
. RESEARCH PAPERS .

SCIENCE CHINA
Information Sciences

December 2011 Vol. 54 No. 12: 2544–2553

doi: 10.1007/s11432-011-4411-8

c© Science China Press and Springer-Verlag Berlin Heidelberg 2011 info.scichina.com www.springerlink.com

Modeling grammatical evolution by automaton

HE Pei1,3∗, Colin G. JOHNSON2 & WANG HouFeng4

1State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China;
2School of Computing, University of Kent, Canterbury, CT2 7NF, England;

3School of Computer and Communication Engineering, Changsha University of Science and Technology,
Changsha 410114, China;

4Institute of Computational Linguistics, Peking University, Beijing 100080, China

Received August 4, 2010; accepted January 14, 2011

Abstract Twelve years have passed since the advent of grammatical evolution (GE) in 1998, but such issues as

vast search space, genotypic readability, and the inherent relationship among grammatical concepts, production

rules and derivations have remained untouched in almost all existing GE researches. Model-based approach is

an attractive method to achieve different objectives of software engineering. In this paper, we make the first

attempt to model syntactically usable information of GE using an automaton, coming up with a novel solution

called model-based grammatical evolution (MGE) to these problems. In MGE, the search space is reduced

dramatically through the use of concepts from building blocks, but the functionality and expressiveness are still

the same as that of classical GE. Besides, complex evolutionary process can visually be analyzed in the context

of transition diagrams.

Keywords genetic programming, grammatical evolution, finite state automaton, model

Citation He P, Johnson C G, Wang H F. Modeling grammatical evolution by automaton. Sci China Inf Sci,

2011, 54: 2544–2553, doi: 10.1007/s11432-011-4411-8

1 Introduction

Grammatical evolution (GE) was developed in the work of O’Neill et al. [1–3], by combining the search
technique of genetic algorithms [4] with a context free grammar [5, 6] to represent the program search
space. The major difference between GE and canonical genetic programming (GP) [7–9] is that in GE
a context free grammar and a special genotype-to-phenotype mapping have been employed to interpret
a string of codons (integers in [0, 255], usually represented as 8 bits), called the genotype, as certain
sentential forms. Once sentences are successfully evolved in this system, so are the functional phenotypic
programs. This approach has now been applied and validated practically in many areas [1, 3, 10–
13], including financial prediction, pattern recognition, machine learning, robot control, and caching
algorithms, etc.

In principle, GE is very simple, describing individuals in terms of genotypes and phenotypes (syn-
tactically correct programs in the language of interest), and generating a computer program via the
following canonical method, called classical grammatical evolution (CGE or GE for short in the following
discussion).
∗Corresponding author (email: bk he@126.com)

He P, et al. Sci China Inf Sci December 2011 Vol. 54 No. 12 2545

(1) For a given grammar G=(VN , VT , S, P), indexing production rules in P in succession and construct-
ing a table of pairs of the form (rule no. or nonterminal symbol, number of choices of the appropriate
rule).

(2) Initializing the developing program (a sentential form) and genotypes as the start symbol S and
sequences of codons respectively. Note that each codon here is represented by 8 bits.

(3) Evolving genotypes, via executing the following steps for evolved genotype repeatedly unless the
developing program becomes a sentence of the chosen grammar (or some terminal condition is satisfied).

(a) Reading a codon of 8 bits from the concerned genotype and transforming it into an integer value.
(b) Choosing a production rule for the leftmost nonterminal symbol, say X , in the developing program

based on the following mapping in order to make the leftmost derivation: rule= (codon integer value)
mod (number of rules of X).

(c) Making the leftmost derivation using the rule obtained in b) for the developing program.
(d) Back to (a).
Therefore GE can be used to evolve programs in an arbitrary language within the constraints of what

can be represented by a context-free grammar. It also has advantages over other GP variants [7–9, 14–16]
in dealing with such important program problems as types [17] and recursion [18, 19].

In this paper, the three major problems focused are those that hinder the effective development of
CGE. Since “most of the literature on GE is based on the use of natural transactions (i.e. natural binary
encoding) and modulo translation” [20], i.e. based on CGE, this kind of problems is also common to
many other GEs. The problems neglected in most existing GE researches are: i) how to structure the
internal relationship among grammatical concepts, production rules and derivations; ii) how to improve
the genotypic readability; and iii) how to reduce the search space so that it can possibly be extended
to cope with more complex problems. The rest of this paper is organized as follows. In section 2, we
introduce some preliminary background, which mainly includes concepts and some related problems of
GE. Sections 3 through 5 focus on the proposed approach, concerning experiments, discussion as well.
Finally in section 6, we conclude our work and draw future work directions.

2 Background

2.1 Grammar and programming language

Definition 2.1 (Grammar). A grammar for some language is a 4-tuple G = (VN , VT , S, P), where
VN , VT , S, P are defined as follows:

VN : a set of nonterminal symbols. Elements of it are usually denoted as upper case letters;
VT : a set of terminal symbols. Elements of it are usually denoted as lower case letters;
S: a special nonterminal symbol in VN , called the start symbol;
P : a set of program generation rules of the form A → α, called production rules. Notice that when A

has many alternatives, we shall treat them separately in the following discussion as different production
rules.

Definition 2.2 (Derivation). Given a grammar G = (VN , VT , S, P) and two strings αAβ, αγβ ∈ (VN ∪
VT)∗, we call αγβ a direct derivation from αAβ, denoted αAβ ⇒ αγβ, if A → γ ∈ P. If a series of
direct derivations satisfies α1 ⇒ α2 ⇒ · · · ⇒ αn, we call αn a derivation from α1, denoted α1

∗⇒αn.
Particularly, a derivation is also called a zero derivation if it involves no production rule in the deduction
process.

Definition 2.3 (L(1) derivation). Given a grammar G = (VN , VT , S, P), a production rule A → γ ∈ P,

and a string δ = αAβ ∈ (VN ∪VT)∗, a direct derivation αAβ ⇒ αγβ is a L (1) derivation with respect to

A → γ, denoted αAβ
A→γ⇒
l(1)

αγβ, if it is a substitution of γ for the leftmost occurrence of some nonterminal

symbol A in δ.

Definition 2.4 (δγ
A). Given a grammar G = (VN , VT , S, P), a production rule A → γ ∈ P , and a string

2546 He P, et al. Sci China Inf Sci December 2011 Vol. 54 No. 12

δ ∈ (VN ∪ VT)∗, δγ
A is a string obtained from the substitution of γ for the leftmost occurrence of some

nonterminal symbol A in δ. Particularly, if δ ∈ V ∗
T , we define δγ

A = δ, and regarding δ ⇒ δγ
A as zero

derivation.
So, δ ⇒ δγ

A is either an L (1) derivation, if δ contains the nonterminal symbol A, or a zero derivation
(i.e. δ = δ).

Definition 2.5 (Sentential form). Given a grammar G = (VN , VT , S, P), α ∈ (VN ∪ VT)∗ is a sentential
form of G, if S

∗⇒α. Particularly, α is also called a sentence of G if it consists of only terminal symbols
from VT .

Definition 2.6 (Leftmost derivation). Given a grammar G = (VN , VT , S, P), a production rule A →
γ ∈ P, and a string δ = αAβ ∈ (VN ∪ VT)∗, a direct derivation αAβ ⇒ αγβ is the leftmost derivation,
denoted αAβ ⇒

lm
αγβ, if it is a substitution of γ for the leftmost nonterminal symbol, say, A in δ.

Definition 2.7 (L(1) sentential form). Given a grammar G = (VN , VT , S, P), a sentential form α is of
L(1), if each direct derivation involved for deducing α from S is an L(1) derivation.

Definition 2.8 (LM sentential form). Given a grammar G = (VN , VT , S, P), a sentential form α is of
LM , if each direct derivation involved for deducing α from S is a leftmost derivation.

Definition 2.9 (Language). Given a grammar G = (VN , VT , S, P), the language L(G) of G is
{α|S ∗⇒α ∈ V ∗

T }.
Definition 2.10 (L1(G)). Given a grammar G = (VN , VT , S, P), the L(1) language of G, denoted
L1(G), is {α ∈ L(G)|α is an L(1) sentential form}.
Definition 2.11 (LM(G)). Given a grammar G = (VN , VT , S, P), the leftmost language of G, denoted
LM(G), is {α ∈ L(G)|α is an LM sentential form}.

Note that, LM(G), the language defined by the leftmost derivations (commonly used in compiler
construction), is a subset of L1(G). For more details about grammar and language, refer to standard
texts in the area such as [5, 6].

2.2 Problems of GE

O’Neill and Ryan [1] stated that “GE does not suffer from the problem of having to ignore codon integer
values because it does not generate illegal values.” Furthermore, to ensure a complete mapping of an
individual onto a program comprised exclusively of terminals, they employed a novel technique called
wrapping to partly guarantee this requirement. Overall, this technique works well. Nonetheless, equally
important are such issues as space reduction, genotypic readability, concise representation, analytical
study, and effective evaluation, etc. They have remained untouched since the advent of GE, and problems
with them can have a negative effect on GE performance.

For instance, let Table 1 be a description of some genotype along with some of its GE properties.
The first line stands for a genotype whose codons (integers in [0, 255]) are referred to as ai; the second
row lists rules determined by the GE mapping for the leftmost derivations; the third line shows the
corresponding nonterminals for derivations to use, and the fourth row gives, for each involved nonterminal,
the maximum choices of production rules. We can informally define search space as the set of all genotypes
GE may search. It might seem that the whole search space is too large for the GE search algorithm to
efficiently examine. In this case, the order of the search space is 256n. Perhaps redundancy is helpful
for the convergence of solutions, but it is at cost of efficiency, involving a considerable number of modulo
arithmetic computations in a complex parse tree.

In section 3, we will tackle them by incorporating syntactically usable information into a finite state
transition system. According to this method, both “codon” and that integer modulo based mapping
become unnecessary. Search space is reduced to O(kn/m), where k stands for the maximum choices of
certain production rule; n/m means, for a given genotype of length n, there are n/m genotypic components
which have multiple choices. Building block can also be visually studied in the context of transition dia-

He P, et al. Sci China Inf Sci December 2011 Vol. 54 No. 12 2547

Table 1 A possible genotype with its GE properties

Genotype codons a1 ∈[0, 255] a2 ∈[0, 255] · · · an−1 ∈[0, 255] an ∈[0, 255]

Derivation rules r1 = a1 mod m1 r2 = a2 mod m2 · · · rn−1 = an−1 mod mn−1 rn = an mod mn

Nonterminals N1 N2 · · · Nn−1 Nn

Max choices m1 m2 · · · mn−1 mn

grams. Besides, the space reduction may benefit the present approach in the value of coping more complex
problems.

3 Model for grammatical evolution

The following discussion focuses on the problem of modeling the language LM(G) of some given context
free grammar G.

3.1 Modeling principle

In [21, 22], we elaborate on our original study on “combining Hoare-logic-style assertion based specifica-
tions and model checking within a genetic programming framework” [23]. The method used there consists
of three steps: i) Defining the search space as a set of Hoare triples; ii) modeling search space using finite
state transition systems; iii) searching over some transition system for the desired Hoare triple.

In the following subsections, we deal with grammatical evolution in similar approach: i) Defining
a programming language; ii) modeling grammatical derivations of the concerned language using finite
state transition systems; iii) heuristically search over some obtained transition system for the sequence
of production rules from which the desired program can grammatically be derived. Note that the major
problem among these steps is how to construct the transition system. Technically, we first represent
states of the transition diagram as certain sets of sentential forms of some grammar; then decide under
some derivation convention, say the leftmost derivation, which states can be connected to which others.

3.2 Model and existence theorem

Definition 3.1 (LM justification). Given a grammar G = (VN , VT , S, P) and two sentential forms α

and β, a sequence s = p1p2 · · · pn of production rule names is an LM justification of α
∗⇒β, if α, β satisfy

α
p1⇒
lm

α1
p2⇒
lm

· · · pn−1⇒
lm

αn−1
pn⇒
lm

β.

Definition 3.2 (Grammar graph). Given a grammar G = (VN , VT , S, P), a finite state transition
graph Gph = 〈V, E〉 is called a grammar graph, if each vertex in Gph is a set of sentential forms, and
each edge in Gph is labeled either by a production rule (name) or an empty word ε. Particularly, if a
string e1e2 . . . en−1 concatenated from edge labels along a path, say V1e1V2e2 . . . en−1Vn, forms an LM

justification of α1
∗⇒αn (where αi ∈ Vi, 1 � i � n), it is also called an LM route of αn from α1.

Definition 3.3 (LM grammar model). Given a grammar G = (VN , VT , S, P) and a finite state transition
graph Gph = 〈V, E〉 as above, the graph Gph is an LM grammar model of the grammar G, denoted
LMGM(G), if for α ∈ (VN ∪ VT)∗, α is a leftmost sentential form of G ⇔there exists an LM route of α

from start symbol S (a special sentential form of G) in a special vertex, called the initial vertex, of Gph.
Particularly, it is true for the cases of sentences of LM(G), too.

Theorem 1. Given a grammar G = (VN , VT , S, P), there exists a grammar model LMGM(G) for G.

Proof. Vertices in LMGM(G), which is constructed by the following algorithm, can be put into two
kinds. One of these kinds is of the form SN , and the other one is Sα

N where N ∈ VN .

Algorithm 1.
(1) Draw two vertices SN and Sα

N for each production rule N → α ∈ P (when N has many alternatives,
we should treat them separately as different production rules), where SN = {α|α is a sentence of G or

2548 He P, et al. Sci China Inf Sci December 2011 Vol. 54 No. 12

a sentential form of G whose leftmost nonterminal symbol is N}, and Sα
N = {βα

N |β ∈ SN and βα
N is the

string obtained from substitution of α for the leftmost nonterminal symbol N in β}.
(2) Draw an ε arrow from V to V for each vertex V of step 1.
(3) Draw an arrow from SN to Sα

N if N → α ∈ P is a production rule, and labeling it with either the
production rule or the rule name.

(4) Draw an ε arrow from Sα
M to SN for each pair of vertices (Sα

M , SN), if Sα
M , SN have sentential

forms whose leftmost nonterminal symbols are N .
The obtained graph is what we need, LMGM(G). Here SS is the initial vertex, ε means zero derivation.
Now for α ∈ (VN ∪ VT)∗, we prove that: α is an LM sentential form of G ⇔ there exists an LM route

of α in LMGM(G) from start symbol S(a special sentential form of G) in SS = {α|α is either a sentential
form of G with the leftmost nonterminal symbol S or a sentence of G}.

=>: Since α is an LM sentential form of G, there must exist a sequence of LM derivations: S ⇒
lm

α1 ⇒
lm

α2

⇒
lm

· · ·⇒
lm

αn ⇒
lm

α. So the proof goes by induction on derivation steps.

(i) Induction base: For derivations S = S (zero derivation) and S ⇒
lm

α1 (S → α1 ∈ P), we have paths

SS
ε−→ SS and SS

S→α1−−−−→ Sα1
S in LMGM(G) to justify the LM route of S or α1 from S in SS .

(ii) Induction step: Without loss of generality, supposing S ⇒
lm

α1 ⇒
lm

α2 ⇒
lm

· · ·⇒
lm

αn ⇒
lm

α is a sequence of

LM derivations, and the production rule used in αn ⇒
lm

α is p : N → β ∈ P . Again supposing by induction

hypothesis that there exists an LM route SS
p1−→ V1

p2−→ V2 · · · pn−→ Vn of αn (∈ Vn) in LMGM(G) from
start symbol S ∈ SS for justification of S ⇒

lm
α1 ⇒

lm
α2 ⇒

lm
· · ·⇒

lm
αn. We manage to prove that there must

exist a path SS
p1−→ V1

p2−→ V2 · · · pn−→ Vn
ε−→ SN

p−→ Sβ
N in LMGM(G) such that p1p2 · · · pnεp forms an

LM route of α in Sβ
N from S ∈ SS . The proof is as follows.

Since the LM derivation αn ⇒
lm

α is obtained from applying p : N → β ∈ P to αn, by Definition 3.3

the leftmost nonterminal symbol of αn must be N . By the convention of SN in step 1 of Algorithm 1,
we have: αn ∈ SN and αn is not a sentence. Now the proof goes on two cases.

Case 1 (αn ∈ Vn = SM): From αn ∈ Vn = SM and the obtained result: αn ∈ SN and αn is not a
sentence, it follows N = M (i.e. SM is SN). According to the before-mentioned construction method of
LMGM(G), there is an ε arrow leading from SM (= SN) to SN , that is, SS

p1−→ V1
p2−→ V2 · · · pn−→ Vn(=

SM = SN) ε−→ SN
p−→ Sβ

N in LMGM(G).
Case 2 (αn ∈ Vn = Sγ

M): From αn ∈ Vn = Sγ
M and the obtained result: αn ∈ SN and αn is not a

sentence, we can deduce Sr
M and SN are states containing the same sentential form αn with the leftmost

nonterminal symbol N . According to step 4 of Algorithm 1, we have an ε arrow leading from Sγ
M to SN ,

i.e. SS
p1−→ V1

p2−→ V2 · · ·Vn−1
pn−→ Vn(= Sr

M) ε−→ SN
p−→ Sβ

N in LMGM(G).
Obviously, p1p2 · · · pnεp of either case 1 or 2 forms an LM route of α (in Sβ

N) from S ∈ SS . This is
what we need.

<=: By definitions and induction on length of routes, it is easy to demonstrate.
This completes the proof of Theorem 1.
Note that step 4 of Algorithm 1 technically relies on the computation of the so called leftmost connection

function of subsection 3.3.

3.3 Modeling algorithm

This subsection concerns one decision problem on which the existence theorem strongly relies. For
instance, step 4 of Algorithm 1 depends on Problem 1.

Problem 1. Given a grammar G = (VN , VT , S, P) and a nonterminal symbol A ∈ VN . Decide for Sα
M

in LMGM(G) whether it includes a sentential form taking A as the leftmost nonterminal symbol.
In fact, if we have certainty that there exists some sentential form in Sα

M taking A as the leftmost
nonterminal symbol, we can then draw an ε arrow from vertex Sα

M to SA.

He P, et al. Sci China Inf Sci December 2011 Vol. 54 No. 12 2549

Definition 3.4 (Leftmost connection function). The leftmost connection function LMC of vertices of
the form Sα

M in LMGM(G) is defined as LMC(Sα
M) = {A ∈ VN |A occurs as the leftmost nonterminal

symbol in some sentential form of Sα
M}.

So, to solve Problem 1, we should manage to solve the connection function. In fact, step 4 of Algorithm
1 can be revised as: for each pair of vertices (Sα

M , SN) with LMC(Sα
M)∩{N}
= ∅, draw an ε arrow from

Sα
M to SN .
Now, let us deal with Problem 1. The FOLLOW function given below is used to construct the leftmost

connection function of Definition 3.4.

Definition 3.5 (FOLLOW function). Given a grammar G = (VN , VT , S, P), the FOLLOW function
of nonterminal symbols is a mapping VN → 2VN such that:

(i) Y ∈ FOLLOW (X), if there exists a production rule A → · · ·XαY · · · ∈ P with α ∈ V ∗
T , and X ,

Y ∈ VN ;
(ii) FOLLOW (A) ⊆ FOLLOW (X), if A → · · ·Xα ∈ P with A, X ∈ VN , α ∈ V ∗

T .

Algorithm 2. The leftmost connection function LMC of vertices of the form Sα
M in LMGM(G) can

be solved as follows:

LMC(Sα
M) =

{
{A} α /∈ V ∗

T and A is the leftmost nonterminal symbol of α,

FOLLOW (M) α ∈ V ∗
T .

At last, we should point out that LMGM(G) can be simplified against (leftmost) connection function.
For example, if LMC(Sα

M) = LMC(Sβ
M), then Sα

M and Sβ
M can be combined into a unified state (Sα

M ∪
Sβ

M). This property is also reflected in section 4.

3.4 MGE: Model-based grammatical evolution

Unlike GE which regards genotypes as unreadable sequences of codons, model-based grammatical evolu-
tion (MGE) which is developed under grammar model of some grammar generates computer programs
directly from genotypes comprised of production rule names. Regarding genetic operators of MGE, their
implementation strategies are almost the same as those of GE, except for the fact that a grammar model
is employed in this case to reduce search space and to guarantee the validity of operations and genetic
operators are applied only on valid genotypic sequences of production rules.

In principle, MGE generates computer programs in any language as follows:
(1) Constructing the grammar model, say LMGM(G), as done above for some given grammar G.
(2) Initializing both the developing program (a sentential form of G) and genotypes as the start symbol

S and sequences of production rule names consistent with the concerned grammar model respectively.
(3) Evolving genotype and executing the following steps for some evolved genotype (a sequence of

production rule names) repeatedly unless the developing program becomes a sentence of the concerned
grammar or some terminal condition is satisfied.

(a) Reading a rule name from the genotype.
(b) Making the leftmost derivation for the developing program using the rule of (a).
(c) Back to (a) or executing (d) for some condition, say, whether the end of the concerned genotype

has been arrived at.
(d) Replacing all nonterminal symbols in the developing program with predefined strings of terminal

symbols.
So, in case of MGE, both search space and unreadability of genotypes of GE are effectively under

control. For this one can further refer to section 4 and section 5. In addition, concepts like codon and
the integer modulo algorithm which play critical roles in GE can thoroughly be omitted. Finally, since a
grammar model covers all possibly valid derivations of sentential forms of the concerned grammar, MGE
and GE are equivalent in functionality to each other. This is reflected in Theorem 2. Step (d) is also
referred to as a “complete mapping principle”.

Theorem 2. Let G = (VN , VT , S, P) be a grammar and α ∈ (VN ∪ VT)∗. GE deduces α under G ⇐⇒
MGE can deduce it too.

2550 He P, et al. Sci China Inf Sci December 2011 Vol. 54 No. 12

4 Experiments

In this section, we demonstrate MGE through the symbolic regression problem given in [1, 8]. The
particular functions examined are

Experiment 1: f(y) = y4 + y3 + y2 + y,

Experiment 2: g(y) = sin(y4 + y2),
Experiment 3: h(y) = sin(exp(sin(exp(sin(y))))),

with a list of 20 input values like {−1,−0.9,−0.8,−0.76,−0.72,−0.68,−0.64,−0.4,−0.2, 0, 0.2, 0.4, 0.63,
0.72, 0.81, 0.90, 0.93, 0.96, 0.99, 1} in the range of [−1, 1]. The grammar used in this problem is G =
(VN , VT , S, P), where VN={expr, op, pre op, var}, VT = {sin, cos, exp, log, +, −, *, /, y, 1.0, (,)},
S = 〈expr〉, and P are the following production rules.

1) 〈expr〉 ::= 〈expr〉〈op〉〈expr〉 (1-1) 2) 〈op〉 ::= + (2-1)
|(〈expr〉〈op〉〈expr〉) (1-2) |− (2-2)
|〈pre op〉(〈expr〉) (1-3) |∗ (2-3)
|〈var〉 (1-4) |/ (2-4)

3) 〈pre op〉 ::= sin (3-1) 4) 〈var〉 ::= y (4-1)
|cos (3-2) | 1.0 (4-2)
|exp (3-3)
|log (3-4)

Method. According to the existence theorem, we obtain a grammar model of Figure 1 within which
only two edges have 4 choices. So for any n, the search space for a genotype of length n has the upper
bound O(4n/m). By n/m we mean, for the concerned genotype, there are n/m genotypic components
embracing 2 or 4 choices. In light of this model, various variants of MGE using sequences of production
rules as genotypes can then be developed. In this paper, a building block based MGE, called BGE, is
now implemented in computer system. To better validate the effectiveness and efficiency of the proposed
method, we will, in Figures 2–7, compare it not only with CGE, but also with some other GEs like IGE
(integer-coded grammatical evolution) [24] and PIGE (or π GE) [25]. It follows that BGE can do the
same as CGE, IGE, and PIGE in evolving programs in any language. The major parameters employed
in the experiments are as follows:

Generation size: 100; Probability of crossover: 0.9; Crossover mode: two-point;
Population size: 50; Probability of mutation: 0.15; Mutation mode: block mutation;
Selection strategy: tournament; Runs: 100; Fitness evaluation: the least square error;

where the parameter Runs (=100) defines the number of runs that will be conducted for each experiment
on a particular problem. The complete mapping I : VN → V ∗

T is

I(X) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y X is 〈expr〉,
y X is 〈var〉,
+ X is 〈op〉,
sin X is 〈pre op〉.

(Complete mapping)

5 Discussion

Visualization has been well recognized as an important approach to the analysis of complex systems.
What is the relationship among grammatical concepts of a given grammar? What is the essence of
building blocks of GE? Particularly, what are the benefits these properties may give us in problem
solving process? Questions like these occur frequently in genetic programming and are rarely touched in
existing GE researches.

This work provides more means than GE does to partly understand or solve them. For instance,
through the use of grammar model, say Figure 1, of some grammar, the relationship among nonterminal
symbols, production rules and derivations are visualized graphically. Again from Figure 1, it follows that

He P, et al. Sci China Inf Sci December 2011 Vol. 54 No. 12 2551

Figure 1 The leftmost grammar model LMGM(G) of G = (VN , VT , S, P). The arrows without labels stand for ε arrows.

Labels represented by logic disjunctions can also be expressed as sets of rule names. For example, we can denote the rules

11 or 12 by {11, 12} (11 and 12 stand for rules 1-1 and 1-2 of the grammar). Node 1 is the start state of the automaton;

the final state is technically omitted here.

Figure 2 Average fitness of 100 runs of the four GEs in

Experiment 1.

Figure 3 Average fitness of 100 runs of the four GEs in

Experiment 2.

Figure 4 Average fitness of 100 runs of the four GEs in

Experiment 3.

Figure 5 Time used of 100 individual runs of the four

GEs in Experiment 1.

2552 He P, et al. Sci China Inf Sci December 2011 Vol. 54 No. 12

Figure 6 Time used of 100 individual runs of the four

GEs in Experiment 2.

Figure 7 Time used of 100 individual runs of the

four GEs in Experiment 3.

derivations of sentential forms of some given grammar can all be faithfully interpreted as sequences
of such cycles as e, v and p, where e is the cycle V1V2V1, v is V1V3V4V5V6V7V1 and p is V1V8V9V10V1.
Naturally, we can treat e, v and p as building blocks, because any result of mutation or crossover of GE
can essentially be represented by these cycles. So, the present approach makes it possible to develop
more effective MGE (i.e. building block based GE) using building blocks. In this case, genotypes are
elements (regular expressions) of {e, v, p}∗ and each component, say e, of such kind of genotypes will
have definite semantics. Figures 2–7 are comparisons of 100 runs of the four GEs in solving f(y), g(y),
and h(y). However, due to limited space, the details are omitted here. In short, MGE has advantages
over GE in analytical study of grammatical evolution and effectiveness. Further experiments also give a
positive outlook to this.

6 Conclusions

Model-based approach is an attractive method to achieve different objectives of software engineering.
In this paper, we elaborate on our original study on grammatical evolution from model perspective,
obtaining a novel GE called MGE. The major results are: 1) MGE is equivalent to GE in functionality
and expressiveness; 2) MGE has advantage in revealing the relationship among grammatical concepts,
production rules and derivations, contributing easiness for analytical studies in grammatical evolution;
3) possibly, MGE provides capability to solve more complex problems. Consequently, the combination
of model-based approach and GE may be a novel direction towards effective program generations. Our
future work includes: MGE tools, real world applications, and further comparisons of this approach with
other GEs, etc.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61170199, 60973053),

the Engineering and Physical Sciences Research Council (EPSRC) (Grant No. EP/H020217/1), and the State

Key Laboratory of Software Engineering of Wuhan University (Grant No. SKLSE 20080701). The authors are

grateful to the reviewers for their helpful suggestions. In addition, He Pei would still like to give special thanks

to the late Prof. Kang Lishan for introducing him to the area of evolutionary computation.

References

1 O’Neill M, Ryan C. Grammatical evolution. IEEE Trans Evolut Comput, 2001, 5: 349–358

2 Ryan C, Collins J J, O’Neill M. Grammatical evolution: Evolving programs for an arbitrary language. In: Banzhaf W,

Poli R, Schoenauer M, et al., eds. Proc of the First European Workshop on Genetic Programming (EuroGP98), LNCS,

1998, 1391: 83–96

3 O’Neill M, Ryan C. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Norwell,

MA: Kluwer Academic Publishers, 2003

He P, et al. Sci China Inf Sci December 2011 Vol. 54 No. 12 2553

4 Mitchell M. An Introduction to Genetic Algorithms. Cambridge: MIT Press, 1996

5 Hopcroft J E, Motwani R, Ullman J D. Introduction to Automata Theory, Languages, and Computation. 3rd ed. San

Antonio, TX: Pearson Education, Inc. 2008

6 Aho A V, Lam M S, Sethi R, et al. Compilers: Principles, Techniques, and Tools. 2nd ed. San Antonio, TX: Pearson

Education, Inc. 2007

7 Koza J R. Genetic Programming. Cambridge MA: MIT Press, 1992

8 Oltean M, Grosan C. A comparison of several linear genetic programming techniques. Complex Syst, 2003, 14: 285–313

9 Sette S, Boullart L. Genetic programming: principles and applications. Eng Appl Artif Intell, 2001, 14: 727–736

10 Gavrilis D, Tsoulos I G, Dermatas E. Selecting and constructing features using grammatical evolution. Patt Recog Lett,

2008, 29: 1358–1365

11 Tsoulos I G, Gavrilis D, Glavas E. Neural network construction and training using grammatical evolution. Neurocom-

puting, 2008. 72: 269–277

12 Dempsey I, O’Neill M, Brabazon A. Adaptive trading with grammatical evolution. In: Proc of 2006 IEEE Congress on

Evolutionary Computation. Vancouver, BC, Canada, 2006. 2587–2592

13 Tsoulos I G, Gavrilis D, Dermatas E. GDF: A tool for function estimation through grammatical evolution. Comput

Phys Commun, 2006, 174: 555–559

14 Ferreira C. Gene expression programming: A new adaptive algorithm for solving problems. Complex Syst, 2001, 13:

87–129

15 Xu K K, Liu Y T, Tang R, et al. A novel method for real parameter optimization based on gene expression programming.

Appl Soft Comput, 2009, 9: 725–737

16 Du X, Ding L X. About the convergence rates of a class of gene expression programming. Sci China Inf Sci, 2010, 53:

715–728

17 Pierce B C. Types and Programming Languages. Cambridge, MA: The MIT Press, 2002

18 Boolos G S, