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Abstract A novel networked data-fusion method is developed for the target tracking in wireless sensor net-

works (WSNs). Specifically, this paper investigates data fusion scheme under the communication constraint

between the fusion center and each sensor. Such a message constraint is motivated by the bandwidth limitation

of the communication links, fusion center, and by the limited power budget of local sensors. In the proposed

scheme, each sensor collects one noise-corrupted sample, performs a quantizing operation, and transmits quan-

tized message to the fusion center. Then the fusion center combines the received quantized messages to produce

a final estimate. The novel data-fusion method is based on the quantized measurement innovations and de-

centralized Kalman filtering (DKF) with feedback. For the proposed algorithm, the performance analysis of

the estimation precision is provided. Finally, Monte Carlo simulations show the effectiveness of the proposed

scheme.
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1 Introduction

Data fusion for estimation is a well studied topic in multi-sensor systems [1–5]. The estimation fusion the-
ory has been widely applied to integrated navigation systems for maneuvering targets, such as airplanes,
ships, cars and robots.

In [1,2], an efficient federated Kalman filtering method is developed for distributed multisensor systems
based on rigorous information-sharing principles. Ref. [3] established a unified linear model and a general
framework for centralized, distributed, and hybrid architectures. There, the optimal fusion rules are based
on the best linear unbiased estimation (BLUE) and the weighted least squares (WLS). In [4], an optimal
information fusion method is given for discrete time linear stochastic control systems with multiple sensors
and correlated noises. Ref. [5] also presented an efficient iterative algorithm for distributed multisensor
estimation fusion without any restrictive assumption on the noise covariance. However, those works, e.g.,
∗Corresponding author (email: xujian2001-1@163.com, xujian0709@sjtu.edu.cn)
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Figure 1 Target tracking in WSNs.

[1–5], only devised estimation fusion based on the local measurements or local state estimations, but
without considering the communication bandwidth and the power limitations of sensor.

Recently, WSNs have attracted much attention due to their significant applications in environmental
monitoring, intelligent transportation and space exploration, military surveillance, etc. [6–12]. The
current and future wireless sensor networks usually deploy a large number of inexpensive sensors whose
dynamic range, resolution, and power can be severely limited. Moreover, there can be physical limitations
in the communication links from the sensors back to a central site (also known as fusion center). In
such cases, local data compression is not only a necessity, but also an integral part of the design of
sensor networks [6]. As a result, a main challenge in sensor network research is how to design optimal
decentralized estimation fusion schemes in the presence of channel bandwidth and power limitations.

Figure 1 shows a typical tracking scenario in WSNs. The target walks inside the square monitored
area of the WSNs. At each time step, one sensor or more, as represented by small square in the figure,
is activated to observe the moving target. The big circles in the figure represent the regions in which the
sensor nodes may be able to detect the target. The small black circles are the corresponding local fusion
centers(LFC). As the target moves, the WSNs must maintain the tracking of the target.That is to say
it is able to locate the target with a certain level of accuracy all the time by information exchanges and
fusion among the sensor nodes.

The common way to reduce the energy consumption and bandwidth usage is to quantize WSNs data.
Obviously, the quantization will result in the loss a large amount of information. Especially, quantizing
sensor measurements can lead to large quantization noises when the observed values are large, which
then leads to poor estimation accuracy. In [8,9], this limitation is overcome by developing an elegant
distributed estimation approach based on quantizing the innovation to one bit (the so-called sign of
innovation or SOI). In [10,11], the quantization filter is generalized to handle multiple levels quantized
innovations (i.e. MLQI-KF). In [12], taking into account the quantization, encoding and transmitting of
measurements in WSNs, Xu et al. studied the estimation fusion of dynamical stochastic processes based
on severely quantized observations. It is worth noting that almost all of those works [8–12] focused on the
designing of quantization/compression to save bandwidth and energy of the sensors, while they ignored
the fact that the bandwidth and energy of local fusion center (LFC) are also limited.

In all of those algorithms [8–10], the estimated state and the associated state error covariance are
necessary for the measurement innovations quantization and the next time step estimation. Then the
estimated state and the associated state error covariance must be passed around the LFC. For example,
in a d-dimensional system, there are d(d + 1)/2 + d elements to be transmitted at each time step. The
first term d(d + 1)/2 is the number of transmitted elements of the state error covariance matrix, due to
its symmetry property, and the second term d is the number of transmitted elements of the estimated
state. The transmitted elements increases dramatically with the increasing system dimensions. Hence, in
this paper, taking into account both severely quantized observations and the data compression in LFC,
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we study the estimation fusion of dynamical stochastic processes.
The main objective of the current study is to propose a novel data-fusion approach for target tracking

in WSNs. The proposed scheme can reduce the transmitting bandwidth and energy cost, and still keep
very high tracking accuracy. In this approach, the innovations quantization and decentralized information
fusion technique are adopted. For convenience, we name the proposed data-fusion approach quantized
innovation-decentralized Kalman filter(QI-DKF). The innovation quantizing technique is adopted to re-
duce the energy consumption and bandwidth usage from sensor nodes to LFC. The decentralized Kalman
filter is used to produce a final estimate in LFC. Then, the LFC transmits the predicted measurements
and the corresponding measure covariance matrix to corresponding sensor nodes. If the observation of
sensor node is a scalar, then the transmitting bandwidth and energy cost in LFC can be reduced. The
performance of the proposed fusion method is analyzed. The resulting method is simulated for target
tracking scenario in WSNs.

The remainder of this paper is organized as follows. Problem statements including the modelling as-
sumptions and preliminaries are given in Section 2. Section 3 introduces the quantization approach firstly.
Then a novel estimation fusion method is developed based on the quantized innovations, conditional ex-
pectation property and DKF. The performance analysis is presented in Section 4. The simulation results
are presented in Section 5. Finally, conclusions are given in Section 6.

Notation. We use σ{Mk
1 } to denote the σ-field generated by random variables Mk

1 = {M1, M2, . . . , Mk}.
The probability density function (pdf) of X conditioned on σ{Mk

1 } is represented as p(X |σ{Mk
1 }). The

Gaussian pdf with mean E(X) = μ and covariance matrix Cov(X) = C is represented as p(X) =
N (X ; μ, C). The probability mass function for a discrete random variable m is denoted by Pr(m). Es-
timators are represented using a hat, e.g., ̂X(k|σ{Mk

1 }) = E[X(k)|σ{Mk
1 }]. Finally, (·)T stands for

transposition and (·)−1 stands for the matrix inverse.

2 Modelling assumptions and preliminaries

The sensor measurement is scalar in general WSNs, but for the universality of the proposed results, we
consider the state estimation problem of general “vector state-vector measurement” case

X(k) = FX(k − 1) + Γw(k − 1), (1)

yi(k) = HiX(k) + vi(k), (2)

k = 0, 1, 2, . . . ,

where X(k) ∈ R
d is a state vector to be estimated at time tk = kΔt, Δt is the time step-length of

sample, F and Γ are two matrices with suitable dimensions, Hi is the observation coefficient matrix.
H = {(H1)T, (H2)T, . . . , (HN )T}T, yi(k) ∈ Rr is the r-dim observation of the sensor i, r � 1, i =
1, . . . , N , N is the number of the active sensors, Y (·) = {y1(·)T, y2(·)T, . . . , yN(·)T}T. w(k) ∈ Rd and
v(k) = {v1(k)T, v2(k)T, . . . , vN (k)T}T are uncorrelated Gaussian noises with zero mean and covariance
matrix Q and R. In this paper, we consider the WSNs that the sensor measurements are independent
of each other, i.e., R = diag{R1, R2, . . . , RN}. The initial value X(0) with mean μ0 and variance P0 is
independent of w(k) and v(k). In this paper, we assume that all the parameters of systems (1), (2) are
known and the channel is perfect, i.e., without bit error, from sensors to the fusion center.

In order to affect digital communication in the bandwidth-limited WSNs, the observations are quan-
tized. The quantizer is described mathematically by

mi(k) = qLi(yi(k)), k = 0, 1, 2, . . . , i = 1, 2, . . . , N, (3)

where, qLi(·) denotes the nonlinear quantization mapping with Li-levels. Then, the measurement yi(k), i =
1, 2, . . . , N, is quantized, and thus Y ∈ A implies {ai � yi < bi, i = 1, 2, . . . , N}. A majority of
the following results do not depend on the fact that A is a hypercube. M(k) denotes the vector
{m1(k), m2(k), . . . , mN (k)}T.
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Define the following events:

M(k) = {ai(k) � yi(k) < bi(k), i = 1, 2, . . . , N}, k = 1, 2, . . . (4)

and

Mk
1 = {M(1), M(2), . . . , M(k)}, 1 � k,

mi(1 : k) = {mi(1), mi(2), . . . , mi(k)}, 1 � k, 1 � i � N.

If we had infinite bandwidth available, we could be able to communicate the observations Y (k) error-
free. Thus we have M(k) = Y (k). In this case, we have a well-known linear Gaussian state estimation
problem with multiple sensors whose estimator can be recursively obtained by the centralized Kalman
filtering (CKF)[13] (Algorithm 1-A, 1-B).

Define the estimate X̂k|k = E[Xk|Mk
1 ] and the corresponding ECM Pk|k = MSE[X̂k|k|Mk

1 ] = E[(Xk −
X̂k|k)(Xk − X̂k|k)T|Mk

1 ].
Given X̂0|0 and P0|0.
Algorithm 1-A. Prediction step.
Given: X̂k−1|k−1 and Pk−1|k−1,

X̂k|k−1 = FX̂k−1|k−1, (5)

Pk|k−1 = FPk−1|k−1F
T + ΓQΓT, (6)

ŷi(k|k − 1) = HiX̂k|k−1, i = 1, 2, . . . , N. (7)

we denote Ŷ (k|k − 1) = (ŷ1(k|k − 1)T, ŷ2(k|k − 1)T, . . . , ŷN(k|k − 1)T)T.

Algorithm 1-B. Correction step.
Receive: new observations Mk = Y (k),

̂Xk|k = E[X(k)|σ{Mk−1
1 , Y (k)}] = X̂k|k−1 + Kk(Y (k) − Ŷ (k|k − 1)), (8)

Pk|k = Pk|k−1 − KkSkKT
k , (9)

where

Kk = Pk|k−1S
−1
k , (10)

Sk = HPk|k−1H
T + R. (11)

If Algorithm 1 is adopted to process data in WSNs, then each sensor node must transmit its mea-
surement to the corresponding local fusion center without any information loss. After receiving the all
sensor’s measurements, the fusion center combines the received measurements to produce a final estimate.
Then, the fusion center sends the corresponding estimate ̂Xk|k and error covariance matrix Pk|k to the
next local fusion center, if the target moves to the next local tracking region.

