

v1=1

· · ·
n∑

vm=1

δξ(v1,...,vm)
(x1, . . . , xm). (1)

For this method, the multiple sum of characteristic functions and the weak limit need to be calculated,

so the level of computational complexity is exponential with respect to the number of attributes [20].

When there are more than two attributes, no direct method is available for STA measurement.

As software is an integrated body of complex systems, different attributes may exhibit different evolu-

tion behaviors and lead to different degrees of trustworthiness complexity during the software life cycle.

As STAs expand, interact and develop constantly, their trustworthiness complexity displays convergence

towards some key representative attributes. For large-scale software systems, many experimental results

and much theoretical research indicate that a few special attributes occupy the majority of trustworthi-

ness complexity [21,22]. Such attributes, which have high behavioral complexity, are more sensitive to

environmental interference, and play a definitive role in the limit of trustworthiness evolution, are called

kernel trustworthiness attributes (KTA). They are characterized as follows.

1) Active evolutions. KTAs cause the greatest trustworthiness complexity in forms of various patterns

of dynamic behavior. Since the function states and performance states of software systems keep changing

in different life stages, KTAs have corresponding complexity and multiple dynamical activities compared

with the stable states of other attributes.
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2) Sensitive to interference. As dynamical and open environments are an important trustworthiness

factor, KTAs can adequately respond to internal or external interference. Especially when the intensity

of interference is in the critical range, the stability of the evolution will fluctuate sharply to adapt.

3) Complex coupling relations. KTAs lead to a large proportion of nonlinear relations, which are the

main cause of the increase in evolution complexity of software. Due to the dynamical nonlinear relations,

the evolution complexity will inevitably converge to the KTAs marked with strong nonlinearity.

4) Declaration ability. According to dynamical system theory [21,22], the variation of KTAs is consis-

tent with the evolution trends of the whole system, and therefore the behavior of KTAs determines the

limiting states of software trustworthiness evolutions.

The characteristics discussed above suggest that KTAs may be distinct from other attributes owing

to distinguishing trustworthiness behaviors. In addition, dynamic research shows that the evolution

complexity of systems will converge to a few scales of attribute directions [21,22]. For the existence

of complexity convergence characteristics, some dynamic research results, such as the theory of central

manifolds and normal forms, solve the vector field in some lower-dimensional form that is as simple as

possible [23–25]. Therefore, KTA extraction is available, and the ideal for optimizing trustworthiness

models based on KTAs that follows could effectively decrease the scale of trustworthiness models and

considerably reduce the complexity of structure and nonlinear relations in trustworthiness assessment.

To obtain consistent trustworthiness along with complexity reduction, the dynamic kernel characteristics

should be preserved during KTA extraction. Consequently, we propose an effective optimization method

for trustworthiness measurement based on rational KTA extraction.

3 Optimization method based on software evolution and KTAs

Finding KTAs explicitly is a key step for optimization, but there are few effective methods to achieve

this. KTAs determined by the internal and external factors are the inner or natural aspects of software

systems. Hence, in this paper we will extract KTAs based on software evolution characteristics, and

optimize the statistical analysis method from a dynamical point of view, using analysis tools for complex

behavior such as higher dimensional and non-hyperbolic dynamical systems.

Let ẋ = F (x; a) be the trustworthiness evolution model of a large-scale software system with x ∈ R
n

and a ∈ R
m. According to the construction principle for trustworthiness evolution models [18], x reflects

the STAs which are internal factors, and a reflects external factors such as human interaction and survival.

The dimension n is the number of STAs under consideration, and m is the number of parameters. Thus,

the life cycle of software trustworthiness evolution can be represented by the behavior of the dynamical

system F .

Step 1. Optimization by FR-Map.

By the analysis in Section 2, KTAs possess the characteristics of active evolution, sensitivity to inter-

ference and complex coupling relations. Hence the stability of model ẋ = F (x; a) will fluctuate sharply

in the corresponding directions, which suggests an approach to extracting KTAs by stability analysis.

