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Abstract An extended product multi-sensor cardinalized probability hypothesis density (PM-CPHD) filter

for spatial registration and multi-target tracking (MTT) is proposed. The number and states of targets and

the biases of sensors are jointly estimated by this method without the data association. Monte Carlo (MC)

simulation results show that the proposed method (i) outperforms, although computationally more expensive

than, the extended multi-sensor PHD filter which has been proposed for joint spatial registration and MTT; (ii)

outperforms the multi-sensor joint probabilistic data association (MSJPDA) filter which is also extended in this

study for joint spatial registration and MTT when the clutter is relatively dense.
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1 Introduction

Spatial registration (or alignment) is a prerequisite for the successful fusion of multiple sensors [1]. Many
approaches have been proposed to solve the problem [2]. For most of the existing registration approaches,
the association between targets and measurements must be known as a priori. However, the association
is, in general, uncertain in the multi-target tracking (MTT) problems [3]. Therefore, how to align multiple
sensors while performing MTT is still a very challenging topic.

A simple and intuitively natural solution for tackling the problem can be described as follows. At
each time, the association relationship is first obtained via some classical association methods [4]. The
measurements originating from the common targets are then provided for spatial registration and target
state estimation according to the estimated association results. However, once the targets or clutter are
relatively dense, the result of the data association would become rather bad due to the effect of sensor
biases. The possibly incorrect association would then lead to the impairment of the spatial registration
performance. As a consequence, the sensor bias estimates would diverge and the targets would be lost
rapidly. Therefore, it is urgent to find a novel alternative method.
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Recently, the random finite set (RFS)-based tracking approaches, especially for the probability hy-
pothesis density (PHD) [5] and cardinalized PHD (CPHD) [6] filters, have attracted extensive attention.
Since the PHD and CPHD filters can avoid the complicated data association process, they are promising
methods for the problem of joint spatial registration and tracking. However, the registration problem is
rarely considered in the RFS-based approaches. Although an extended multi-sensor PHD filter for joint
spatial registration and MTT has been proposed in 2011 [7], the approximation in the measurement-
updated equation of the method is valid only for relatively large number of targets. When the number
of targets is relatively small, the method might produce unsatisfactory results.

The product multi-sensor CPHD (PM-CPHD) filter, proposed by Mahler [8], is a middle ground
between the ‘true’ but intractable multi-sensor CPHD filters and the tractable but heuristic iterated-
corrector CPHD filters. This paper extends the standard PM-CPHD filter to accommodate the problem
of spatial registration. Similar with the standard CPHD filter, the proposed PM-CPHD filter propagates
not only the PHD but also the entire probability distribution on the target number. Consequently,
compared with the extended multi-sensor PHD filter, more stable and accurate estimates of the multi-
target number, multi-target states and sensor biases could be jointly derived from the proposed method.

Finally, we present two two-dimensional tracking examples, where multiple targets are tracked by three
dissimilar but synchronous sensors. The observations received at the sensors are characterized by both
the random noise and the translational measurement bias. In the first example, the proposed method
is compared against the extended multi-sensor PHD filter. Monte Carlo (MC) simulation results show
that the proposed method outperforms, although computationally more expensive than, the extended
multi-sensor PHD filter. In the second example, the proposed approach is compared against the multi-
sensor JPDA (MSJPDA) filter [9], which is also extended in this paper for joint spatial registration and
MTT. The MC results show that the proposed method outperforms the MSJPDA filter when the clutter
is relatively dense.

2 Background and problem formulation

At time k, let Nk denote the number of the existing targets, and xk the state vector of a single target.
Multi-target states can be represented as a finite set Xk = {xk,n}Nk

n=1. We assume the system dynamics
of the nth (n = 1, . . . , Nk) existing target to be a Markov process with the transition density

fx,k|k−1(xk,n|xk−1,n). (1)

The targets are observed by S synchronous but biased sensors, where S is known a priori. Let M j
k

denote the number of the unlabeled measurements received at the jth (j = 1, . . . , S) sensor, and zj
k the

single measurement vector. The measurements from the jth sensor can also be represented as a finite

set Zj
k = {zj

k,m}Mj
k

m=1. All measurements at each time step are assumed to be independent [3]. Each
measurement error is composed of independent identically distributed (i.i.d) random observation noise
and sensor spatial biases (or systematic errors). Because of the effects of the measurement errors, the
measurements generated by the common targets cannot superpose well when they are transformed from
the local sensor coordinate system to a common coordinate system.

At time k, let bj
k denote the bias vector of the jth sensor, and bk = [(b1

k)T, . . . , (bS
k )T] the S sensors’ bias

vector. We assume that the biases are independent, and the system dynamics of each bias is Markovian.
Therefore, the transition density of bk can be denoted by

fb,k|k−1(bk|bk−1) = f1
b,k|k−1(b

1
k|b1

k−1) · · · fS
b,k|k−1(b

S
k |bS

k−1), (2)

where f j
b,k|k−1(b

j
k|bj

k−1) is the transition density of the jth sensor’s bias.
The measurement originates from either target or random clutter. If the mth measurement of the jth

sensor zzzj
k,m is generated by the nth target, then the likelihood for the biased measurement is denoted by

Lj

zj
k,m

(xk,n, b
j
k) = f j

k|k(zj
k,m|xk,n, b

j
k). (3)
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At time k, the jth sensor collects clutter (false alarms) with its spatial distribution given by the
probability density cjk(zj

k) and cardinality distribution given by κj
k(m).

Let Z1:S
k = {Z1

k , . . . , Z
S
k } denote the set of the measurements received by all sensors at time k, and

Z1:S
1:k = Z1:S

1 , . . . , Z1:S
k the measurement sequences up to time k. Given Z1:S

1:k and some prior information
about the targets and the sensors, the objective of our paper is to estimate the sensors’ bias bk, the
number of the targets Nk, and the set of multi-target states Xk = {xk,n}Nk

n=1.

3 Extended PM-CPHD filter

In order to derive the extended PM-CPHD filter for joint spatial registration and MTT, we first treat
(xk, bk) as an augmented state at time k. Analogous to the standard CPHD filter, let γk(xk, bk) denote
the PHD of the new birth augmented state. Assume that bk is independent of xk. Then, the birth PHD,
the transition density and the survival probability of the augmented state are, respectively, written as

γk(xk, bk) = γk(xk) + γk(bk), (4)

fk|k−1(xk, bk|xk−1, bk−1) = fx,k|k−1(xk|xk−1)fb,k|k−1(bk|bk−1), (5)

pS,k|k−1(xk−1, bk−1) = pS,k|k−1(xk−1)pS,k|k−1(bk−1). (6)

Differently from the target number, the number of sensor biases is non-random and known as a priori.
Therefore,

γk(bk) = 0; pS,k|k−1(bk−1) = 1. (7)

At time k, let D1:S
k|k−1(xk, bk|Z1:S

1:k−1) and D1:S
k|k (xk, bk|Z1:S

1:k ), respectively, denote the time-updated
and measurement-updated PHDs of the augmented state from all sensors, hereafter abbreviated as
D1:S

k|k−1(xk, bk) and D1:S
k|k (xk, bk); let s1:Sk|k−1(xk, bk|Z1:S

1:k−1) and s1:Sk|k(xk, bk|Z1:S
1:k ), respectively, denote

the time-updated and measurement-updated probability densities for the physical distribution of the
augmented state from all sensors, hereafter abbreviated as s1:Sk|k−1(xk, bk) and s1:Sk|k(xk, bk).

s1:Sk|k−1(xk, bk) =
D1:S

k|k−1(xk, bk)
∫
D1:S

k|k−1(xk, bk)dxkdbk
; s1:Sk|k(xk, bk) =

D1:S
k|k (xk, bk)

∫
D1:S

k|k (xk, bk)dxkdbk
. (8)

Let p1:S
k|k−1(n|Z1:S

1:k−1) and p1:S
k|k(n|Z1:S

1:k ), respectively, denote the probability distributions on the time-
updated and measurement-updated target number from all sensors, hereafter abbreviated as p1:S

k|k−1(n)

and p1:S
k|k(n); let G1:S

k|k−1(x), G
1:S
k|k (x) and Cj

k(z), respectively, denote the probability generating functions

(PGFs) of p1:S
k|k−1(n), p1:S

k|k(n) and κj
k(m).