Due to the bandwidth constraints from sensor nodes to the LFC and the LFC to other LFC and sensor
nodes, we must reduce the traffic between sensor nodes and the LFC to save energy and satisfy the
communication bandwidth constraints. In this paper, a nonlinear compression method, i.e. measurement
quantization, is adopted to reduce the communication bandwidth from sensor nodes to the LFC. The
distributed Kalman filtering (DKF) is adopted to reduce the energy consumption when the LFC transmit
messages to the nearby sensor nodes and other LFC.

3 Data fusion using quantized innovations and DKF

In this section, we will investigate the estimation fusion method based on the multiple-level quantized
innovations and DKF. It is worth noting that, those algorithms in [8–12] are based on the designing of
quantization to save bandwidth and energy of the sensor notes, while they ignored that the bandwidth
and energy of LFC are also limited. In order to further reduce the energy consumption of LFC and
prolong the WSNs lifetime, we give a novel data fusion method based on quantized innovations and DKF
for state estimation in WSNs.
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3.1 Quantized innovations

We consider the linear systems (1), (2) in wireless sensor networks. The activated sensor makes an
observation, and computes the innovation εi(k) = yi(k) − Ŷi(k|k − 1), where the one-step predictor
Ŷi(k|k − 1) of observation together with the innovation covariance Si(k) (see Eq. (20)) is received by the
sensor from the LFC. Denote the normalized innovation by

εi(k) = (Si(k)1/2)−1εi(k).

Then each component εi(k), i = 1, 2, . . . , N, of the normalized innovation ε(k) is quantized to produce
an L = (2l + 1)-level quantized innovation Ξ (k) = qL(ε(k)). We consider a symmetric quantizer Ξi(k) =
qL(εi(k)) for εi(k)

Ξi(k) =

⎧
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⎪

⎪

⎪

⎪

⎪

⎪
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⎪
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⎪

⎪
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⎪

⎪

⎪

⎪

⎩

ξl, if εi(k) ∈ (ηl, +∞);
...

ξ2, if εi(k) ∈ (η2, η3];

ξ1, if εi(k) ∈ (η1, η2];

0, if εi(k) ∈ (−η1, η1];

−ξ1, if εi(k) ∈ (−η2,−η1];

−ξ2, if εi(k) ∈ (−η3,−η2];
...

−ξl, if εi(k) ∈ (−∞,−ηl].

(12)

Thus, the normalized innovation ε(k) is quantized into a quantized innovation Ξ (k) = {Ξ1(k),Ξ2(k), . . . ,
ΞN (k)}T.

Remark 1. Comparing the definition of M(k) in Eq. (4) with Ξ (k) = qL(ε(k)), the difference is that
the former gives only the range of ε(k), while the latter gives not only a range information of ε(k), but
also a specific value. Clearly the definition of Ξi(k) gives a one-one mapping from Mi(k) to R. Hence in
following text we will not distinguish Mi(k) and Ξi(k). If we take the value of ξj = E[εi(k))|ηj < εi(k)) �
ηj+1], j = 1, 2, . . . , li, i.e., Ξi(k) = E[εi(k))|ηj < εi(k)) � ηj+1], then the numerical integration (see
Eq. (25)) can not be executed in the filtering algorithms. Thus the online computation cost can be
reduced. More details will be given in Subsection 3.2.

After quantization, the quantized innovation Ξ (k) = {Ξ1(k),Ξ2(k), . . . ,ΞN (k)}T is transmitted to the
LFC by a dynamic transfer strategy [12]. Then, the fusion center will combine the received messages
Ξ (k) to estimate the state X(k). Refs. [8–12] assume that the fusion center has enough bandwidth and
energy to transmit the information. In fact, the energy and transmitting bandwidth of LFC are also
limited. In order to get the proposed algorithm of this paper, we deduce a KF vision state estimator
using quantized innovations in Subsection of 3.2.

3.2 Estimation fusion using quantized innovations and DKF

In this subsection, following the idea of Curry et al. [14], we first introduce a linear approximate MMSE
filtering with single quantized innovation to get a local state estimation.

By Eq. (3), for i = 1, 2, . . . , N , we have

σ{Mk−1
1 , yi(k)} ⊃ σ{Mk−1

1 , mi(k)}, k = 1, 2, . . . . (13)

By the property of iterated conditional expectation [15], for the state variable X(k)(k = 1, 2, . . .), it holds
that

E[X(k)|σ{Mk−1
1 , mi(k)}] = E[E[X(k)|σ{Mk−1

1 ,yi(k)}]|σ{Mk−1
1 , mi(k)}]. (14)
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Hence, the expectation of X(k) conditioned on quantized measurements {Mk−1
1 , mi(k)} can be performed

in two steps:
1) find E[X(k)|σ{Mk−1

1 , yi(k)}], which is the usual goal of estimation with unquantized measurements;
2) find the expectation of E[X(k)|σ{Mk−1

1 , yi(k)}] conditioned on the quantized measurements {Mk−1
1 ,

mi(k)}.
The first step, under the Gaussian assumption of prior pdf p(X(k)|σ{Mk−1

1 }), can be performed
(similar to the Algorithm 1 in a Gauss-Markov model) as

̂X i∗
k|k = E[X(k)|σ{Mk−1

1 , yi(k)}]
= X̂k|k−1 + Ki(k)(yi(k) − ŷi(k|k − 1))

= X̂k|k−1 + Ki(k)(εi(k)), (15)

P i∗
k|k = Pk|k−1 − Ki(k)Si(k)Ki(k)T, (16)

where X̂k|k−1, Pk|k−1, Ki(k) and Si(k) can be obtained by (4),(5),(9) and (10) respectively.
The second step is to take the expectation of (15) conditioned on {Mk−1