In general, stability analysis of dynamical systems starts with analysis around critical points [25]. Let

ϕa(t;x0) be a solution of ẋ = F (x; a) with x0 as the initial state. A point x∗ is called a critical point if

ϕa(t;x
∗) = x∗ for some t. The set L of all critical points is called a critical set. If there exists some T

which satisfies ϕa(T ;x
∗) = x∗, ϕa(t;x

∗) �= x∗ for 0 < t < T , the point x∗(∈ L) is called a periodic point

of period T . The set of all periodic points {ϕa(t;x
∗) : 0 � t � T } is called a periodic orbit. In particular,

a point of period 1 is called a singularity, for which all the STAs remain balanced and software evolves in

the same state. Given the system ẋ = F (x; a), we can obtain the critical set according to the procedure

above.

As software keeps developing in the life cycle and complex coupling relations are important charac-

teristics of KTAs, global stability analysis is necessary. This means that to extract KTAs exactly, we

should analyze not only the stability around the critical set but also the dynamic behavior of orbits

among critical points. Nevertheless, global stability analysis is not trivial, and analysis methods are often
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used to solve the global stability problem of a certain system. Thus, we cannot directly analyze the

trustworthiness of software. Considering the complexity and difficulty of global stability analysis, our

method tries to find some regularity in the global system evolution instead of solving the entire global

stability problem. By some special constructions under certain evolution regularity assumptions, we can

remove some non-KTAs and consequently gain an optimized system.

As periodicity is an obvious form of evolution regularity, we take trustworthiness models that include

periodic orbits as examples to explain our ideal optimization. Firstly, we introduce the definitions of a

transversal and an FR-Map as optimization tools.

Consider a trustworthiness evolution model ẋ = F (x; a), and a state point x∗ for which one of the

coordinate functions Fk(x
∗; a) �= 0 , with 1 � k � n. The hyperplane through x∗ formed by setting the

kth coordinate equal to a constant,

Ω = {x : xk = x∗
k} (2)

is called a transversal, because trajectories cross it around x∗.
Let ϕa(t;x0) be a solution of ẋ = F (x; a) with x0 as the initial state. Assume that ϕa(τ

∗;x∗) is in a

transversal Ω for some τ∗ > 0, and also assume that there are no other intersections of ϕa(t;x
∗) with Ω

near x∗. For x near x∗, there is a nearby time τ(x) such that ϕa(τ(x);x) is in Ω. Then

P (x) = ϕa(τ(x);x) (3)

is called the first return map (FR-Map).

Assume that x∗ is on a periodic orbit of period T . Once a transversal is constructed through x∗,
orbits which start near x∗ will come back to the transversal because of the periodicity of x∗. Thus, the

definition of the FR-Map makes sense. We now focus on the relationship between the original orbit and

the FR-Map from the aspect of stability.

Theorem 1. Consider a trustworthiness evolution model ẋ = F (x; a), x ∈ R
n and denote by ϕa(t;x0)a

solution of ẋ = F (x; a) with x0 as the initial state. Assume that x∗ is on a periodic orbit of period T . If

there is a transversal though x∗, then the n eigenvalues of Dxϕa(T ;X
∗) consist of the n− 1 eigenvalues

of DP(x∗), together with 1, where P (x) = ϕa(τ(x);x) is the FR-Map on Ω.

Proof. Assume that the FR-Map P (x) is formed for a time τ(x) such that ϕa(τ(x);x) is back in Ω.

It is obvious that

Dxϕa(T ;X
∗)F (x∗; a) = F (ϕa(T ;x

∗)) = F (x∗; a). (4)

Therefore, 1 is an eigenvalue for the eigenvector F (x∗; a).
If we take a vector v lying in Ω, we have

DP(x∗)v = Dxϕa(τ(x
∗);x∗)v +

(
∂ϕa

∂t

∣∣∣∣
(τ(x∗);x∗)

)(
∂τ

∂x

∣∣∣∣
x∗

)
v

= Dxϕa(T ;x
∗)v + F (x∗; a)(Dτ(x∗))v. (5)

In the second term,

(Dτ(x∗))v =

(
∂τ

∂x

∣∣∣∣x
∗
)
v (6)

is a scalar multiplied by the vector field F (x∗; a) and represents the change in time to return from Ω

back to Ω. Thus, if we take a vector v lying in Ω, we get

Dxϕa(T ;x
∗)v = DP(x∗)v − F (x∗)(Dτ(x∗))v. (7)

Therefore, using a basis of F (x∗; a) and n− 1 vectors along Ω, we have

Dxϕa(T ;x
∗) =

(
1 −Dτ(x∗)

0 DP(x∗)

)
(8)
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and the eigenvalues are as stated in the theorem. Note that the eigenvalue 1 results from the periodicity

of the orbit.

In dynamics research, eigenvalues are a useful approach to stability analysis. Judging from the absolute

value of eigenvalues, we can consequently estimate the stability of evolution models [23,24]. For example,

assume that x∗ is on a periodic orbit of period T . Thus, if all the eigenvalues ofDxϕa(T ;x
∗) have absolute

value less than one except for the eigenvalue equal to 1, then the orbit is asymptotically stable [26]. As

shown in Theorem 1, the eigenvalues of Dxϕa(T ;x
∗) consist of 1 and all the eigenvalues of DP(x∗). This

means that the stability of a periodic orbit is equal to that of the FR-Map.

It is obvious that the FR-Map is of n−1 dimensions while the original model is in n-dimensional space.

By constructing the FR-Map and transversal, the periodic dimension is removed while the stability is

preserved. Since we aim to extract KTAs without changing the dynamic characteristics of the evolution

models, the method using the FR-Map and transversal construction is helpful when there is a periodic

orbit.

In fact, periodicity is not a necessary condition for constructing proper FR-Maps and transversals for

non-KTA elimination. The main function of periodicity is to take the orbit back into the transversal.

Therefore, if there is a hyperplane which is a transversal for all the orbits passing through it, and all the

orbits starting from an initial point cross it and come back to it, then the FR-map method makes sense

for optimizing the trustworthiness model, no matter whether a periodic orbit exists. According to the

discussion above, we propose a general method for KTA extraction and model reduction in the following

form.

Theorem 2. Consider a trustworthiness evolution model ẋ = F (x; a), x ∈ R
n and denote by ϕa(t;x0)

a solution of with x0 as the initial state. If there is a hyperplane Ω which is a transversal for all the orbits

passing through it and all the orbits starting from an initial point cross it and come back to it, then an

FR-Map can be defined that preserves the dynamic characteristics and stability of the original model F .

Furthermore, it is not difficult for the conditions on the hyperplane Ω in this theorem to be satisfied.

Given a trustworthiness evolution model, we can construct a proper hyperplane either by phase graph

analysis or numerical simulation. Consider, for example, the following popular model [21,22]:

{
ẋ = y,

ẏ = −x2 − x3.
(9)

We can draw the phase graph (shown in Figure 1) by local stability analysis around the critical set,

and consequently find that Ω = {x = −1} is the proper hyper plane for orbits starting from any initial

point no matter whether the orbits are near periodic orbits.

Furthermore, we can simulate orbits starting with different initial points as shown in Figure 2, where

orbits starting with different initial points are drawn in distinct colors. It is obvious that we have much

more than a single choice for the proper transversal construction.

Thus, for the majority of models, trustworthiness analysis of the n-dimensional model F can be turned

into the assessment of the (n− 1)-dimensional FR-Map by the optimization method proposed above.

Step 2. Optimization by partial differential operator.

The contribution of Step 1 to optimization is indispensable but limited. Considering the computational

complexity of current trustworthiness assessment methods, the one-dimensional downsize operation is far

from the optimization demands for large-scale software. Nevertheless, the optimization in Step 1 has

turned the original differential model, which is continuous in time t, into a function that iterates in

discrete time. This considerably decreases the complexity of the analysis and leads to an approach for

further optimization by discrete systems research.

According to the discussion in the above section, to extract KTAs exactly we should carry out global

stability analysis and focus on the domain where stability of the system varies sharply. As global stability

analysis is also incalculable for most models in discrete time, we only try to distinguish some non-KTAs

from the STAs rather than identifying every KTA.
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Figure 1 Phase graph of Eq. (9) around the critical set

and corresponding transversal.