G1:S
k|k−1(x) =

∞∑

n=0

p1:S
k|k−1(n)xn;G1:S

k|k (x) =
∞∑

n=0

p1:S
k|k(n)xn;Cj

k(z)

=
∞∑

m=0

κj
k(m)zm; (0 � x � 1; 0 � z � 1). (9)

The recursion of the extended PM-CPHD filter is given as follows.
The time-updated step is

D1:S
k|k−1(xk, bk) = γk(xxxk)

+
∫
pS,k|k−1(xk−1)fx,k|k−1(xk|xk−1)fb,k|k−1(bk|bk−1)D1:S

k−1|k−1(xk−1, bk−1)dxk−1dbk−1, (10)

p1:S
k|k−1(n) ∼=

n∑

i=0

pB(n− i)
1
i!

(G1:S
k−1|k−1)

(i)(1 − s1:Sk−1|k−1[pS,k|k−1])s1:Sk−1|k−1[pS,k|k−1]i, (11)
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where

s1:S [h] =
∫
h(x, b)s1:S(x, b)dxdb, (12)

and pB(n) is the probability distribution on birth target number.
Assuming that the clutter and predicted multi-target processes are i.i.d cluster processes [6] and the

sensors are independent, the measurement-updated step is

D1:S
k|k (xk, bk) =

Ĝ(1)(σ)
Ĝ(σ)

L1
Z1

k
(xk, bk) · · ·LS

ZS
k
(xk, bk)

N1
k|k · · ·NS

k|k
s1:Sk|k−1(xk, bk), (13)

p1:S
k|k(n) =

l1
Z1

k
(n) · · · lS

ZS
k
(n)σn

Ĝ(σ)
p1:S

k|k−1(n), (14)

where

σ =
s1:Sk|k−1[L

1
Z1

k
· · ·LS

ZS
k

]

N1
k|k · · ·NS

k|k
; Ĝ(x) =

∞∑

n=0

l1Z1
k
(n) · · · lSZS

k
(n)p1:S

k|k−1(n)xn, (15)

and for j = 1, . . . , S,

lj
Zj

k

(n) =
min{n,Mj}∑

i=0

(Cj
k)(M

j−i)(0)i!Cn,is
1:S
k|k−1[1 − pj

D]n−iσj
i (Z

j
k), (16)

Lj

Zj
k

(x, b) = αj
0(1 − pj

D(x, b)) +
∑

zj∈Zj
k

pj
D(x, b)Lj

zj (x, b)αj(zj)

cjk(zj)
, (17)

N j
k|k = αj

0s
1:S
k|k−1[1 − pj

D] +
∑

zj∈Zj
k

s1:Sk|k−1[p
j
DL

j
zj ]αj(zj)

cjk(zj)
, (18)

αj
0 =

∑Mj

l=0 (Cj
k)(M

j−l)(0)(G1:S
k|k−1)

(l+1)(s1:Sk|k−1[1 − pj
D])σj

l (Z
j
k)

∑Mj

i=0 (Cj
k)(Mj−i)(0)(G1:S

k|k−1)
(i)(s1:Sk|k−1[1 − pj

D])σj
i (Z

j
k)

, (19)

αj(zj) =

∑Mj−1
l=0 (Cj

k)(M
j−l−1)(0)(G1:S

k|k−1)
(l+1)(s1:Sk|k−1[1 − pj

D])σj
l (Z

j
k − {zj})

∑Mj

i=0 (Cj
k)(Mj−i)(0)(G1:S

k|k−1)
(i)(s1:Sk|k−1[1 − pj

D])σj
i (Z

j
k)

, (20)

σj
i (Z

j
k) = σMj ,i

⎛

⎝
s1:Sk|k−1[p

j
DL

j

zj
1
]

cjk(zj
1)

, . . . ,

s1:Sk|k−1[p
j
DL

j

zj

Mj

]

cjk(zj
Mj )

⎞

⎠ , (21)

where pj
D(x, b) is the detection probability of the jth sensor, and σm,i(y1, . . . , ym) is the elementary

symmetric function of degree i in y1, . . . , ym [6].
The maximum a posteriori (MAP) estimate of target number is

N̂k|k = arg sup
n
p1:S

k|k(n). (22)

By looking for the N̂k|k large local maxima of the extended PHD, the estimates of the multi-target

states are derived as X̂k|k = {x̂k|k,n}N̂k|k
n=1 . Since the sensor bias is the same for all targets, the estimate

of the bias at time k is derived by

b̂k|k =

∫
bkD

1:S
k|k (xk, bk)dxkdbk

N̂k|k
. (23)
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4 Simulations

4.1 Example 1

Consider two two-dimensional scenarios with an unknown and time varying number of targets over the
surveillance region A = [−1000 1000] × [−1000 1000] m2 for a period of T =60 s. The targets are
observed by multiple dissimilar but synchronous sensors. The sampling interval of the sensors is Δt=1 s.
At time k, let Nk denote the actual target number, and xk,n = [xk,n, yk,n, ẋk,n, ẏk,n, ẍk,n, ÿk,n]T denote
the state vector of the nth (n = 1, . . . , Nk) target.

Assume that the process noise wk,n of the nth target is i.i.d zero-mean Gaussian white noise with the
covariance matrix Qk,n. Then the Markovian transition probability density of xk,n could be modeled as

fx,k|k−1(xk,n|xk−1,n) = N (xk,n|Φk,nxk−1,n,Qk,n), (24)

where Φk,n is discrete-time evolution matrix. Here Φk,n and Qk,n are given by the constant acceleration
model [1]

Φk,n =

⎡

⎢
⎢
⎣

1 Δt Δt2

2

1 Δt

1

⎤

⎥
⎥
⎦⊗ I2; Qk,n = σ2

w

⎡

⎢
⎢
⎣

Δt4

4
Δt3

2
Δt2

2
Δt3

2
Δt2

2 Δt
Δt2

2 Δt 1

⎤

⎥
⎥
⎦⊗ I2; I2 =

[
1

1

]

, (25)

where ‘⊗’ denotes the Kronecker product. The parameter σw is the instantaneous standard deviation of
the acceleration, given by σw =0.05 m/s2.

The number of the sensors over the region is S = 3. The range and bearing measurements of targets
are generated by Sensor 1 located at p1

k = [p1
x, p

1
y]

T. The range measurements of targets are generated
by Sensor 2 located at p2

k = [p2
x, p

2
y]T. The bearing measurements of targets are generated by Sensor 3

located at p3
k = [p3

x, p
3
y]T. In this example, they are given by p1

k = [600, 400]T m, p2
k = [0, 0]T m and

p3
k = [−600,−400]T m.
The measurement errors of the sensors consist of the translational measurement biases b1

k = [Δρ1
k,

Δθ1k]T, b2
k = Δρ2

k, b3
k = Δθ3k, and the random measurement noises v1

k = [δρ1
k, δθ

1
k]T, v2

k = δρ2
k, v3

k = δθ3k.
The dynamic model used for the bias bk = [(b1

k)T, (b2
k)T, (b3

k)T] is a first-order Gauss-Markov process
with the transition density given by [10]

fb,k|k−1(bk|bk−1) = N (b1
k|β1b1

k−1,B
1
k−1)N (b2

k|β2b2
k−1,B

2
k−1)N (b3

k|β3b3
k−1,B

3
k−1), (26)

where βj and Bj
k (j = 1, 2, 3) are, respectively, the discrete-time evolution parameter and the dynamics

noise covariance for bj
k. For many real-world problems, the bias usually does not drift against time. So,

we take β1 = diag(1, 1), β2 = 1, β3 = 1 in this example. The biases and their covariances are given as
b1

k = [50 m, −50 mrad]T, b2
k = 30 m, b3

k = − 40 mrad; B1
k = diag((2.5 m)2, (2.5 mrad)2), B2

k = (2.5 m)2,
B3

k = (2.5 mrad)2, where ‘diag(·)’ denotes diagonal matrix operation.
The random measurement noise vj

k (j = 1, 2, 3) of the jth sensor is assumed to be i.i.d zero-mean
Gaussian white noise with covariance matrix Rj

k, which are given by R1
k= diag((12.5 m)2, (12.5 mrad)2),

R2
k=(10 m)2 and R3

k=(10 mrad)2.
At time k, the likelihood Lj

zj
k,m

(xk,n, b
j
k) of the jth sensor is given by

Lj

zj
k,m

(xk,n, b
j
k) = N (zj

k,m|hj
k(xk,n) + bj

k,R
j
k), (27)

where ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1
k(xk,n) =

⎡

⎣

√
(xk,n − p1

x)2 + (yk,n − p1
y)2

arctan yk,n−p1
y

xk,n−p1
x

⎤

⎦ ,

h2
k(xk,n) =

√
(xk,n − p2

x)2 + (yk,n − p2
y)2,

h3
k(xk,n) = arctan

yk,n − p3
y

xk,n − p3
x

.

(28)
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The detection probabilities of the sensors are p1
D,k(xk, b

1
k) = 0.8, p2

D,k(xk, b
2
k) = 0.9, p3

D,k(xk, b
3
k) = 0.7.

The clutter of the jth (j = 1, 2, 3) sensor is modeled as a Poisson RFS with intensity λj
cc

j(zzzj
k), given as

λ1
c = 60, λ2

c = 50, λ3
c = 40, c1(·) = c2(·) = c3(·) = U(·|A), where U(·|A) denotes the probability density

of the uniform distribution over the region A.
Figure 1 shows the true target trajectories and sensor locations in Scenario 1. In Figure 1, ‘Δ’ denotes

the sensor location, ‘©’ denotes the locations at which the targets are born, ‘�’ denotes the locations at
which the targets die and arrow denotes the direction of target motion. Target 1 is born at 1 s and dies
at 40 s. Target 2 is born at 1 s and dies at 30 s. Target 3 is born at 15 s and dies at 50 s. Target 4 is
born at 20 s and dies at 60 s.

The intensity of target birth at time k is modeled as

γk(xk) = λγfγ(xk|ψγ), (29)

where λγ is the average number of the target birth per scan, fγ(xk|ψγ) is the probability density of the new
born target’s state, and ψγ is the set of the density parameters. In this example, they are taken as λγ =
0.05, fγ(xk|ψγ) = π1

γN (xxxk|μ1
γ ,Σ

1
γ)+π2

γN (xk|μ2
γ ,Σ

2
γ), where ψγ = {π1

γ,π
2
γ ,μ

1
γ ,μ

2
γ ,Σ

1
γ ,Σ

2
γ}, π1

γ = π2
γ =

0.5, μ1
γ = [−600, 750, 0, 0, 0, 0]T, μ2

γ = [−650,−800, 0, 0, 0, 0]T and Σ1
γ = Σ2

γ = diag(400, 400, 400, 400,
16, 16).

The probability of target survival is set at pS,k|k−1(xk−1) = 0.95.
For the purpose of comparison, we estimate the translational measurement biases and the number and

states of the targets, by using the extended multi-sensor PHD filter and the extended PM-CPHD filter,
respectively. Both of the filters still involve multiple integrals. Thus they have no closed-form expressions
in the non-linear and non-Gaussian conditions. The sequential Monte Carlo (SMC) method [11] can be
used to implement the two filters. In the SMC implementations, 1000 particles are used to represent
one surviving target and 500 particles are used to represent the new born targets. We now conduct MC
simulation experiments on the same simulation setup except the independently generated clutter and
target generated measurements.

The estimates of the translational measurement biases, derived by both methods at each time step,
are shown along with the true biases in Figure 2.

Figure 2 shows that the bias estimates from the two methods converge to the ground truth after some
time in this trial. Furthermore, the estimation accuracy of the extended PM-CPHD filter seems to be
better than that of the extended multi-sensor PHD filter. In a few trials, some bias estimates from the
two methods are inconsistent with the truth because of the effects of missing detections, clutter, random
noise and so on. However, MC simulation results show that the bias estimates from the extended PM-
CPHD filter can correctly converge in 98% of the trials while the extended multi-sensor PHD filter can
correctly converge in 92% of the trials. The convergence time of the former is about 16–20 s while that
of the latter is about 19–23 s.

The estimates of target positions, derived by both methods at each time step, are shown along with
the true trajectories in Figures 3 and 4, respectively.

In Figures 3 and 4, ‘©’ denotes target position estimate, and the solid line denotes the actual target
trajectory. From the figures, it can be seen that the position estimates of the extended PM-CPHD filter
are closer to the ground truth than that of the extended multi-sensor PHD filter. That is because, as
illustrated in Figure 2, the extended PM-CPHD filter can estimate and compensate for the translational
measurement biases more accurately than the extended multi-sensor PHD filter.

The MC average of the means of the target number estimates, derived by both methods at each time
step, along with the true target number is shown in Figure 5.

Figure 5 demonstrates the target number estimates derived by the two methods during the whole
surveillance period. Since both filters can estimate and compensate for the translational measurement
biases, their target number estimates are unbiased and close to the truth after the registration phase. On
the other hand, the target number estimates from the extended PM-CPHD filter are more smooth and
accurate than that of the extended multi-sensor PHD filter.
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Figure 1 True target trajectories and sensor locations

in Scenario 1.

Figure 2 Estimates of the translational measurement

biases from the two methods in one trial for Scenario 1.

Figure 3 Estimates of target positions in one trial from

the extended multi-sensor PHD filter for Scenario 1.

Figure 4 Estimates of target positions in one trial

from the extended PM-CPHD filter for Scenario 1.

Figure 5 Hundred MC run average of the means of target number estimates against time for Scenario 1.

Two criteria, known as the optimal sub-pattern assignment (OSPA) metric and circular position error
probability (CPEP) metric [12], are used to evaluate the performance of both methods.

Given the actual and estimated multi-target state sets Xk = {xk,n}Nk
n=1 and X̂k|k = {x̂k|k,n}N̂k|k

n=1 , the
OSPA metric of order p = 2, with cut-off c between the two sets, is defined by

OSPA(c)
2,k(Xk, X̂k|k) =

(
1

N̂k|k

(

min
π∈ΠN̂k|k

Nk∑

n=1

min(c, ||xk,n − x̂k|k,π(n)||2)2 + c2(N̂k|k −Nk)

))1/2

, (30)
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Figure 6 Hundred MC run average of OSPA against time for Scenario 1.

if Nk � N̂k|k and OSPA(c)
2,k(Xk, X̂k|k) = OSPA(c)

2,k(X̂k|k, Xk), if Nk > N̂k|k. ΠN̂k|k
denotes the set of

permutations on {1, 2, . . . , N̂k|k}. || · ||2 denotes the 2-norm. In this example, we let c=80 m.
The MC averages of the OSPA metric for the target position estimates, derived by both methods, are

shown at each time step in Figure 6.
The OSPA metric is composed of two components, each separately accounting for ‘localization’ and

‘cardinality’ errors. This results in high peaks in OSPA metric at the instances when the estimated number
is incorrect. Figure 6 shows that the OSPA metric of the two methods becomes smaller and smaller during
the registration phase. After the bias estimates converge, the OSPA metric of the extended PM-CPHD
filter is smaller than that of the extended multi-sensor PHD filter. A reasonable explanation is that the
former outperforms the latter in estimating both the target number and positions. Moreover, both curves
in Figure 6 fluctuate against time because of the varying target number, the sensor-to-target geometry
and clutter.

The CPEP metric at time k is defined by

CPEPk(r) =
1
Nk

∑

xk∈Xk

Prob{||Hkx̂k|k − Hkxk||2 > r,∀x̂k|k ∈ X̂k|k};

Hk =

[
1 0 0 0 0 0

0 1 0 0 0 0

]

, (31)

where r is a radius of CPEP metric. Hkxk and Hkx̂k|k, respectively, denote the actual and estimated
target positions in a Cartesian coordinate. In this example, we let r=25 m.

The MC average of the CPEP metric for both methods at each time step is shown in Figure 7.
Differently from the OSPA metric, the CPEP metric only penalizes errors in individual state estimates

but not errors in the estimated cardinality. Figure 8 demonstrates that the CPEP metric from the
extended PM-CPHD filter is smaller than that of the extended multi-sensor PHD filter after registration
phase. The reason for this phenomenon is that the estimates from the former are close to the ground
truth and easily fall within a surrounding r= 25 m radius, whereas the estimates from the latter are
relatively further away from the ground truth and easily go beyond the radius. Moreover, similar to the
OSPA metric in Figure 6, the CPEP metric of the two methods becomes smaller and smaller during the
registration phase. It implicitly reflects that the bias estimates are converging to the ground truth during
the period.

The computational requirements for both methods are compared via the indication of CPU processing
time. Based on MC runs, the average computational times per scan of a fairly optimal Matlab imple-
mentation for both algorithms on 1.83 GHz AMD Athlon (tm) XP 2500+ processor 512 MB RAM, are,
respectively, 0.61 s and 2.88 s. It can be seen that the extended PM-CPHD filter is more computationally
expensive than the extended multi-sensor PHD filter.

We consider Scenario 2 where multiple targets are traveling in parallel. Figure 8 shows the true target
trajectories and sensor locations for the scenario. Targets 1 and 2 are born at 1 s and maintain a parallel
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Figure 7 Hundred MC run average of CPEP against

time for Scenario 1.

Figure 8 True target trajectories and sensor locations

in Scenario 2.

movement until Target 1 dies at 40 s and Target 2 dies at 30 s. The distance between the parallel tracks
of the two targets is about 100 m. Target 3 and 4 are born at 15 s and maintain a parallel movement
until Target 3 dies at 50 s and Target 4 dies at 60 s. The distance between the parallel tracks of the two
targets is about 90 m. The other simulation parameters are the same as those of Scenario 1.

In this scenario, since the distances between the parallel motion targets are very close, the complexity
of joint spatial registration and MTT increases significantly compared with Scenario 1. For Scenario 2,
MC simulation results show that the bias estimates from the extended PM-CPHD filter can correctly
converge in 93% of the trials, while the extended multi-sensor PHD filter does this in 81% of the trials.
The MC averages of the means of the target number estimates, the OSPA metric and the CPEP metric
derived by both methods for Scenario 2 are shown in Figures 9–11, respectively.

As illustrated in Figures 9–11, the performance of the extended PM-CPHD filter degrades slightly,
whereas the performance of the extended multi-sensor PHD filter degrades seriously. From Figure 9, it
can be seen that the the means of target number estimates derived by the extended multi-sensor PHD filter
fluctuate obviously against time. Correspondingly, the OSPA and CPEP from the extended multi-sensor
PHD filter increase rapidly because of the inaccurate target number estimates. A possible explanation for
this is that the approximation in the measurement-updated equation of the extended multi-sensor PHD
filter would become imprecise when the targets are close together. Therefore, the extended PM-CPHD
filter is more robust than the extended multi-sensor PHD filter for relatively complex multiple target
motion scenarios.