1 , mi(k)} to find the mean of
X(k) conditioned on ith quantized measurement mi(k)

X̂ i
k|k = E[X(k)|σ{Mk−1

1 , mi(k)}]
= E[E[X(k)|σ{Mk−1

1 , yi(k)}]|σ{Mk−1
1 , mi(k)}]

= X̂k|k−1 + Ki(k)E[εi(k)|σ{Mk−1
1 , mi(k)}]. (17)

Correspondingly P i
k|k = E[(Xk − X̂ i

k|k)(Xk − X̂ i
k|k)T|σ{Mk−1

1 , mi(k)}], where, by Eqs. (15) and (17),

Xk − X̂ i
k|k = Xk − X̂ i∗

k|k + (X̂ i∗
k|k − X̂ i

k|k)

= Xk − X̂ i∗
k|k + Ki(k)(εi(k) − E[εi(k)|σ{Mk−1

1 , mi(k)}]).

Then

E[(Xk − X̂ i
k|k)(Xk − X̂ i

k|k)T|σ{Mk−1
1 , mi(k)}]

= P i∗
k|k + Ki(k)(εi(k) − E[εi(k)|σ{Mk−1

1 , mi(k)}])(εi(k)−E[εi(k)|σ{Mk−1
1 , mi(k)}])TKi(k)T

and finally

P i
k|k = P i∗

k|k + Ki(k)Cov[εi(k)|σ{Mk−1
1 , mi(k)}]Ki(k)T

= Pk|k−1 − Ki(k)Si(k)Ki(k)T + Ki(k)Cov[εi(k)|σ{Mk−1
1 , mi(k)}]Ki(k)T. (18)

Thus, the local approximate MMSE filter with quantized measurement mi(k) is given by (15)–(18).
The first step is directly obtained from the Kalman-type filter solution because of the Gauss-Markov
property of the system (1), (2). In the second step, an important practical problem is to compute
efficiently E[εi(k)|σ{Mk−1

1 , mi(k)}] in (17) and Cov[εi(k)|σ{Mk−1
1 , mi(k)}] in (18). Despite this difficulty,

this approach does provide one common point of departure for designing purposes, and approximations
can be made depending on the specific method of quantization.

Now, we will discuss how to calculate E[εi(k)|σ{Mk−1
1 , mi(k)}] and Cov[εi(k)|σ{Mk−1

1 , mi(k)}].
First, given X̂k−1|k−1 and Pk−1|k−1, we have

ŷi(k|k − 1) = HiX̂k−1|k−1, i = 1, 2, . . . , N, (19)

Pk|k−1 = FPk−1|k−1F
T + ΓQΓT.

Then we can obtain the covariance of innovation

Si(k) = Cov[εi(k)|Mk−1
1 ] = E[(yi(k) − ŷi(k|k − 1))(yi(k) − ŷi(k|k − 1))T|Mk−1

1 ]

= HiPk|k−1H
T
i + Ri. (20)
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Further, under the Gaussian assumption of the prior pdf p(X(k)|σ{Mk−1
1 }) = N (X(k); Xk|k−1, Pk|k−1),

for the innovation εi(k), we obtain

p(εi(k)|Mk−1
1 ) =

∫

p(εi(k), X(k)|Mk−1
1 )dX(k)

=
∫

p(εi(k)|X(k))p(X(k)|Mk−1
1 )dX(k)

=
∫

N (εi(k); HiX(k) − HiXk|k−1, R)N (X(k); Xk|k−1, Pk|k−1)dX(k)

≈ N (εi(k); 0, Si(k)).

Thus, for the normalized innovation εi(k) = (Si(k)1/2)−1εi(k), we have

p(εi(k)|Mk−1
1 ) = N (εi(k); 0, Ir×r), (21)

where Ir×r is an r order identity matrix. Further,

p(εi(k)|Mk−1
1 , mi(k)) =

⎧

⎪

⎨

⎪

⎩

p(εi(k)|Mk−1
1 )

Pr(mi(k)|Mk−1
1 )

, if QL(εi(k)) = mi(k);

0, else

=
e−

1
2 εi(k)Tεi(k)

(2π)
1
2 Pr(Mk|Mk−1

1 )
I[ak,bk)(εi(k)).

By the property of conditional probability, we have

p(εi(k)|Mk−1
1 , mi(k)) =

⎧

⎪

⎨

⎪

⎩

p(εi(k)|Mk−1
1 )

Pr(mi(k)|Mk−1
1 )

, if QL(εi(k)) = mi(k);

0, else

=
e−

1
2 εi(k)Tεi(k)

(2π)
1
2 Pr(mi(k)|Mk−1

1 )
I[ak,bk)(εi(k)), (22)

where [ak, bk) is the hypercube corresponding to mi(k),

Pr(mi(k)|Mk−1
1 ) =

∫ bk

ak

p(εi(k)|Mk−1
1 )dεi(k) =

∫ bk

ak

N (εi(k); 0, Ir×r)dεi(k), (23)

and

I[ak,bk)(εi(k)) =

{

1, if εi(k) ∈ [ak, bk);

0, else.
(24)

Then

E(εi(k)|Mk−1
1 , mi(k)) =

∫ bk

ak

εi(k)p(εi(k)|Mk−1
1 , mi(k))dεi(k)

=

∫ bk

ak εi(k)p(εi(k)|Mk−1
1 )dεi(k)

∫ bk

ak p(εi(k)|Mk−1
1 )dεi(k)

=

∫ bk

ak εi(k)N (εi(k); 0, Ir×r)dεi(k)
∫ bk

ak N (εi(k); 0, 1)dεi(k)
, (25)

and

Cov(εi(k)|Mk−1
1 , mi(k)) = E(εi(k)ε(k)T|Mk−1

1 , mi(k))
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−E(εi(k)|Mk−1
1 , mi(k))ET(εi(k)|Mk−1

1 , mi(k))

=
∫ bk

ak

εi(k)εi(k)Tp(ε(k)|Mk−1
1 , mi(k))dεi(k)

−E(εi(k)|Mk−1
1 , mi(k))ET(εi(k)|Mk−1

1 , mi(k))

=

∫ bk

ak εi(k)εi(k)TN (εi(k); 0, Ir×r)dεi(k)
∫ bk

ak N (εi(k); 0, Ir×r)dεi(k)

−E(εi(k)|Mk−1
1 , mi(k))ET(εi(k)|Mk−1

1 , mi(k)). (26)

Remark 2. Numerical computation of the above integrals has a heavy computational burden, but
it is worth noting that the integrals are uniquely determined by its integral intervals, while the integral
intervals are only related to the quantitative strategies. Therefore, these integrals can be calculated
off-line. As described in Remark 1, we can take ξj = E[εi(k))|ηj < εi(k)) � ηj+1], j = 1, 2, . . . , li, i.e.,
Ξi(k) = E[εi(k))|ηj < εi(k)) � ηj+1]. Similarly, the covariance matrix of quantization error can also be
calculated off-line for different quantitative results mi(k) of normalized innovation, denoted by Σi(k).

Finally, by property of expectation and covariance, we have

E(εi(k)|Mk−1
1 , mi(k)) = Si(k)1/2E(εi(k)|Mk−1

1 , mi(k)) = Si(k)1/2Ξi(k), (27)

Cov(εi(k)|Mk−1
1 , mi(k)) = Si(k)1/2Cov(εi(k)|Mk−1

1 , mi(k))(Si(k)1/2)T

= Si(k)1/2Σi(k)(Si(k)1/2)T. (28)

Thus, using (5)–(11), (15)–(28) and the distributed Kalman filter (DKF) with feedback [18], we can
constitute the distributed Kalman filter based on multi-level quantized innovations (QI-DKF).

QI-DKF is implemented in four stages: Compute the value of E(ε(k)|Mk−1
1 , mi(k)) and Var(ε(k)|Mk−1

1 ,

mi(k)) using (27) and (28) for all possible values of mi(k) off-line.
Given X̂0|0 and P0|0.
Algorithm 2-A. Prediction step (in LFC).
Given: X̂k−1|k−1 and Pk−1|k−1,

X̂k|k−1 = FX̂k−1|k−1, (29)

Pk|k−1 = FPk−1|k−1F
T + ΓQΓT; (30)

For i = 1, 2, . . . , N ;

Si(k) = HiPk|k−1H
T
i + Ri, (31)

Ki(k) = Pk|k−1Si(k)−1, (32)

ŷi(k|k − 1) = HiX̂k|k−1, (33)

Transmit the ŷi(k|k − 1) and Si(k) to corresponding active sensor nodes.
Algorithm 2-B. Measurement and quantization (in sensor nodes).
For i = 1, 2, . . . , N ,
Given: ŷi(k|k − 1) and Si(k);
Measure: yi(k),
Construct quantized innovations mi(k) = qLi(εi(k)) as in Subsection 3.1;
Transmit quantized innovations mi(k) to LFC.
Algorithm 2-C. Correction step (in LFC).
Receive: Quantized observations mi(k), i = 1, 2, . . . , N ,
According to mi(k), i = 1, 2, . . . , N , take the corresponding values of Ξi(k) and Σi(k) as in Remark 2;
Compute E(εi(k)|Mk−1

1 , mi(k)) and Var(εi(k)|Mk−1
1 , mi(k)) using (27), (28);

X̂ i
k|k = X̂k|k−1 + Ki(k)Si(k)1/2Ξi(k), (34)
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P i
k|k = Pk|k−1 − Ki(k)Si(k)Ki(k)T + Ki(k)Si(k)1/2Σi(k)(Si(k)1/2)TKi(k)T. (35)

Algorithm 2-D. Fusion step (in LFC).
The following fusion schema was suggested by Chong et al. [16].

P−1
k|k =

N
∑

i=1

(P i
k|k)−1 − (N − 1)P−1

k|k−1, (36)

P−1
k|kX̂k|k =

N
∑

i=1

(P i
k|k)−1X̂ i

k|k − (N − 1)P−1
k|k−1X̂k|k−1. (37)

Remark 3. 1) In the proposed fusion method, ŷi(k|k − 1) and Si(k) are transmitted to the corre-
sponding active sensor nodes at each time step. In the case of scalar measurement, there are only 2N

elements transmitted at each time step. The X̂k|k−1 and Pk|k−1 transmission occur only when the LFC
has changed. However, those existing estimation fusion algorithm [8–12] transmit the X̂k|k−1 and Pk|k−1

to the corresponding active sensor nodes at each time step. In this case the number of transmitted
elements is d(d + 1)/2 + d, where d is the dimension of state vector. Generally, the dimension d of
target state is not less than four. However, it is enough to track a target with N = 3 sensors. Hence,
2N � d(d + 1)/2 + d mostly. Thus, the proposed algorithm can save more communication bandwidth
and energy of LFC than existing estimation fusion algorithm [8–12].

2) If there is no quantization for sensor innovation, i.e., εi(k) = Si(k)1/2Ξi(k), then QI-DKF will
degenerate into ordinary distributed Kalman filter (DKF) with feedback. Zhu et al. [13] point out that
the distributed Kalman filtering fusion formula with feedback is exactly equivalent to the corresponding
centralized Kalman filtering formula (Algorithm 1). Hence, the fusion algorithm is still global optimal,
and the performance degradation of QI-DKF merely from quantization. Furthermore, In the study of
the performance of QI-DKF, the filtering precision loss brought by quantized innovations only needs to
be taken into consideration.

4 Performance analysis

In this section, we analyse the performance of the QI-DKF.

4.1 Analysis of estimated accuracy

In order to study the performance of QI-DKF, we first give the case without quantization vision QI-DKF,
i.e. DKF (Algorithm 3).

Given X̂0|0 and P0|0.
Algorithm 3-A. Prediction step (in LFC).
Given: X̂k−1|k−1 and Pk−1|k−1,

X̂k|k−1 = FX̂k−1|k−1, (38)

Pk|k−1 = FPk−1|k−1F
T + ΓQΓT; (39)

For i = 1, 2, . . . , N,

Si(k) = HiPk|k−1H
T
i + Ri, (40)

Ki(k) = Pk|k−1Si(k)−1, (41)

ŷi(k|k − 1) = HiX̂k|k−1, (42)

Transmit the ŷi(k|k − 1) and Si(k) to corresponding active sensor nodes.
Algorithm 3-B. Measurement (in sensor nodes).
For i = 1, 2, . . . , N ,
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Given: ŷi(k|k − 1);
Measure: yi(k),
Construct innovations εi(k) = yi(k) − ŷi(k|k − 1);
Transmit innovations εi(k) to LFC.
Algorithm 3-C. Correction step (in LFC).
Receive: Innovations εi(k), i = 1, 2, . . . , N ;
Compute

X̂ i
k|k = X̂k|k−1 + Ki(k)εi(k), (43)

P i
k|k = Pk|k−1 − Ki(k)Si(k)Ki(k)T. (44)

Algorithm 3-D. Fusion step (in LFC).
The following fusion schema was suggested by Chong et al. [16].

P̂−1
k|k =

N
∑

i=1

(P̂ i
k|k)−1 − (N − 1)P̂−1

k|k−1, (45)

P̂−1
k|kX̂k|k =

N
∑

i=1

(P̂ i
k|k)−1X̂ i

k|k − (N − 1)P̂−1
k|k−1X̂k|k−1. (46)

Comparison of the ECM corrections for the DKF in (44) with those for the Algorithm 2 (QI-DKF)
in (35) reveal that they are identical except for the third term in (35). The similarity is quantified by
defining the ECM reduction per correction step [cf. (35)]

ΔP i(k) := Pk|k−1 − P i
k|k

= Ki(k)Si(k)Ki(k)T − Ki(k)Cov[εi(k)|σ{Mk−1
1 , mi(k)}]Ki(k)T. (47)

If we use yi(k) instead of mi(k) in the correction step, the ECM reduction will be [cf. (44)]

ΔP i(k) := Pk|k−1 − P i
k|k = Ki(k)Si(k)Ki(k)T. (48)

Comparing (47) with (48), we see that the ECM reduction achieved by the QI-DKF is less than by the
DKF.

Similar to [10], the optimal quantizer is defined as the one that maximizes the average variance reduc-
tion, i.e.,

{η∗
j (k)}L

j=1 := arg max
{ηj(k)}L

j=1

Emi(k)(ΔP i(k)|Mk−1
1 )

= arg min
{ηj(k)}L

j=1

Emi(k)(Cov(εi(k)|Mk−1
1 , mi(k))|Mk−1

1 ). (49)

An MSE distortion conditioned on Mk−1
1 is adopted and the optimal quantizer of εi(k) is defined as

{η†
j (k)}L

j=1 := arg min
{ηj(k)}L

j=1

Emi(k)(Cov(εi(k)|Mk−1
1 , mi(k))|Mk−1

1 ). (50)

It is easy to see [10] that the corresponding optimal thresholds are uniform, i.e., {η∗
i (k)}L

i=1 = {η†
i (k)}L

i=1.
From Eq. (21), we know that the components εil(k), (i = 1, 2, . . . , N, l = 1, 2, . . . , r) of εi(k) are inde-

pendence identically distributed (IID). Obviously, the quantization does not undermine this independent.
In other words, the components mil(k), (i = 1, 2, . . . , N, l = 1, 2, . . . , r) of mi(k) are still IID. Hence, the
covariance Cov(εi(k)|Mk−1

1 , mi(k)) is a diagonal matrix, and

Cov(εi(k)|Mk−1
1 , mi(k))
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=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

var(εi1(k)|Mk
1 , mi(k)) 0 . . . 0

0 var(εi2(k)|Mk
1 , mi(k)) . . . 0

...
...

...

0 0 . . . var(εir(k)|Mk
1 , mi(k))

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (51)

Furthermore, noting that Emi(k)(var(εil(k)|Mk
1 )), (l = 1, 2, . . . , r) are equal, we have, without loss of

generality,

Emi(k)(Cov(εi(k)|Mk−1
1 , mi(k))|Mk−1

1 ) = Emi(k)(var(εi1(k)|Mk−1
1 , mi(k))|Mk−1

1 ) × Ir×r. (52)

Hence, the optimization problem in (50) is equivalent to

{η̃†
j(k)}L

j=1 := arg min
{ηj(k)}L

j=1

EMk
(var(εi1(k)|Mk−1

1 , mi(k))|Mk−1
1 ), (53)

and for the the covariance of εi(k) conditioned on {Mk−1
1 , mi(k)}, we have

Emi(k)(Cov(εi(k)|Mk−1
1 , mi(k))|Mk−1

1 )

= Emi(k)(Si(k)1/2Cov(εi(k)|Mk−1
1 , mi(k))(Si(k)1/2)T|Mk−1

1 )

= Si(k)1/2Emi(k)(Cov(εi(k)|Mk−1
1 )|Mk−1

1 )(Si(k)1/2)T

= Si(k)1/2 × Emi(k)(var(εi1(k)|Mk−1
1 , mi(k))|Mk−1

1 ) × Ir×r × (Si(k)1/2)T

= Emi(k)(var(εi1(k)|Mk−1
1 , mi(k))|Mk−1

1 ) × Ir×r × Si(k). (54)

Combining Eq. (47) with Eq. (52), we have

Emi(k)(ΔP i(k)|Mk−1
1 )

:= Emi(k)(Pk|k−1 − P i
k|k|Mk−1

1 )

= Ki(k)Si(k)Ki(i)T − Ki(k)Emi(k)(Cov[εi(k)|σ{Mk−1
1 , mi(k)}]|Mk−1

1 )Ki(k)T

= Ki(k)Si(k)Ki(i)T − Emi(k)(var(εi1(k)|Mk−1
1 , mi(k))|Mk−1

1 ) × Ir×r × Ki(k)Si(k)Ki(i)T

= (1 − Emi(k)(var(εi1(k)|Mk−1
1 , mi(k))|Mk−1

1 )) × Ir×r × Ki(k)Si(k)Ki(i)T. (55)

It means that QI-DKF exhibiting MSE performance is identical to those of DKF with MSE reduction
multiplied by a factor of

α = 1 − Emi(k)(var(εi1(k)|Mk−1
1 , mi(k))|Mk−1

1 ). (56)

The optimization problem in (53) has a well-known solution given by the Lloyd-Max quantizer [17]. For
the optimal normalized thresholds values and the corresponding values of Ξ and Σ ,one can refer to [17].
The corresponding α obtained by using (56) and the maximal number u of transmitting bytes (Max u)
are summarized in Table 1.

Remark 4. Table 1 reveals that, under the Gaussian and independent assumptions, with 2-bit com-
munication constraint, the proposed fusion method can achieve the 95.60 percent performance of the
decentralized Kalman filtering fusion, with 3-bit bandwidth, 98.93 percent performance achieved.

4.2 Energy model

The energy model used in this paper is based on [19]. Energy is consumed to be mainly during data
communication; therefore, in this paper we only consider such energy. The energy to transmit b bits from
sensor node sj to sk is Ent(sj , sk) = (et +edr

ac

jk)b, where et and ed are decided by the specifications of the
transmitter of sj, rjk is the distance between sensor sj and sk, and ac depends on the channel charac-
teristics and is assumed to be known. The energy consumption on sensor sk side for receiving data of
b bits is Enr(sk) = erb, where er is decided by the specifications of the receiver of sensor node sk. It
is known that the communication operations dominate the energy consumption unlike to sensing and
processing operations [20]. Hence, the communication energy consumption, both for transmitting and
receiving data,
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Table 1 α Values

Quantization level L = 3 L = 7 L = 15

Max u (bit) 1 2 3

α 0.8098 0.9560 0.9893

Table 2 Typical parameters in the energy model

Parameters αc et ed er

Value 2 45 × 10−9 J/bit 10 × 10−12 J/bit·m2 135 × 10−9 J/bit

En(sj , sk) = (et + edr
ac

jk)b + erb = e0 + e1r
ac

jk (57)

is the focus of this paper, where e0 = (et + er)b and e1 = edb. Typical parameters in the energy model
are listed in Table 2 [19,20]. We present this communication energy consumption comparisons between
our proposed QI-DKF algorithm and the standard MLQI-KF [10,11] algorithm in the simulation results
in the following sections.

5 Simulation results

In this section, we consider a target tracking system in WSNs. The network is formed using randomly
distributed ranging sensors. There are 200 sensors randomly located in a square region of about 400 ×
400 m2 and the position (xi, yi) of the ith sensor is known. It is assumed that there is no communication
loss and that the sensors are synchronized.

The target (e.g., human, car, radiation source etc.) is considered as a point-object moving in a two-
dimensional plane. Here, we consider a quite general, nonlinear motion model, the coordinated turn rate
model [18]. This model assumes that the target moves at a nearly constant speed and unknown turn
rate. We denote by X(k) the state of the target. X(k) represents the coordinates X1, X2, the velocities
Ẋ1, Ẋ2 , and the turn rate φ

X(k) = {X1(k), Ẋ1(k), X2(k), Ẋ2(k), φ(k)}T. (58)

The target motion in the Cartesian coordination system is modelled as

X(k) = Φ(k − 1)X(k − 1) + Γ (k − 1)w(k − 1), (59)

where the w(k − 1) is the process noise with covariance matrices of Q. The system noise is a Gaussian
noise w(k) ∼ N (0, diag[�2

1, �
2
2, �

2
Φ ]), where �1 = �2 = �φ = 0.1. The state transition matrix Φ(k) and

process noise coefficient matrices Γ (k) can be written as respectively

Φ(k) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
sin φ(k)Δt

φ(k)
0

1 − cosφ(k)Δt

φ(k)
0

0 cosφ(k)Δt 0 − sin φ(k)Δt 0

0 −1 − cosφ(k)Δt

φ(k)
1

sinφ(k)Δt

φ(k)
0

0 sin φ(k)Δt 0 cosφ(k)Δt 0

0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(60)

and
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Γ (k) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Δt2

2
0 0

Δt 0 0

0
Δt2

2
0

0 Δt 0

0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (61)

For all simulations, we take the following parameters. The total time T is 100 s and the time step is
Δt = 1 s. The turn rate φ takes the value of −0.08 rad (1 � k � 30), 0.15 rad (31 � k � 60), −0.15 rad
(61 � k � 80) and 0.1 rad (81 � k � 100). The target initial state is X0 = [40, 4, 110, 5, 0.08]T. Here, we
employ the tracking algorithm starting from X0|0 = [50, 3, 90, 6, 0.08]T and P0|0 = 3 × Q.

In order to compare the performance of QI-DKF with the performance of DKF for target tracking
in WSNs, we consider the WSN with scaler measurements [18] under the same bandwidth constraining
conditions. In this example, we consider the target tracking problem with 2-bit and 3-bit bandwidth
restriction.

The measurement is the noisy relative distance between the sensors and the target (e.g., radar, acoustic
sensors, sonar, etc. ). Sensor i, located at position X i = (xi, yi) measures [18]

yi(k) = hi(X(k)) + vi(k) =
√

(X1(k) − xi)2 + (X2(k) − yi)2 + vi(k). (62)

The measurement noise is a Gaussian noise vi(k) ∼ N (0, 25). Linearizing (62) about a generic state
prediction ̂Xk|k−1 in a similar fashion to the extended Kalman filter (E)KF, one can obtain

yi(k) ≈ ∂hi(X(k))
∂X(k)

|
̂Xk|k−1

X(k) + y0
i (k) + vi(k), (63)

where y0
i (k) is a function of ̂Xk|k−1 and X i. The linearized observations (62) together with (59), (60),

and (61) are amenable to the QI-DKF algorithms.

Remark 5. In the algorithm running, the choice of LFC and sensor data is based on the nearest
neighbor principle. Specifically, every five seconds, the LFC will activate the next LFC and three sensors
nearest to the predicted location of target. The predicted measurements yi(k|k−1) and the corresponding
elements of prediction measurement error covariance Si(k) are sent to them. Then, the sensor nodes
approximatively calculate the quantized innovations using the quantization algorithm in Section 3, and
return them to the next LFC. Thus, the fusion center can use the quantized innovations returned by the
three sensor nodes for target state estimation.

In Figure 2 are shown the simulation results of MLQIKF[10] and QI-DKF with 2-bit bandwidth and
3-bit bandwidth, and the DKF [14,18] in target tracking. The simulation results are based on 400 Monte-
Carlo runs. The criterion for comparison is the RMSE on the position and velocity of the target. In
Figures 2(a), (b), the RMSEs of position along the X-axis and Y -axis are given respectively. In Figure 2,
the estimation performance of Algorithm 2 is almost equivalent to that of DKF, but the energy consump-
tion of the Algorithm 2 is greatly reduced (see Table 3). These simulation results confirm the correctness
of the theoretical analysis in Section 4.

In Table 3, the communication energy consumption of DKF, MLQI-KF and QI-DKF in different time
steps are shown. Here the communication energy consumption from sensor nodes to LFC and from
LFC to corresponding sensor nodes are considered. The number of analog-to-digital conversion bits for
intersensor communication is assumed to be b = 32 bits, and the number of bits used in quantizing
innovations is assumed to be b = 2 or b = 3 bits. The QI-DKF consumes much less energy than the
original DKF and MLOI-KF algorithm, as shown in Table 3.

Figure 2 and Table 3 show that the proposed algorithm can reduce a lot of energy losses and keep very
high estimation precision.
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Table 3 Energy consumption (Unit: J) for the corresponding algorithm

Time step 20 40 60 80 100

DKF 0.0018994 0.0038667 0.0058867 0.0079357 0.0099706

MLQI-KF 3-bit 0.0017734 0.0036109 0.0054973 0.007405 0.0092786

MLQI-KF 2-bit 0.0017693 0.0036021 0.0054845 0.007388 0.0092559

QI-DKF 3-bit 0.00096734 0.0019681 0.0029902 0.0040208 0.0050378

QI-DKF 2-bit 0.00096323 0.0019593 0.0029774 0.0040038 0.0050151
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Figure 2 RMSE of the example. (a) RMSE of position along the X-axis; (b) RMSE of position along the Y -axis; (c)

RMSE of velocity along the X-axis; (d) RMSE of velocity along the Y -axis.

6 Coclusion

The problem of estimation fusion with quantized innovations is considered in WSNs. The proposed
data fusion method is based on quantized measurement innovations and decentralized Kalman filtering
with feedback. The performance of resulting filter is discussed. Under the Gaussian and independent
assumptions, performance analysis reveals that with 2-bit communication constraint, the proposed fusion
method can achieve 95.60 percent performance of the decentralized Kalman filtering fusion; with 3-bit
bandwidth, 98.93 percent performance is achieved. Finally, Monte Carlo simulations show that the
proposed scheme reduces the energy consumption dramatically. At the same time, the proposed scheme
still maintains very high tracking accuracy.
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