Figure 2 Orbits starting with different initial points

(drawn in distinct colors red, green and blue).

In discrete time dynamics research, partial differential operators are useful tools for stability research

near singularities, and we discuss some important stability criteria below. Learning from existing stability

analysis tools based on partial differential operators, we generalize part of the stability criteria to fulfill

the global condition, and accordingly achieve optimization of the FR-Map derived in Step 1.

Let P be a nonlinear map from R
n to R

n with coordinate functions Pi. The partial differential operator

at a point x̄ is the n× n matrix

DP(x̄) =

(
∂Pi

∂xj
(x̄)

)
=

⎛

⎜⎜⎝

∂P1

∂x1
(x̄) . . . ∂P1

∂xn
(x̄)

...
...

∂Pn

∂x1
(x̄) · · · ∂Pn

∂xn
(x̄)

⎞

⎟⎟⎠ . (10)

Each row corresponds to a coordinate function and each column to the variable used for calculation.

For a nonlinear map with a singularity or periodic point x̄, the stability criterion is illustrated assuming

that all the eigenvalues λj of D(P k)(x̄) satisfy |λj | < 1, so that the orbit through x̄ is an attractor.

To distinguish the non-KTAs, the dynamically stable directions that are dissimilar from that of the

KTAs should be removed. Referring to the local criterion for periodic points, we propose a global one

for stability determination in a certain direction.

Theorem 3. Consider an FR-Map P from R
n to R

n of a trustworthiness evolution model. Define the

directional differential operator as an n-dimensional vector

DPk(x) =

(
∂Pi

∂xk

)
=

(
∂P1

∂xk
, . . . ,

∂Pn

∂xk

)T

. (11)

If all the components of the directional differential operator satisfy |∂Pi/∂xk| < 1, 1 � i � n for any

point x on the transversal, then the FR-Map is stable in the kth direction.

As this theorem can be proved directly from the definition of the differential operator, we omit a

detailed proof.

Using Theorem 3, the stability of the FR-Map can be tested in each direction, and all the stable

directions will be distinguished fewer than n times. If all the directions are stable, then the evolution

of the original model is stable, and trustworthiness of this software can be predicted and measured. We

can then declare that the software is trustable and it is not necessary to analyze its STA by a statistical

method or to optimize the KTAs. In addition, since these stable directions may be correlated, linearly

independent directions should be selected.

Compared with the characteristics of KTAs, the linearly independent stable directions indicate non-

KTAs. Removing these directions from the FR-Map, the partial differential operator based method

considerably decreases the dimension of the trustworthiness models.

Step 3. Statistical analysis of optimized model.
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KTAs of large-scale software can be accurately extracted or confined in an area shrunk by the FR-

Map and partial differential operator based criterion, thus using theory to shed light on applications

of computer science. A downsize model can then be constructed based on the extracted KTAs, which

obviously decreases the dimensions and the analysis complexity.

The reduced simplest system can be viewed as an optimized new trustworthiness evolution model while

its trustworthiness behavior is the same with the initial one. The trustworthiness of the new models can

be assessed using current statistical analysis methods. As the dimensions of the trustworthiness model

have been greatly decreased, statistical analysis methods that are infeasible for large-scale software may

be of use.

Take the invariant-measure based statistical analysis method [19] as an example. When the number

of STAs is three or more, the method is inefficacious as the computational complexity is huge. When

there are fewer than three attributes in the new model, trustworthiness can be assessed by calculating

the average return frequency μF in Eq. (1), with the computation only involving two variables, a double

sum and a planar weak limit at most. Furthermore, the level of computational complexity decreases

exponentially.

4 Optimized statistical analysis of trustworthiness for large-scale software

In this section, by modeling two typical software trustworthiness examples, we study the optimized

method for statistical analysis of the trustworthiness of the models and compare the computational

complexity of the KTA extraction based method with the current result.

4.1 An example for general optimized analysis of trustworthiness

Consider an example of the trustworthiness model for software running in a Linux environment. In this

condition, the amount of thread, memory consumption, and CPU occupation are the most important state

quantities, which are the attributes for analyzing and predicting the software trustworthiness. Denote by

x(t)(� 0) the thread at time t, by y(t)(∈ [0, D]) the memory consumption at time t, and by D the upper

bound on the physical memory. Also, denote by z(t)(∈ [0, 1]) the CPU occupation at time t.

When the software is running separately on the system, it will perform its calculation and storage

function by setting up new thread to allocate memory and CPU resources. As the task proceeds towards

finishing, the attributes showing the task and resource situation will return to their original state at their

own speed. Assume that the relative amounts of those attributes (i.e., x′ (t) /x (t)) are respectively same

at different times and that the ratios are denoted by the parameters a, b and c.

When there is other software running collaterally or the system is attacked by a virus or malicious

code, the system will postpone some tasks to conserve resources. Obviously, some threads will be in wait

and three attributes will interact and restrict each other: the more threads there are, the more tasks

should be treated, so more memory and CPU resources are needed; simultaneously, the more memory is

consumed, the slower is the performance speed, so more threads will be in wait and the amount of thread

and CPU will increase with the memory; meanwhile, the CPU occupation will almost or already achieve

the capacity load when there is some thread in wait, so changes to the CPU will play a small part in

the variety of thread; however, the memory consumption is more sensitive with greater CPU occupation,

so the more CPU that remains, the more thread that is in wait can be processed, and thus the memory

increases. Referring to the memory management model for the Linux system [26], the superposition of

attribute relations is respected by multiplication. Denote by m, n and w the intensity of effect caused

by the attribute relations, and assume them to be constant. Set the initial state as (x̄, ȳ, z̄). From the

discussion above, the nonlinear relationship between the attributes can be represented by the following

equations: ⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = −a(x(t)− x̄) +m(y(t)− ȳ),

ẏ(t) = −b(y(t)− ȳ) + n(x(t)− x̄)(1− z(t)),

ż(t) = −c(z(t)− z̄) + w(x(t) − x̄)(y(t)− ȳ).

(12)
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Figure 3 Numerical solution of equation set (13) for p < 1(a = 10, p = 0.8, c = 3). (a) Phase portrait; (b) STA evolution.
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Figure 4 Numerical solution of equation set (13) for p > 1(a = 10, p = 26, c = 3). (a) Phase portrait; (b) STA evolution.

We will assess and analyze the trustworthiness of model (12) using the KTA based optimization method

proposed in this paper.

By simple linear transformation, Eq. (12) reduces to
⎧
⎪⎪⎨

⎪⎪⎩

Ẋ(t) = −aX(t) + aY (t),

Ẏ (t) = pX(t)− bY (t)−X(t)Z(t),

Ż(t) = −cZ(t) + lX(t)Y (t),

(13)

where a > 0, b > 0, c > 0, p = (mn/a) > 0 and l = (w/n) > 0. X(0), Y (0) and Z(0) all equal zero in

equation set (13), and the system is symmetric from the viewpoint of the Z-axis.

To extract KTAs, we start with stability analysis around critical points. When 0 < p < 1, equation set

(13) has only one singularity at (0, 0, 0), with corresponding eigenvalues λ = (λ1, λ2, λ3) each of which

is negative. Thus, the whole solution space is stable according to the discussion in Step 2 and thus the

system is stable (as shown in Figure 3), which means that the software system is trustable [1,18].

When p > 1, the two new critical points (±√l−1c(p− 1), ±√l−1c(p− 1), p − 1) emerge alongside

the original one, and the repeated evolution circles around the new critical points is obvious (Figure 4),

which is similar to the condition in Theorem 2.

Actually, it can be proved that each orbit starting at the initial point will be pushed out along the X

or Y direction and pulled back in the Z direction when it goes around the two new singularities. Hence

the orbits will cross the region between the two new singularities repeatedly, which is consistent with the

simulation result in Figure 4. Therefore, we can define a hyperplane as

Σ = {(X,Y, Z) : |X |, |Y | � α < l−1C(p− 1), Z = p− 1}. (14)
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Figure 5 Optimal solution of equation set (3) and the corresponding optimized model with respect with the parameter

p=8,15,28. (a) p = 8; (b) p = 15; (c) p = 28.

Thus, all the orbits starting at an initial point will crossΣ and return to it. Moreover,Σ is a transversal

of the system. According to Theorem 2, we get the following FR-Map for equation set (13):

(f(u), g(u, v)) =

{
(−α+ (p− 1)βu−λ1/λ3 , βu−λ2/λ3v), u > 0,

(α− (p− 1)β|u|−λ1/λ3 , β|u|−λ2/λ3v), u < 0,
(15)

where u is the direction between the two new critical points, v is orthogonal to u, and α and β are

constants depending on the parameters of Eq. (13). Meanwhile, one of the vectors u or v is a KTA,

or both are. The analysis of Eq. (15) is identical to that for Eq. (13) in the sense of trustworthiness

assessment. However, the 3-dimensional model has been reduced to a 2-dimensional one.

Further, we now try to optimize Eq. (13) to a simpler form using Step 2 of our optimization method. As

f(u) (shown in Figure 5) is independent of v, so ∂f(u)/∂v = 0 < 1. Together with 0 � ∂g(u, v)/∂v < 1,

Eq. (15) converges strongly in direction v according to Theorem 3. This means that the v-direction is

a non-KTA for Eq. (15). By removing the non-KTA direction u, we finally obtain the equation f(u) as

the simplest form and the variable u as the unique kernel trustworthiness attribute.

Remark 1. By the above discussion, the trustworthiness of the system corresponding to equation set
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(13) is determined by a one-dimension function, which greatly reduces the complexity of the software

trustworthiness assessment.

Remark 2. Notice that the direction u reflects the KTA and is the superposition of directions X

and Y , which suggests that the software trustworthiness is greatly influenced when thread and memory

consumption are in some proportional relationship.

4.2 An example for directly optimized analysis of trustworthiness

For special large-scale software in certain fields of application, the simplest result from optimized analysis

of trustworthiness can be achieved directly using the method introduced in this paper. In this case, the

characteristics of KTAs are usually more prominent than in general. Since our optimization method is

based on the evolution characteristics of KTAs, we may reduce the dimension of the model directly, rather

than using a dimension-by-dimension method. In the following, we study an example of a trustworthiness

model for software that controls a power system, for which trustworthiness plays an important role. In

this model of power-system controlling software, the high efficiency of our optimized method is obvious.

In the classical power-system model [27], we focus on three modules of software to control the transient

stability of the power system: the difference in rotor angle δ between different electric generators, the

difference in velocity ω between different electric generators, and the efficiency of the controllability σ.

Consider a power system consisting of n electric generators with uniform damping only. The evolution

model of the STA can be represented as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δin(tk+1) =
1

n
ωin(tk),

ωin(tk+1) =
1

Mi
(Pmi − Pei)− 1

Mi
(Pmn − Pen)− κωin(tk),

σin(tk+1) =
1

2
σin(tk) + qωin(t)δin(tk),

(16)

where

Pei = Ei
2Gii +

n∑

l=1,l�=i

EiElGil cos δil+EiElGil sin δil. (17)

κ is the damping coefficient; Mi is the inertia constant for generator i; δin is the difference in rotor angle

between generator i and generator n; ωin is the difference in velocity between generator i and generator

n; q is the inverse of the greatest value of δin; Pmi is the output power of generator i; Ei is the inner

potential of generatori; Gii is the self-conductance of generator i; and Gil is the transsusceptance between

generator i and generator l.

Since the model is given in the form of iterative equations, it is difficult to find the proper transversal

for constructing an FR-Map for the differential model. In this case, we try to extract KTAs directly using

Step 2 of the optimization method. It is easy to obtain the partial differential operator of equation set

(16):

DF =

(
∂Fi

∂δin
,
∂Fi

∂ωin
,
∂Fi

∂σin

)
=

⎛

⎜⎜⎝

0 1
n 0

P (δin) −κ 0

qωin qδin
1
2

⎞

⎟⎟⎠ . (18)

We then get the directional differential operators along ωin and σin which satisfy |∂Fi/∂ωin| < 1,

|∂Fi/∂σin| < 1 for i = 1, 2, 3, when the domain is in any state. According to Theorem 3, the model

is stable along these two directions, so that δin is the unique direction that could indicate a KTA. Re-

moving ωin and σin from equation set (16), the optimized system corresponding to the classical power

system model can be obtained as δ̇ = f2(δ), where f2 is a characteristic function defined in Liu [27].

Consequently, the original model is directly reduced to a 1-dimensional form with δin as the variable.

Remark 3. By the above discussion, the trustworthiness of the system corresponding to equation set

(16) is determined by a 1-dimensional function f2(δ), which is demonstrated directly by the optimized
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Figure 6 Numerical simulation of µf (u). (a) p < 13; (b) p > 13.

method and greatly reduces the complexity of the software trustworthiness assessment for the original

model.

Remark 4. Notice that the direction δ reflects the KTA, and the software trustworthiness is greatly

influenced when the parameter for the difference in rotor angle δ fluctuates considerably.

4.3 Statistical analysis of trustworthiness and comparison of complexity

Taking the model in Subsection 4.1 as an example, we study the reduced model by a statistical analysis

method. For a 1-dimensional function f(u), by introducing the Frobenius-Perron operator [28,29], μf (u)

should satisfy

μf (u) =
m

β(p− 1)

(
u+ α

p− 1

)m−1

μf

(
β−1

(
u+ α

p− 1

)m)
+

m

β(p− 1)

(
α− u

p− 1

)m

μf

(
−u−1

1

(
α− u

p− 1

)m)
.

(19)

As shown in Figure 6, μf (u) = 0 except for a finite set of points when p < 13, and thus the corresponding

software system is trustable [19]. This verifies our theoretical result in Subsection 4.1. When p > 13,

μf (u) is ergodic in a finite interval, so each attribute reaches all states in this interval with positive

probability. During this time, the process is chaotic and completely unpredictable, which suggests that

self-defense ability cannot resist security threats from the external environment such as viruses. That is,

the software is extremely distrustful. Finally, quantitative statistical analysis of software systems with

multiple attributes is realized by optimization.

In this section, we demonstrate the performance of the optimized statistical analysis method proposed

in this paper through two typical examples. Each large-scale software trustworthiness model in the

examples is successfully reduced to a low-dimensional form or even a simple 1-dimensional model, which

decreases the complexity of trustworthiness assessment. Not only is the feasibility of both critical sets

verified, but also the ability to alternately apply the two steps from the methods and directly reduce

models into the simplest form are explicitly demonstrated.

To illustrate the decreased computational complexity for the optimized method, we calculate and

compare the actual complexity of the optimized and original statistical methods. Consider the software

with n STAs. To assess the improved method, both the computational complexity for optimization and

statistical analysis should be taken into account. In the optimization, the computational complexity for

solving the critical set is O(n logn). Furthermore, the logic consumption of the FR-Map construction in

Step 1 and the directional differential operator based computation are O(nm) and O(n2), where m(< n)

is the reduced dimension. In addition, the complexity of the invariant-measure based statistical analysis

is O(en). As the optimized model is an m-dimensional system, the statistical analysis complexity for the

reduced model is O(em). As a result, the total complexity of the improved trustworthiness statistical

analysis method is O(n(m+log n)+m2+em). Considering the O(en) complexity of the original method,

the reduction in computational complexity is significant and exponential with respect to the number of

STAs.
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5 Conclusion

As software is a class of complex systems with a life cycle, extensive dynamical interactions among

the attributes leads to structural complexity and nonlinear coupling relations, which seriously aggravate

the evolution complexity of software systems and increase the difficulty of calculations for the current

trustworthiness measurement methods. According to the properties of KTAs, which perform as active

evolutions, sensitivity to interference, complex coupling relations and declaration ability, an advanced op-

timized statistical analysis methodology is proposed using the nonlinear correlations between attributes,

which greatly reduces the computational complexity of the original method. Taking two concrete trust-

worthiness models of software as typical examples, this paper studies the practicality of the optimized

method and proposes a framework for calculating the trustworthiness of large-scale complex software

systems.
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