
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

July 2012 Vol. 55 No. 7: 1675–1692

doi: 10.1007/s11432-012-4605-8

c© Science China Press and Springer-Verlag Berlin Heidelberg 2012 info.scichina.com www.springerlink.com

A framework for multi-robot motion planning from
temporal logic specifications

T. John KOO1∗, RongQing LI1, Michael M. QUOTTRUP2, Charles A. CLIFTON3,
Roozbeh IZADI-ZAMANABADI4 & Thomas BAK4

1Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
2Siemens Wind Power A/S, Brand 7330, Denmark;

3 Belcan Corporation, Palm Beach Gardens, Florida 33410, USA;
4Department of Electronic Systems, Aalborg University, Aalborg 9220, Denmark

Received May 16, 2011; accepted April 6, 2012

Abstract We propose a framework for the coordination of a network of robots with respect to formal re-

quirement specifications expressed in temporal logics. A regular tessellation is used to partition the space of

interest into a union of disjoint regular and equal cells with finite facets, and each cell can only be occupied by a

robot or an obstacle. Each robot is assumed to be equipped with a finite collection of continuous-time nonlinear

closed-loop dynamics to be operated in. The robot is then modeled as a hybrid automaton for capturing the

finitely many modes of operation for either staying within the current cell or reaching an adjacent cell through

the corresponding facet. By taking the motion capabilities into account, a bisimilar discrete abstraction of the

hybrid automaton can be constructed. Having the two systems bisimilar, all properties that are expressible in

temporal logics such as Linear-time Temporal Logic, Computation Tree Logic, and μ-calculus can be preserved.

Motion planning can then be performed at a discrete level by considering the parallel composition of discrete

abstractions of the robots with a requirement specification given in a suitable temporal logic. The bisimilar-

ity ensures that the discrete planning solutions are executable by the robots. For demonstration purpose, a

finite automaton is used as the abstraction and the requirement specification is expressed in Computation Tree

Logic. The model checker Cadence SMV is used to generate coordinated verified motion planning solutions.

Two autonomous aerial robots are used to demonstrate how the proposed framework may be applied to solve

coordinated motion planning problems.

Keywords motion planning, multi-robot systems, temporal logic, hybrid automata, discrete abstraction

Citation Koo T J, Li R Q, Quottrup M M, et al. A framework for multi-robot motion planning from temporal

logic specifications. Sci China Inf Sci, 2012, 55: 1675–1692, doi: 10.1007/s11432-012-4605-8

1 Introduction

The problem of controlling mobile multi-robot systems (MRS) in a coordinated manner has become an

important research issue. By properly utilizing multiple robots, the robots can accomplish an assigned

mission faster and more reliably than a single robot by performing the mission in a coordinated manner.

Furthermore, multiple robots can often deal with tasks that are challenging, if not impossible, to be

accomplished by a single robot in application domains such as container transshipment tasks in harbors,

∗Corresponding author (email: john.koo@siat.ac.cn)

1676 Koo T J, et al. Sci China Inf Sci July 2012 Vol. 55 No. 7

airports, and formation keeping and control in military applications [1,2,3]. In the context of MRS,

one major challenge is the need to control, coordinate and synchronize the operations of several robots

to perform some specified missions collectively, while satisfying their inter- and intra-robots dynamical

constraints.

A number of different approaches have been taken in order to coordinate multi-robot systems. A

formalism for the composition of concurrent robot behaviors, using threaded Petri nets, has been de-

veloped in [4]. In [5] multi-robot coordination is achieved by employing a plan-merging paradigm that

guarantees coherent behavior of all robots in all situations. A distributed negotiation mechanism for

multi-robot coordination is considered in [6]. A hybrid control approach to action coordination and colli-

sion avoidance was taken in [7,8]. A formal hybrid approach to the modeling and analysis of coordinated

multi-robot systems was taken in [9]. Bisimular abstraction of the hybrid model for robots with nonlinear

continuous-time dynamics was introduced in [10].

The use of temporal logics as a mechanism for requirement specification and controller synthesis in

mobile robotic systems has been advocated as far back as [11]. Quottrup et al. [12] has formulated

the problem of coordination of networks of robots by using timed automata with motion specification

expressed in Computation Tree Logic (CTL). Fainekos et al. [12] have considered the problem of mo-

tion planning for a single, fully actuated robot in a polygonal environment in order to satisfy formulae

expressed in Linear-time Temporal Logic (LTL). In [14], abstractions are obtained for more complicated

dynamics, such as affine systems in simplices, multi-affine in rectangles. Even more complicated dynamics

(such as unicycles) can be handled if an extra (continuous) abstraction level is allowed. Ref. [15] considers

the problem of controlling a planar robot in a polygon so that its trajectory satisfies an LTL formula. A

fully automated framework for control of continuous-time linear control systems from specifications was

provided by Kloetzer and Belta [16]. A single robot was used as an illustrative example. Kloetzer et

al. [17,18,19] have proposed a framework for motion planning in a partitioned environment. The robot

is modeled as a transition system and algorithmic methods are used to generate motion plans for the

robots that satisfy the task requirement specification. In [20], temporal logic constraints are used for

optimal path planning of a robot for surveillance. In [20], the temporal logic motion planning problem

for mobile robots that are modeled by continuous-time second order linear dynamics is investigated.

However, the aforementioned temporal logic based approaches only applied to robots with either no or

linear closed-loop dynamics.

In this paper we provide a framework for the coordination of a MRS by using temporal logics to for-

mulate the mission specifications. The framework is extended from our previous works [10,12] to consider

a more general problem setting on the environment, the robot dynamics and the system composition.

We assume a regular tessellation has been used to partition the space of interest into a union of disjoint

regular and equal cells with finite facets, and each cell can only be occupied by a robot or an obstacle.

Without imposing too many restrictions on the robot dynamics, we assume that each robot has finitely

many modes of operation that enable the robot either to stay within the current cell or to reach an

adjacent cell through the corresponding facet. This framework provides the flexibility on allowing each

robot being assumed to be equipped with a finite collection of continuous-time nonlinear closed-loop dy-

namics for defining the modes of operation. A hybrid automaton model can be used to capture the finite

collection of robot dynamics. By considering the motion capabilities, a bisimilar discrete abstraction of

the hybrid automaton can be constructed. Having the two systems bisimilar, all properties that are ex-

pressible in temporal logics such as LTL, CTL, and μ-calculus can be preserved. Therefore, on one hand,

motion planning of robots can be performed at a discrete level by considering the parallel composition of

discrete abstractions of the robots and a requirement specification expressed in some suitable temporal

logics. On the other hand, the bisimilarity ensures that the discrete planning solutions are executable by

the robots with continuous dynamics. The result is a framework which captures realistic robot dynamics

in a discrete abstraction and allows the use of verification methods to generate motion plans for a MRS

such that a requirement specification is met.

For demonstration purpose, a finite automaton is used as the discrete abstraction and the requirement

specification is expressed in CTL. We use Cadence SMV [22,23,24] as a model checker for generating and

Koo T J, et al. Sci China Inf Sci July 2012 Vol. 55 No. 7 1677

(a) (b) (c)

Figure 1 Three regular tessellations composed of regular polygons symmetrically tiling the plane. (a) Triangle;

(b) rectangle; (c) hexagon.

verifying coordinated motion planning solutions. Furthermore, we are interested in the specification for

having the robots reaching their goals eventually, while always avoiding collision. A feasible path for the

robots can be generated as a counterexample to the negation of a given specification. Notice that the

proposed framework does not impose any restrictions on the type of temporal logics or model checkers

that should be used. Hence, depending on the nature of the problem, a suitable temporal logic along

with a proper model-checker could be used. Two autonomous aerial robots will be used for illustrating

the design challenges in motion planning and coordination of MRS.

This paper is organized as follows: In Section 2 the environment and MRS are modeled. The embedding

of a generic hybrid automaton into a labeled transition system and the abstraction of the transition system

are described in Section3. Section 4 describes a system implementation of the networked finite automata

along with requirement specification. In Section 5, experimental results are presented. Conclusion and

discussion of the proposed framework are provided in Section 6.

2 System modeling

In this section, environment model and robot model are introduced. Then, the assumptions made on the

robot motions are presented.

2.1 Environment model

Consider a continuous state space Y ⊆ R
m. A family π = {Yj} of non-empty subsets of Y is called a

partition of Y which satisfies the following two properties: Y =
⋃

j Yj and Yi ∩ Yj = ∅, ∀i �= j. The

partition π with a collection of Yj cells induces an equivalence relation. In this context, the induced

equivalence relation ≈ is called cell equivalence and is defined over the continuous state space Y .

For any two positions y′, y′′ ∈ Y , y′ ≈ y′′ iff there exists j such that y′, y′′ ∈ Yj . The cell equivalence

relation ≈ has finitely many equivalence classes, which are precisely the collection of cells Yj .

We shall use a specific partition called regular tessellation. Regular tessellation is defined as a partition

of space into the union of a set of disjoint regular and equal cells which can be regular polygons (in two

dimensions), polyhedra (three dimensions), or polytopes (m dimensions). An m-dimensional polytope

is bounded by a number of (m − 1)-dimensional facets. These facets are themselves polytopes. In two

dimensions, there are only three possible regular tessellations, squares, equilateral triangles, or regular

hexagons. In three dimensions, a polyhedron which is capable of tessellating space is called a space-

filling polyhedron. Examples include the cube, rhombic dodecahedron, and truncated octahedron (see

Figure 1).

Here, we assume that the set Y can be decomposed by a regular tessellation π = {Yj} ofM non-empty

cells of Y and N facets for each Yj . The N adjacent cells of Yj are labelled by {Yk} with k ∈ Ij , where
Ij is the set of indexes of {Yj}’s adjacent cells. The regular tessellation can be chosen such that (i) the

size of each cell can have at least one robot occupied while having an obstacle occupying one or more

cells depending on its shape and size; (ii) the shape of the cell should be chosen to conform to the motion

capabilities of the robots such that a robot can reach an adjacent cell via the corresponding facet in finite

1678 Koo T J, et al. Sci China Inf Sci July 2012 Vol. 55 No. 7

Figure 2 Each robot can have its distinct collection of modes of operation for staying within the current cell or for moving

to an adjacent cell.

time. Furthermore, there is a trade-off between granularity and problem complexity which should be

considered in deciding the tessellation.

2.2 Robot model

For each robot, we assume that there are N + 1 modes of operation labelled by qi with i = 0, 1, . . . , N

and the continuous dynamics associated with the modes are specified in the form of ẏ = f(qi, y) for

describing the motion capabilities of the robot designed for a) staying within the current cell in mode

q0 and b) reaching the ith neighboring adjacent cell through the corresponding facet in mode qi with

i ∈ {1, . . . , N}. Hence, if initially the robot is in cell Yj , it can stay in the same cell by using mode q0 or

move to the ith adjacent cell by using mode qi.

In order to quantitatively define the motion capabilities of the robots, we consider the following tem-

poral operators �, �, �� and the universal path quantifier A as defined in [25,26]. Consider an initial

set Fs and a set F with Fs, F ⊆ Y . We define the properties A�F , A�F , A��F with respect to the

trajectory y(t) of ẏ = f(qi, y) with initial conditions specified by Fs ⊆ F as follows: (i)A�F is true iff

∀y(0) ∈ Fs ∃t ∈ [0,∞), y(t) ∈ F ; (ii)A�F is true iff ∀y(0) ∈ Fs ∀t ∈ [0,∞), y(t) ∈ F ; and (iii)A��F is

true iff ∀y(0) ∈ Fs ∃t0 ∈ [0,∞), ∀t � t0, y(t) ∈ F.

By using the properties, we can then specify the assumption made on the motion capabilities of the

robots.

Assumption 1. Consider a robot with a collection of modes of operation {q0, q1, . . . , qN}, a cell Yj
also as the initial set, the robot satisfies the followings:

1. A�Yj is true for q0;

2. A��Yk
∧
A�(Yj ∪ Yk) is true for qi ∈ {q1, . . . , qN} and k ∈ Ij ; where given the cell index j and the

mode index i, the next cell index k can be determined.

The first condition is to ensure that in mode q0 the continuous state y is kept positively invariant in

Yj . The second condition is to enable that when for any adjacent cell Yk of Yj with k ∈ Ij , by using mode

qi the continuous state starting from any point in Yj can eventually reach somewhere in Yk and then

keep staying in Yk, furthermore the state is always within Yj and Yk (see Figure 2). In Section 5, we will

show the implementation of a controller design for the aerial robots which can satisfy the aforementioned

assumption with experimental results.

Given the modes of operation, a hybrid automaton can be used to model the motion of the robot among

the cell Yj and its adjacent cells {Yk} with k ∈ Ij by the following input σ. The hybrid automaton is

defined as H = (Q, Y,Σ, Init, f,D,G), where

• Q = {q0, q1, . . . , qN} is the set of discrete states,

• Y ⊆ R
m is the continuous state space,

• Σ = {σ1, . . . , σN} is the alphabet for input σ ∈ Σ,

• Init = {q0} × Yj is the initial set,

• f is the vector field defined by ẏ = f(q, y) for q ∈ Q,

• D is the domain defined by

Koo T J, et al. Sci China Inf Sci July 2012 Vol. 55 No. 7 1679

D(q) =

{{σ0} × Yj , if q = q0,

{σi} × (Yj ∪ Yk), if q = qi.

• G is the guard relation defined by

G(q, q′) =
{
σi, if q = q0 and q′ = qi,

σ0, if q = qi and q
′ = q0.

The hybrid automaton H starts in the hybrid state Init = {q0} × Yj . Hence, the robot can start

in the discrete state q0 at an arbitrary position within the continuous space Yj . Each discrete state q,

which has a continuous dynamics embedded, is treated as a mode of operation of the robot for reaching a

specific cell among the N adjacent cells. In the q0 mode, the robot stays within the cell Yj with dynamics

specified by ẏ = f(q0, y). In other modes qi with i = 1, . . . , N , the robot transits to the adjacent cell

Yk according to the continuous dynamics specified by ẏ = f(qi, y). In q0 the hybrid automaton H can

accept any input from the set of events Σ \ {σ0} as defined by the guard relation G. If the input is σi,

the guard G(q0, qi) is enabled but the domain D(q0) is violated and hence the hybrid automaton H takes

immediate transition to qi. In qi ∈ Q \ {q0} the hybrid automaton H accepts only the input σ0 and takes

the transition back to q0.

2.3 Robot motions

Here, we are interested in the reachability of the robots in the environment. In [10] the time-abstract

transitions for describing the continuous transitions of a hybrid automaton have been introduced.

Time-abstract transition is defined as the type of continuous transition associated with the hybrid

automaton H . Time-abstract transition is essential in the process of embedding the hybrid automaton

H into the class of labeled transition systems and subsequently for obtaining a finite quotient transition

system. Define φ(t, q, y0) as the solution of the differential equation ẏ = f(q, y) with y(0) = y0 for t � 0.

Definition 1 (σ-labeled transition). Consider y′, y′′ ∈ Y and σ ∈ Σ, the σ-labeled transition is defined

as

y′ σ−→ y′′ iff ∃δ ∈ R�0 y
′′ = φ(δ, q, y′).

This transition is defined for some period of time δ and it describes the continuous transition in discrete

state q ∈ Q with input σ ∈ Σ. The introduction of time-abstract transitions allows us to define cyclic

transitions.

Definition 2 (σ-labeled cyclic transition). Consider y′, y′′′ ∈ Y and σi ∈ Σ\{σ0}, the σi-labeled cyclic

transition is defined as

y′ σi=⇒ y′′′ iff ∃y′′ ∈ Y y′ σi−→ y′′ σ0−→ y′′′.

Notice that we further assume that after each σi-labeled cyclic transition occurs, the continuous part

of the domain in q0, Dx(q0), is redefined as the reached adjacent cell. The hybrid automaton H can

operate continuously by taking the cyclic transitions.

Given the partition π, due to the definition of adjacent cells, there are at most N possible adjacent

cells for each cell. However, for the cells at the boundary of the partition π, we assume that there is at

least one adjacent cell that can be reached. For each adjacent cell, there exists a mode of operation that

can make the robot move towards the adjacent cell. Due to the properties of the system modeled by

the hybrid automata H satisfying Assumption 1, one can easily show that a robot could start anywhere

within the cell and then reach somewhere inside the adjacent cell in finite time and the robot can keep

staying in the reached adjacent cell while without leaving the cell and its adjacent one at any time. Hence,

we have the following result.

Theorem 1. Consider a hybrid automaton H with (q0, y
′) ∈ Init, a finite partition of the continuous

state space Y ⊆ R
m defined by π = {Yj}Mj=1. Given a cell Yj ∈ π and an adjacent cell Yk, if H satisfies

1680 Koo T J, et al. Sci China Inf Sci July 2012 Vol. 55 No. 7

the properties defined in Assumption 1, there exists σi ∈ Σ \ {σ0} such that for all y′ ∈ Yj there exists

y′′′ ∈ Yk with y′ σi=⇒ y′′′.

proof. For the given adjacent cell Yk of Yj , there is an input σi ∈ Σ \ {σ0} associated with Yk. When

q(t′) = q0 and y(t′) = y′ ∈ Yj at time t′, σi is applied to H and hence σi-labeled transition occurs. Due

to the property 1 of Assumption 1, ∃t′′ � t′, y′′ = φ(t′′ − t′, qi, y′) ∈ Yk. Then, when q(t′′) = qi and

y(t′′) = y′′ ∈ Yk at time t′′, σ1 is applied and hence σ1-labeled transition occurs. Since the property 1 of

Assumption 1 is satisfied, ∀t′′′ � t′′, y′′′ = φ(t′′′ − t′′, q1, y′′) ∈ Yk and q(t′′′) = q1. Hence the result.

3 Discrete abstraction

The hybrid automatonH is embedded into the class of labeled transition systems with observations. Next

a bisimular abstraction of a quotient transition system is obtained. Hence, the reachability properties of

the labeled transition system can be preserved by a discrete abstraction. This bisimilar abstraction can

be captured by a finite automaton and MRS problems can be represented by a network of interacting

finite automata.

3.1 Embedding the hybrid automaton

In order to indicate the occupancy of the cells, we introduce a finite set of observations O associated with

the finite set of cells defined by the partition π = {Yj}Mj=1 of the continuous state space Y . The labeled

transition system associated with hybrid automaton H is defined as Th = (Qh,Σh,=⇒h, O,Υh), where

• Qh = Y is the set of states,

• Σh = Σ \ {σ0} is the set of labels,

• =⇒h ⊆ Y × Σh × Y is the transition relation defined by y
σ

=⇒h y
′ if y, y′ ∈ Y ,

• O = BM is the set of observations, where B = {0, 1},
• Υh : Qh → O is the observation map defined as

Υh(y) =
[
Υh1(y) Υh2(y) . . . ΥhM (y)

]T
,

where Υhj : Y → B = {0, 1}, for j = 1, . . . ,M is defined as

Υhj (y) =

{
1, if y ∈ Yj ,

0, otherwise.

The transition system Th is infinite since the set of states Qh is defined as the continuous state space Y .

However, the set of observations O is finite since the partition π is finite.

3.2 Constructing the abstraction

The set of all equivalence classes Yj in Y is called the quotient space Y/≈ of Y induced by the cell

equivalence relation ≈. The quotient space Y/≈ is defined as Y/≈ = π, that is the set consisting of

all equivalence classes Yj of cell equivalence relation ≈. Given the cell equivalence relation ≈ there is a

canonical projection map Ψh : Y → Y/≈ defined as Ψh(y) = Yi if y ∈ Yi, which sends each y ∈ Y to its

equivalence class Yi. The quotient transition system obtained from the labeled transition system Th is

defined as Th/≈ = (Qh/≈, Σh,=⇒h /≈, O, Υh/≈), where

• Qh/≈ = Y/≈ is the set of states,

• =⇒h /≈ ⊆ Qh/≈ × Σh × Qh/≈ is the transition relation defined by Yi
σ

=⇒h /≈Yj iff there exists

y ∈ Yi and y′ ∈ Yj such that y
ς

=⇒h y
′ in Th,

• Υh/≈ : Qh/≈ → O is the observation map defined by Υh≈(Ψh(y)) = Υh(y). The labeled quotient

transition system Th/≈ is finite since Qh/≈, Σh and O are finite. Note, that Σh and O are inherited

from Th.

In order to show that the cell equivalence relation ≈ is a bisimulation of the transition system Th
associated with hybrid automaton H , we can use the following Characterization Proposition:

Koo T J, et al. Sci China Inf Sci July 2012 Vol. 55 No. 7 1681

x2

x1

O

∋

Figure 3 Partition π of the continuous space Y into a finite number of cells.

Proposition 1 (see [27]). Consider transition Th, and observation-preserving partition ≈ with quo-

tient map Ψh : Y → Y/≈. Then ≈ is a bisimulation of Th if and only if for all the states y ∈ Qh and for

all σ ∈ Σh, we have Ψh(Postσ(Ψ
−1
h (Ψh(y)))) = Ψh(Postσ(y)), where Postσ(P) = {y′ ∈ Qh|∃y ∈ P with

y
σ

=⇒h y
′}.

By constructing the observation map, Υh, according to the partition as shown above, it can be concluded

that the cell equivalence relation ≈ is observation preserving [27], i.e. if y′ ≈ y′′ then Υh(y′) = Υh(y
′′).

Using the result in [27] it can be show that ≈ is a bisimulation of Th. By construction, Th/≈ automatically

simulates Th. The bisimulation property then ensures that Th also simulates Th/≈, hence T and T/≈ are

bisimilar. As they are bisimilar, T and T/≈ have equivalent reachability properties. Hence, checking any

property expressible by a temporal logic formula for T/≈, which is discrete and finite, can be performed

equivalently on the bisimilar system Th.

3.3 System composition

Given the bisimilar discrete abstraction, a finite automaton can be constructed for preserving the reacha-

bility properties of the robot model composition of robots now formally be defined within the framework

defined for finite automata. Finite automaton Ar is used as a template for defining robot processes

Ar1‖ · · · ‖ArN , where ‖ denotes parallel composition. We will consider both settings in which this com-

position is synchronous or asynchronous. To allow the robot processes to move concurrently in the envi-

ronment a robot controller Aci for i = 1, . . . , N is associated with each robot. A set of static obstacles

Ao1‖ · · · ‖AoM are created from an automaton template.

For the resulting network of interacting finite automata (Ar1‖ · · · ‖ArN)‖(Ac1 ‖ · · · ‖AcN)‖(Ao1‖ · · ·
‖AoM), model checkers for finite automata can be used to generate and verify coordinated motion planning

solutions for the network of robots, given a requirement specification for the network in some suitable

temporal logics. The sequence of input synchronization actions, generated by the model checker, can

subsequently be used to control the network of robots H1, . . . , HN such that the requirement specification

is satisfied.

4 System implementation

In this section, a 2-dimensional case study is used to demonstrate how the framework can be implemented

to solve the coordinated motion planning problem of robots in a partitioned environment. As shown in

Figure 3, the partition π is constructed by placing a two-dimensional grid over the continuous state space

Y ⊆ R
2. The obtained partition is composed of identical square cells with length ε > 0. The local motion

of a robot is specified by the hybrid automaton H which restricts the robot movement from the current

cell to only one of the adjacent cells.

As described above, the environment, the robots and controllers are modeled by finite automata.

Definition 3 (Finite automaton). A finite automaton is a tuple (L, l0, A,E) , where:

• L is a set of states,

• l0 ∈ L is the initial state,

• A is a finite alphabet,

1682 Koo T J, et al. Sci China Inf Sci July 2012 Vol. 55 No. 7

obsNo=obsID & j<1
Z[z_1Stat][z_2Stat]:=1
j:=j+1

obsNo=obsID & j=1
ObsNo:=ObsNo+1
j:=0

l_0

l_1

Figure 4 Finite automaton for one static obstacle.

• E ⊆ L×A× L is the set of edges between states with a command.

For demonstration purpose, we are interested in having the requirement specification expressed in

Computation Tree Logic (CTL) [22] and using Cadence SMV [22,23,24] as the model checker for generating

and verifying coordinated motion planning solutions. The model checker Cadence SMV is designed to

check CTL formulae against a finite automaton model.

CTL formulae can be defined inductively via a Backus Naur form as following:

φ ::= ⊥ | � | p | (¬φ) | (φ∧φ) | (φ∨φ) | (φ� φ) | AXφ | EXφ |AFφ |EFφ |AGφ |EGφ |A[φUφ] |E[φUφ],

where p ranges over a set of atomic formulae.

In CTL formulae, a temporal connective is a pair of symbols. The first of the pair is A or E. A means

‘along All paths’ and E means ‘along at least (there Exists) one path’. The second one of the pair is X ,

F , G, or U , meaning ‘neXt state’, ‘some Future state’, ‘all future states’ and Until, respectively.

To check a model, we should first construct an abstract model in the SMV input language, and specify

properties using CTL. Both the system model and property specifications can be represented by binary

decision diagrams (BDD). The SMV system uses the BDD-based symbolic model checking algorithm to

determine whether specifications expressed in CTL are satisfied or not. If satisfied, SMV will give the

result of truth, or else, report unsatisfied and give a counterexample.

The time complexity in model checking CTL formulae φ is O(|S| · |φ|) [23], where |S| is the size of

state space of the system model and |φ| is the length of formula φ. The time complexity of checking CTL

formulae is linear in the state space of system model and the length of formula.

4.1 Modeling the environment

A set of discrete states Z is represented in an occupancy table which is modeled as a two-dimensional

integer array Z : array 0..z 1 of array of z 2 of 0..1 in SMV, where z 1, z 2 ∈ Z define the size of the array

in the x1 and x2 direction, respectively. Thus, elements of the array represent discrete positions, where

each discrete position can be assigned the value 0 (free) or 1 (occupied). A particular element (1, 2) of

the array Z is marked occupied by the assignment Z[1][2] := 1. By default all elements of the array Z

are initialized to zero. Static obstacles may be present in the environment where the robots are moving.

A static obstacle is modeled as an automaton Ao = (L, l0, E), where

• L = {l0, l1} is the set of states,

• l0 ∈ L is the initial state,

• E ⊆ L×L is the set of edges, where an edge contains a source and a target state. The edges consist

of e00 = (l0, l0) and e01 = (l0, l1).

Automaton Ao modeling one static obstacle is graphically shown in Figure 4. In order to encode the

occupancy of a cell by the automaton Ao, the guard of Ao is augmented with additional conditions.

Automaton Ao starts in the initial state l0, when the guard obsNo = obsId and j < 1 is enabled, the

Koo T J, et al. Sci China Inf Sci July 2012 Vol. 55 No. 7 1683

Table 1 Template parameters for one static obstacle

Parameter Type Description

obsID int Unique identifier for static obstacle

z 1Stat int Static position of obstacle in x1 direction

z 2Stat int Static position of obstacle in x2 direction

assignment Z[z 1Stat][z 2Stat]:= 1 is performed and the index variable j is incremented. The edge from

l0 to l1 will then become fired since the guard obsNo = obsID and j = 1 is satisfied, resulting in an

update of index variable j to zero, an increment of obsNo. This automaton is used as a module for

declaring static obstacles processes. Processes modeling the static obstacle module can be declared with

the parameters specified in Table 1.

4.2 Finite automaton model of robot

Recall, that the goal is to generate a set of collision-free paths for the network of robots which satisfy

a formal requirement specification in CTL and which enable the network of robots to eventually reach

their goal positions. In CTL, the “eventually reach goal position” property is specified as a reachability

property whereas the “collision-avoidance” property is specified as a safety property. This problem is

solved in two steps: (i) The collision-avoidance property is guaranteed by using a correct-by-construction

principle where the collision-avoidance property is embedded in the finite automaton modeling each robot.

(ii) The eventually reaching goal position property is ensured for each robot in the network by using the

model checker.

An SMV module is now constructed from the finite transition system Tt. The finite automaton asso-

ciated with Tt is defined as Ar = (L, l0, A,E,), where

• L = {l0, l1, l2, l3, l4, l5} is the set of states,

• l0 ∈ L is the initial state,

• A = {sigma 2, sigma 3, sigma 4, sigma 5,TRUE} is the set of input commands,

• E ⊆ L×A×L is the set of edges, where an edge contains a source state, a guard to be satisfied, a com-

mand to be received, and a target state. The edges consist of e00 = (l0,TRUE, l0), e01 = (l0,TRUE, l1),

ei1 = (li,TRUE, l1) for i = 2, . . . , 5, and e1j = (l1, sigma j, lj), for j = 2, . . . , 5, where eij denotes the

edge from location li to lj .

The finite automaton Ar starts in the state l0. In this state, the robot is placed on its initial discrete

position as specified by z 1Init and z 2Init. An enumeration typed state variable move is used to store

the command sigma i for i= 2, . . . , 5. Thus, when a transition of Ar is taken, the guard move=sigma i

for i = 2, . . . , 5 could be evaluated first. In the state l1 the robot can move from the initial cell to an

adjacent cell in the partition given that one of the edges is fired and the associated controller sends the

corresponding command. In the state l1 the finite automaton is ready to receive a command sigma i

for i = 2, . . . , 5 from the associated controller. However, in order to avoid the robot from moving to an

occupied cell, the guard is augmented with additional conditions. If the edge e12 is fired and the command

sigma2 is received the finite automaton fires the edge e12 to state l2. Note that the edge e12 is only fired if

the adjacent cell is free Z[z 1 + 1][z 2] = 0 and within the defined partition, i.e. z 1 < Z 1. The adjacent

cell is marked occupied Z[z 1 + 1][z 2] := 1 when the edge e12 is fired. In state l2 the movement towards

the adjacent cell is performed for a fixed step. Then, the edge e21 is fired and a transition is taken

back to state l1. When the edge e21 is fired, the previous cell is marked free Z[Z 1][Z 2] := 0 and the

discrete position of the robot is updated z 1 := z 1 + 1. Parameters for declaring the robot module are

specified in Table 2. The augmented finite automaton Ar modeling one robot is graphically illustrated in

Figure 5.

4.3 Finite automaton model of controller

A controller is associated with each finite automaton modeling a robot. A controller for each robot is

needed as the system consists of a network of concurrent robots moving in the environment. The robot

controller is modeled as an automaton Ac = (L, l0, A,E), where

1684 Koo T J, et al. Sci China Inf Sci July 2012 Vol. 55 No. 7

Table 2 Template parameters for one robot and one robot controller

Parameter Type Description

robotID int Unique identifier for robot

z 1Init int Initial position of robot in x1-direction

z 2Init int Initial position of robot in x2-direction

sigma 2 bool Command to move robot in x1-direction

sigma 3 bool Command to move robot in −x1-direction

sigma 4 bool Command to move robot in x2-direction

sigma 5 bool Command to move robot in −x2-direction

robotNo=robotID & i<1
Z[z_1Init][z_2Init]:=1
i:=i+1

robotNo=robotID & i=1
robotNo:=robotNo+1
i:=0

Z[z_1][z_2]:=0
Z[z_1+1][z_2]:=1
z_1:=z_1+1

move=sigma_2 & z_1<Z_1& Z[z_1+1][z_2]=0

move=sigma_5 & z_2<0 & Z[z_1][z_2-1]=0

Z[z_1][z_2]:=0
Z[z_1−1][z_2]:=1
z_1:=z_1−1

move=sigma_3 & z_1>0 & Z[z_1−1][z_2]=0

move=sigma_4 & z_2<z_2 & Z[z_1][z_2+1]=0

Z[z_1][z_2]:=0
Z[z_1][z_2+1]:=1
z_2:=z_2+1

Z[z_1][z_2]:=0
Z[z_1][z_2−1]:=1
z_2:=z_2−1

l_0

l_2l_3

l_4 l_5

l_1

Figure 5 Finite automaton for one robot.

• L = {l0} is the set of states,

• l0 ∈ L is the initial state,

• A = {sigma 2, sigma 3, sigma 4, sigma 5,TRUE} is the set of output commands,

• E ⊆ L × A × L is the finite set of edges, where an edge contains a source state, and a target state.

The edges consist of ei = (l0, sigma i, l0) for i = 2, . . . , 5.

The robot controller automaton is shown in Figure 6. The automaton Ac starts in the state l0. In this

state the automaton can send an output command sigma i ∈ A to the finite automaton Ar modeling a

robot. The set of output command A represent all possible movements of a robot. The process of sending

commands is implemented by using move:=sigma i for i = 2, . . . , 5. Thus, if the automaton Ac takes the

edge e2 = (l0, sigma 2, l0) then finite automatonAr will take the corresponding edge e12 = (l1, sigma 2, l2).

The automaton Ac is used as a module for declaring control process instances. Furthermore, notice that it

takes transitions in a nondeterministic manner in order to enable the generation of all possible movements.

4.4 Requirement specification

Consider a network of two robots R1 and R2 with initial and goal position as shown in Figure 7. They

have to move from initial to goal positions while avoiding collision with each other and the static obstacles.

The system to be model checked consists of the following processes: Robots R1 and R2, robot controllers

C1 and C2, and static obstacles O1, . . . , O32.

4.4.1 Reachability properties

The reachability properties are used for the generation of a feasible motion plan, that will move the robots

from their initial to goal positions, while avoiding collision among robots and obstacles.

Koo T J, et al. Sci China Inf Sci July 2012 Vol. 55 No. 7 1685

move:=sigma_4

move:=sigma_2

move:=sigma_5

move:=sigma_3

l0

6
5

4

3
2

1

0

0 1 2 3 4 5 6

x2

x1

R1

R2

G2

G1

Figure 6 Finite automaton for one robot controller. Figure 7 Setup for network of two robots R1 and R2

where G1 and G2 represent goal positions.

Property 1 (Reachability). Does a location trajectory exist where the robots R1 and R2 eventually

reach their goal positions G1 and G2?

EF (contr1.rob.z 1 = 2 & contr1.rob.z 2 = 3 & contr2.rob.z 1 = 1 & contr2.rob.z 2 = 5).

Property 2 (Reachability with step requirement). Does a location trajectory exist where the robots

R1 and R2 eventually reach their goal positions G1 and G2 in less than 15 steps?

EF (contr1.rob.z 1 = 2 & contr1.rob.z 2 = 3 & contr2.rob.z 1 = 1

& contr2.rob.z 2 = 5 & contr1.rob.step < 15 & contr2.rob.step < 15).

Property 1 expresses the behavior that the robots eventually will reach their goal positions, whereas

Property 2 expresses the behavior that the robots eventually will reach their goal positions within given

step constraints; here specified by 15 steps.

4.4.2 Safety properties

The safety properties are used to check if collision avoidance is achieved among the robots when moving

and static obstacles and also that the robots will move within the environment.

Property 3 (Collision avoidance). Does all location trajectories the robots R1 and R2 take ensure

they never collide after they both start to move, i.e. for step > 0?

AG!((contr1.rob.z 1 = contr2.rob.z 1) & (contr1.rob.z 2 = contr2.rob.z 2)

& contr1.rob.step > 0 & contr2.rob.step > 0).

Property 4 (Bounded movement). Does location trajectories the robots R1 and R2 ensure that they

move within the boundaries of the environment?

AG (contr1.rob.z 1 >= 0 & contr1.rob.z 1 <= Z 1 & contr1.rob.z 2 >= 0 & contr1.rob.z 2 <= Z 2

& contr2.rob.z 1 >= 0 & contr2.rob.z 1 <= Z 1 & contr2.rob.z 2 >= 0 & contr2.rob.z 2 <= Z 2).

Property 3 expresses the requirement that collision avoidance is achieved among the robots once they start

to move. Further, the requirement that the robots always move within the boundaries of the partition is

expressed in Property 4.

In order to obtain paths of the network of two robots with both synchronous composition and asyn-

chronous composition, we first assume it is not the case that both R1 and R2 reach their respective goal

positions G1 and G2 by property specification with a CTL formula:

AG!(contr1.rob.z 1 = 2 & contr1.rob.z 2 = 3 & contr2.rob.z 1 = 1 & contr2.rob.z 2 = 5).

Modules in SMV can be composed synchronously or asynchronously. In synchronous composition,

modules execute in parallel, while in asynchronous composition, modules execute at different speeds with

interleaving manner. When checking this property, the results are false with counterexamples to illustrate

paths of R1 and R2 from initial position to the designated goals without collision as shown in Table 3.

1686 Koo T J, et al. Sci China Inf Sci July 2012 Vol. 55 No. 7

Table 3 Comparison of synchronous composition and asynchronous composition

Synchronous Composition Asynchronous Composition

Step Robot1 Robot2 Step Robot1 Robot2

0 (5, 3) (5, 4) 0 (5, 3) (5, 4)

1 (5, 3) (4, 4) 1 * (4, 4)

2 (5, 4) (3, 4) 2 * (3, 4)

3 (4, 4) (3, 5) 3 * (3, 5)

4 (3, 4) (2, 5) 4 * (2, 5)

5 (3, 5) (1, 5) 5 (5, 4) *

6 (2, 5) (1, 4) 6 (4, 4) *

7 (1, 5) (1, 3) 7 (3, 4) *

8 (1, 4) (2, 3) 8 (3, 5) *

9 (1, 3) (2, 2) 9 * (1, 5)

10 (1, 2) (2, 3) 10 (2, 5) *

11 (2, 2) (1, 3) 11 * (1, 4)

12 (2, 2) (1, 4) 12 * (1, 3)

13 (2, 3) (1, 5) 13 * (1, 2)

14 14 (1, 5) *

15 15 (1, 4) *

16 16 (1, 3) *

17 17 (2, 3) *

18 18 * (1, 3)

19 19 * (1, 4)

20 20 * (1, 5)

* means a robot stays in the same location.

6
5

4

3
2

1

0

0 1 2 3 4 5 6

6
5

4

3
2

1

0

0 1 2 3 4 5 6

x2 x2

x1x1

R1G1

R2

G2

(a) (b)

Figure 8 Path of robot R2 from initial to goal position G2. (a) Path of robot R1 from initial to goal position G1;

(b) path of robot R2 from initial to goal position G2.

For the asynchronous composition in Table 3, the items marked as star * indicate the robots keep in

the same location. According to the results in Table 3, the demonstration of paths of both synchronous

composition and asynchronous composition are shown in Figure 8 and Figure 9, respectively.

By using the synchronous composition, one can observe that fewer time steps are needed for both robots

to accomplish the required specification. While in the other case, by using the asynchronous composition,

even though the required specification is accomplished with more time steps, fewer transitions are taken

by the robots. This could be explained by the fact that the robots move in an interleaving manner and

hence fewer conflicts are introduced among robots.

A summary of model checking the reachability and safety properties of both synchronous composition

and asynchronous composition are given in Table 4. We have tested the cases from 2 robots in 6 × 6

mapsize up to 3 robots in 15 × 15 mapsize. The environment for testing is Linux with 2.2 GHz CPU

Koo T J, et al. Sci China Inf Sci July 2012 Vol. 55 No. 7 1687

6
5

4

3
2

1

0

0 1 2 3 4 5 6

6
5

4

3
2

1

0

0 1 2 3 4 5 6

x2 x2

x1x1

R1
G1

R2

G2

(a) (b)

Figure 9 Paths for the network with two robots R1 and R2 with synchronous composition. (a) Path of robot R1 from

initial to goal position G1; (b) path of robot R2 from initial to goal position G2.

Table 4 Results from model checking reachability Properties 1 and 2 and safety Properties 3 and 4 with synchronous and

asynchronous compositiona)

BDD nodes Time (s)

Asynch Synch Asych Synch

Reachbility

2r6m 117642 179233 1.41 1.08

3r6m 902945 652421 15.94 10.09

2r10m 1437255 1109173 61.03 25.88

2r15m 4633615 4508088 252.78 223.90

3r10m 7875544 7327447 202.65 130.88

3r15m 59566953 47008200 2855.34 1461.24

Reachability(Step)

2r6m 1063504 281992 85.80 3.72

3r6m 28031275 645226 476.65 16.11

2r10m 1487836 1264218 69.92 40.98

2r15m 6198876 4508229 328.54 216.10

3r10m 45967858 36187637 2294.17 1707.56

3r15m 165029664 111473393 6965.57 6822.95

Collision Avoidance

2r6m 10635004 278866 81.98 3.38

3r6m 25642975 610225 271.43 9.24

2r10m 1449886 1170607 79.50 39.45

2r15m 6390886 4508229 244.01 206.91

3r10m 8967858 6687570 494.61 303.08

3r15m 165039363 32704530 4444.24 3124.23

Bounded Movement

2r6m 177642 179233 1.08 0.95

3r6m 584109 636246 5.27 8.10

2r10m 1469870 1109173 66.96 21.69

2r15m 4633615 4508088 197.84 205.32

3r10m 5008749 4129897 99.03 92.90

3r15m 18402783 21856316 1059.80 934.74

a) Here 2r6m means 2 robots moving in 6× 6 mapsize, other cases could be comprehended in the same manner.

and 32 GB memory, and the model checker is Cadence SMV. As shown in Table 4 all the properties are

satisfied.

5 Experimental results

In this section we focus on demonstrating the system implementation of the proposed framework by using

a quadrotor-based aerial robots testbed. The system is set up as follows. Two quadrotor aerial robots

are designed and implemented in the testbed. Each robot is equipped with sensors that are detected

1688 Koo T J, et al. Sci China Inf Sci July 2012 Vol. 55 No. 7

by a motion tracker. The motion tracker continuously sends the 3-D position of all the sensors to the

analysis and visualization programs running on a visualization workstation. These programs calculate

the position and rotation of the vehicle with respect to a pre-configured reference frame and pass this

information to the controllers running on the real-time computing nodes. These real-time computing

nodes get this data, derive the appropriate control data based on the desired position and orientation,

and send the control signal to the robots via radio transmitters.

In order to implement the framework, the key idea is to determine a partition such that the constraints

are respected and furthermore the properties specified in Assumption 1 can be satisfied. For determining

the partition, the closed-loop dynamics should be taken into consideration. Here, the dynamical model

and the controller developed in [28] for the quadrotor-based aerial robot are presented. The dynamics

of the robot is modeled as an outer-inner model and the controller is constructed by cascading an outer

controller with an inner controller.

In the model, the outer system is continuous-time and can be expressed by using the motion equations

for a rigid body, and the discrete-time inner system dynamics can be obtained by performing system

identification over discrete data sets. The dynamics of the robot can be described as:

Σ :

⎧
⎨

⎩

y(t) = h(xO(t)),

ẋO(t) = fO(xO(t), xI(t)),

xI(t+Δ) = fI(xI(t), u(t)),

where y ∈ R
3 is the output vector, xO ∈ R

9 is the outer system state, xI ∈ R
nI is the inner state vector,

the inner input vector u ∈ R
4 and Δ > 0 is the sampling time with h : R9 → R

3, fO : R9×R
nI → R

9 and

fI : RnI × R
4 → R

nI . The dimension of the inner state, nI , is determined in the system identification

process. The output vector and the outer state vector can be specified as y = p and xO = [pT vT ΘT]T,

respectively, in which p ∈ R
3 is the position vector, v ∈ R

3 is the velocity vector, Θ = [φ θ ψ]T ∈ S
3 are

the ZYX Euler angles.

The controller is constructed by cascading a backstepping-based nonlinear outer controller and a robust

linear inner controller together. They are designed to guarantee bounded output tracking and bounded

state performance for bounded desired output trajectory in the presence of anticipated disturbance. In the

following, we assume that all system state variables are properly initialized in order to satisfy the bounded

tracking condition. Since backstepping is used in the outer controller design, the position dynamics can

be written as ṗ = v = γv(pd) + (v − γv(pd)), where γv(pd) is the desired virtual input of the position

dynamics so that the position p can converge to a desired position pd only if the velocity v converges to

γv(pd). However, the velocity tracking performance can be only achieved with ‖v − γv(pd)‖2 � δv for

some δv > 0 due to the presence of anticipated disturbance.

By considering the velocity tracking performance, we can characterize the position tracking perfor-

mance. Consider that γv(pd) is designed for regulating the position at the desired position pd by having

γv(pd) = −Ka(p− pd) with a diagonal matrix Ka. Define zp = p− pd. Consider the Lyapunov function

Vp = zTp Ppzp with a positive definite matrix Pp and the Lyapunov equation (−Ka)Pp +Pp(−Ka)
T = −I

where I is an identity matrix and Pp = 1
2K

−1
a . Hence, V̇p = −zTp zp+2zTp Ppδv � −‖zp‖22+2σ(Pp)δv‖zp‖2

where σ(Pp) is the largest eigenvalue of Pp. Thus, −V̇p is positive definite whenever ‖zp‖2 > 2σ(Pp)δv.

Define W (pd) = {p ∈ R
3| ‖p− pd‖2 � 2σ(Pp)δv}. Therefore, if p(0) ∈ W (pd), then ∀t � 0 p(t) ∈ W (pd);

otherwise, ∃t � 0 p(t) ∈ W (pd) due to the fact that −V̇ is positive definite outside W (pd). In other

words, any state starting from W (pd) will stay within W (pd) and all the points outside W (pd) can reach

W (pd) eventually. Therefore, the set W (pd) can be said to be both attractive and positive invariant.

For each cell Yj , the center of the cell is defined as the desired position labelled by pdj. If Yj is large

enough to contain W (pdj), then Yj is a positive invariant set. Furthermore, for the adjacent cell of Yj ,

say Yk, if pdk is chosen to be the center of Yk, since all the cells in a partition are the same, the set

Yj ∪ Yk is also a positive invariant set and also all the point in Yj move eventually to the set W (pdk)

inside Yk. Hence, both properties specified in Assumption 1 can be satisfied by properly choosing the set

point corresponding to the discrete input symbol.

Koo T J, et al. Sci China Inf Sci July 2012 Vol. 55 No. 7 1689

(a) (b)

(c) (d)

Figure 10 Motion of two robots R1 and R2 during [70 s, 80 s]. (a) t ∈ [70 s, 72.5 s]; (b) t ∈ [72 s, 75 s]; (c) t ∈ [75 s,

77.5 s]; (d) t ∈ [77.5 s, 80 s].

Given the set W1(·), the continuous state space Y is partitioned as π = {Yj}Mj=1 such that every cell

respects the ball and the physical dimensions of the aerial robots. Given the cell partition, the time range

τ = [0, τ2] gives bound on the time needed to go from one cell to the center of a neighboring cell. In

the implementation, the dimensions of each helicopter are 75 cm×75 cm but due to the limited space

each cell is restricted to be a 100 cm×100 cm square and there are only 4 cells considered. The radius

of W1(·), δr, is determined to be 12.5 cm experimentally. This means that given a fixed reference point,

the center of the helicopter will stay within a ball of radius 12.5 cm centered at that reference point. The

time range τ = [1.5 s, 4.5 s] is determined experimentally and a time range of τ ′ = [1 s, 5 s] is used for

constructing the finite automaton model of a given robot as a more conservative approximation.

Consider a mission involving two quadrotor aerial robots, robot (R1) and robot (R2). The objective

is to coordinate the robot motion so that they eventually reach their target (discrete) locations while

satisfying imposed dynamical and static constraints. The following reachability and safety properties

of the multi-robot system are verified on the network of finite automata using SMV, given the initial

locations P1 = (1, 1) and P1 = (2, 2) for R1 and R2, respectively:

Property 1 (Reachability). Does a location trajectory exist where the robots R1 and R2 eventually

reach their goal positions G1 and G2?

EF(contr1.rob.z 1 = 2 & contr1.rob.z 2 = 2 & contr2.rob.z 1 = 1 & contr2.rob.z 2 = 1).

Property 3 (Collision avoidance). Does all location trajectories the robots R1 and R2 take, ensure

they never collide after they start to move, i.e. for step > 0?

AG!((contr1.rob.z 1 = contr2.rob.z 1 & contr1.rob.z 2 = contr2.rob.z 2)

& contr1.rob.step > 0 & contr2.rob.step > 0).

In this implementation, the robots are designed to be synchronized to their own robot controllers and

hence the sequence generated by the model checker. The flight results in pictures are shown in Figure 10

1690 Koo T J, et al. Sci China Inf Sci July 2012 Vol. 55 No. 7

R1
R2

R1
R2

R1
R2

R1
R2

R1
R2

R1
R2

(a) (b)

(c) (d)

(e) (f)

0.9

0

−0.9

−0.9 0 0.9

x
0.9

0

−0.9

0.9

0

−0.9

x
x

0.9

0

−0.9

x

0.9

0

−0.9

x

0.9

0

−0.9

x

y
−0.9 0 0.9

y

−0.9 0 0.9
y

−0.9 0 0.9
y

−0.9 0 0.9
y

−0.9 0 0.9
y

Figure 11 Progression of flight trajectory and acceptable cell occupation. (a) t ∈ [67.5 s, 70 s]; (b) t ∈ [70 s, 72.5 s];

(c) t ∈ [72 s, 75 s]; (d) t ∈ [75 s, 77.5 s]; (e) t ∈ [77.5 s, 80 s]; (f) t ∈ [80 s, 82.5 s].

and the position trajectories of the robots are shown in Figure 11. Two robots R1 and R2 are initially

located diagonally. The reachability property is checked such that the robot R1 will move from one corner

(discrete) location to another corner (discrete) location and robot R2 starts and finishes adjacent to the

robot R1. We can see that the robots reach the target locations, remain in the boundary and avoid

colliding.

In order to understand the significance of the verification and the validity of the bisimulation, we

compare the verification result and the experimental result. In SMV, the wider time range τ ′ = [1 s, 5 s]

is used. Since the range τ ′ covers the range τ , the bisimulation still holds and furthermore SMV provides

a more conservative result. By observing the trace file of the verification results by using the range τ ′ =
[1 s, 5 s] in SMV, we observe that the first transition (for both vehicles) should take place in the range

[70s, 75s], the second transition during [72 s, 80 s], and the third transition between [73 s, 85 s]. In the

experiment, transition times (to get to an adjacent cell) for R1 are 72.25 s, 76.15 s, and 80 s, and for R2

Koo T J, et al. Sci China Inf Sci July 2012 Vol. 55 No. 7 1691

are 74.2s, 77.9s, and 82.6 s. This can be seen in Figure 11. The time intervals provided by the model

checker for the finite automata cover the transition times taken for the robots in implementation. These

results demonstrate the effectiveness of the abstraction technique.

6 Conclusion

A framework for the coordination of a network of robots with respect to formal requirement specifications

in temporal logics has been proposed. In this framework, a regular tessellation is used for partitioning

the space of interest into a union of disjoint regular and equal cells with finite facets. Each cell can only

be occupied by a robot or an obstacle. Each robot is assumed to be equipped with a finite collection

of continuous-time nonlinear closed-loop dynamics to be operated in. Robots are modeled as hybrid

automata capturing finite modes of operations for either staying within the current cell or reaching an

adjacent cell through the corresponding facet. By taking the motion capabilities into account, a bisimilar

discrete abstraction of the hybrid automaton can be constructed. Having the two systems bisimilar, all

properties that are expressible in temporal logics such as LTL, CTL, and μ-calculus can be preserved.

Therefore, on one hand, motion planning of robots can be performed at a discrete level by considering

the parallel composition of discrete abstractions of the robots and a requirement specification expressed

in some suitable temporal logics. On the other hand, the bisimilarity ensures that the discrete planning

solutions are executable by the robots with continuous dynamics. A 2-dimensional case study is used

to demonstrate how the framework can be implemented and solve the coordinated motion planning

problem of robots in a partitioned environment. Finite automata are used as the abstraction of the robot

model and the requirement specification is expressed in CTL with Cadence SMV as the model checker

for generating and verifying coordinated motion planning solutions. The quadrotor-based aerial robots

testbed has been used to demonstrate the implementation of the proposed framework with two aerial

robots. Experimental results have shown the effectiveness of the proposed framework for the coordination

of a network of robots by using temporal logic to formulate the mission specifications for a network of

robots.

The results presented here assumes an infra-structure of the robots with feedback controllers that

constrain the motion capabilities of the individual robots. Although in the system implementation the

controllers are implemented for regulating the robots at some predefined desired positions for demon-

stration purpose, the framework does allow less coupling in the selection of the type of partition and

the motion capabilities of the robots. Hence, the robots can be designed with hierarchical dynamical

behaviors with various levels of trajectory granularity so long as the assumption made on the motion

capabilities within and among cells can be satisfied. For example, in a search-and-rescue mission the

assumption can be interpreted in such a way that the robots can be asked to “stay” within the current

cells with some continuous trajectories for performing some rescuing tasks or to “move” from the current

cells to the adjacent cells with some other continuous trajectories for covering some specific search areas.

On the other hand, as shown in the examples, the robots are designed to be synchronized to their own

robot controllers and hence the sequence generated by the model checker. By introducing additional

finite automata into the network for modeling communication protocols between robots, various forms of

centralization and synchronization can be incorporated. With these flexibilities, this framework can be

extended to incorporate heterogeneous robots even with asymmetric motion capabilities to accomplish

a given mission collectively. However, as in many model checking based approaches, the computational

complexity of model checking the system increases as the number of robots in the network and the size

of the occupancy table increases. The complexity of checking a CTL formula in Cadence SMV is linear

in the state space of the system and the length of the formula. In order to make the proposed frame-

work applicable to large networks of robots an extensive search of the state space should be avoided or

substantially reduced.

Acknowledgements

This work is supported by Shenzhen Science Fund for Distinguished Young Scholars (Grant No. JC201005270259A)

1692 Koo T J, et al. Sci China Inf Sci July 2012 Vol. 55 No. 7

and Faculty Research Funds from Aalborg University, Vanderbilt University and Shenzhen Institutes of Advanced

Technology, Chinese Academy of Sciences.

References

1 Balch T, Arkin R C. Behavior-based formation control for multirobot teams. IEEE Trans Robot Autom, 1998, 14:

926–939

2 Fierro R, Das A K, Kumar V, et al. Hybrid control of formations of robots. In: Proceedings of the 2001 IEEE

International Conference on Robotics and Automation, Shanghai, 2001. 157–162

3 Zachery R A, Sastry S S, Kumar V. Special issue on swarming in natural and engineered systems. Proc IEEE, 2011,

99: 1466–1469

4 Klavins E, Koditschek D E. A formalism for the composition of concurrent robot rehaviors. In: Proceedings of the

2000 IEEE International Conference on Robotics and Automation, San Francisco, 2000. 3395–3402

5 Alami R, Fleury S, Herrb M, et al. Multi-robot cooperation in the MARTHA project. IEEE Robot Autom Mag, 1998,

5: 36–47

6 Gerkey B P, Mataric M J. Sold: Auction methods for multirobot coordination. IEEE Trans Robot Autom, 2002, 18:

758–768

7 Egerstedt M, Hu X. A hybrid control approach to action coordination for mobile robots. Automatica, 2002, 38: 125–130

8 Egerstedt M, Martin C F. Conflict resolution for autonomous vehicles: A case study in hierarchical control design. Int

J Hybrid Syst, 2002, 2: 221–234

9 Alur R, Esposito J, Kim M, et al. Formal modeling and analysis of hybrid systems: A case study in multi-robot

coordination. In: World Congress on Formal Methods in the Development of Computing Systems, Toulouse, 1999.

Goos G, Hartmanis J, Van Leeuwen J, eds. Lecture Notes in Computer Science, 1999, 1708: 212–232

10 Koo T J, Sastry S. Bisimulation based hierarchical system architecture for single-agent multi-modal systems. In:

Hybrid Systems: Computation and Control, Stanford, 2002. Lecture Notes in Computer Science, 2002, 2289: 281–293

11 Antoniotti M, Mishra B. Discrete event models + temporal logic = supervisory controller: Automatic synthesis of

locomotion controllers. In: Proceedings of the 1995 IEEE Conference on Robotics & Automation, Nagoya, 1995.

1441–1446

12 Quottrup M M, Bak T, Izadi-Zamanabadi R. Multi-robot planning: A timed automata approach. In: Proceedings of

the 2004 IEEE International Conference on Robotics & Automation, Barcelona, 2004. 4417–4422

13 Fainekos G E, Kress-Gazit H, Pappas G J. Temporal logic motion planning for mobile robots. In: Proceedings of the

2005 IEEE International Conference on Robotics and Automation, Barcelona, 2005. 2020–2025

14 Belta C, Isler V, Pappas G J. Discrete abstractions for robot planning and control in polygonal environments. IEEE

Trans Robot, 2005, 21: 864–875

15 Fainekos G E, Kress-Gazit H, Pappas G J. Hybrid controllers for path planning : A temporal logic approach. In:

Proceedings of the 2005 IEEE Conference on Decision and Control and the European Control Conference, Seville,

2005. 4885–4890

16 Kloetzer M, Belta C. A fully automated framework for Control of linear systems from LTL specifications. In: Hybrid

Systems : Computation and Control, Santa Barbara, 2006. Lecture Notes in Computer Science, 2006, 3927: 333–347

17 Kloetzer M, Belta C. LTL planning for groups of robots. In: Proceedings of the 2006 IEEE International Conference

on Networking, Sensing, and Control, Ft. Lauderdale, 2006. 578–583

18 Kloetzer M, Belta C. Automatic deployment of distributed teams of robots from temporal logic motion specifications.

IEEE Trans Robot, 2010, 26: 48–61

19 Chen Y, Ding X C, Stefanescu A, et al. A formal approach to deployment of robotic teams in an urban-like environment.

In: Proceedings of the 10th International Symposium on Distributed Autonomous Robotics Systems (DARS), Lausanne,

2010

20 Smith S L, Tumova J, Belta C, et al. Optimal path planning for surveillance with temporal-logic constraints. Int J

Robot Res, 2011, 30: 1695–1708

21 Fainekos G E, Girard A, Kress-Gazit H, et al. Temporal logic motion planning for dynamic robots. Automatica, 2009,

45: 343–352

22 Clarke E M, Grumberg O, Peled D A. Model Checking. Cambridge: The MIT Press, 1999

23 McMillan K L. Symbolic Model Checking. Norwell: Kluwer Academic Publishers, 1993

24 McMillan K L. Getting started with SMV: User’s manual. Berkeley: Cadence Berkeley Laboratories, 1998

25 Chutinan A, Krogh B H. Verification of infinite-state dynamic systems using approximate quotient transition systems.

IEEE Trans Automat Contr, 2001, 46: 1401–1410

26 Podelski A, Wagner S. Model checking of hybrid systems: from reachability towards stability. In: Hybrid Systems:

Computation and Control, Santa Barbara, 2006. Lecture Notes in Computer Science, 2006, 3927: 507–521

27 Pappas G J. Bisimilar linear systems. Automatica, 2003, 39: 2035–2047

28 Koo T J, Clifton C A, Hemingway G. Cascaded control design for a quadrotor aerial robot. In: Proceedings of the

2006 Asian Control Conference, Bali, 2006. 989–993