4.2 Example 2

In this example, we evaluate the performance of the extended PM-CPHD filter by benchmarking it
against the MSJPDA filter, which is a classical association-based multi-sensor filter for tracking a known
number of targets in clutter. In the MSJPDA filter, (xk, bk) is also treated as an augmented state for
joint spatial registration and MTT. The MSJPDA is given the correct number of targets whereas the
extended PM-CPHD filter has no knowledge of the number of targets. For convenience, we assume that
the sensors have the same detection probabilities and clutter rates

p1
D,k(xk, b

1
k) = p2

D,k(xk, b
2
k) = p3

D,k(xk, b
3
k) = pD; λ1

c = λ2
c = λ3

c = λc. (32)

The other experiment settings are the same as those of Example 1.
Let the detection probabilities of the sensors be fixed at pD = 0.9. We compare the tracking per-

formance of the two algorithms for various clutter rates. Tables 1 and 2, respectively, show the time
averaged OSPA and CPEP metrics in various λc for Scenarios 1 and 2.

From Tables 1 and 2, it can be seen that the MSJPDA filter outperforms the extended PM-CPHD
filter when the λc is relatively low. A reason for this phenomenon is that the translational measurement
mis-registration would not lead to a serious impairment of data association result in a relatively sparse
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Figure 9 Hundred MC run average of the means of tar-

get number estimates against time for Scenario 2.
Figure 10 Hundred MC run average of OSPA against

time for Scenario 2.

Figure 11 Hundred MC run average of CPEP against time for Scenario 2.

Table 1 Time averaged OSPA(m)/CPEP in various λc for Scenario 1

λc=50 λc=100 λc=200 λc=300 λc=400 λc=500

Extended PM-CPHD filter 20.3/0.099 22.1/0.118 28.6/0.203 32.8/0.264 38.4/0.315 41.9/0.401

MSJPDA filter 15.6/0.086 19.1/0.107 27.7/0.196 37.2/0.289 49.1/0.432 63.8/0.603

Table 2 Time averaged OSPA(m)/CPEP in various λc for Scenario 2

λc=50 λc=100 λc=200 λc=300 λc=400 λc=500

Extended PM-CPHD filter 22.3/0.119 24.8/0.146 30.7/0.268 36.7/0.335 42.3/0.409 49.1/0.481

MSJPDA filter 21.2/0.112 25.7/0.149 33.4/0.294 49.3/0.421 63.2/0.589 78.8/0.776

clutter environment. However, the performance of the MSJPDA filter degrades much more rapidly
than that of the extended PM-CPHD filter as the λc increases, although the latter possibly has an
additional error in the estimation of the target number. Furthermore, as the λc increases, the extended
PM-CPHD filter exceeds the MSJPDA filter more rapidly in Scenario 2 than that in Scenario 1. A
reasonable explanation is that when the clutter is relatively dense or the targets are relatively close,
the data association becomes rather difficult because of the effect of the translational measurement mis-
registration. The possibly incorrect association would rapidly lead to the divergence of the bias and target
state estimates. As a result, the association-based MSJPDA filter performs the joint spatial registration
and MTT much worse than the extended PM-CPHD filter, when the λc is relatively high.
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5 Conclusions and future work

An extended PM-CPHD filter is proposed for joint spatial registration and MTT. Simulation results show
that the proposed method can estimate and compensate for the translational measurement biases more
accurately. So, it outperforms the extended multi-sensor PHD filter in estimating the number and states
of the targets. Moreover, it also outperforms the MSJPDA filter in a relatively dense clutter environment.

One of our future works will be focused on proposing an extended linear-complexity PM-CPHD
filter [13] for joint spatial registration and MTT to reduce the computational cost of the new presented
method.
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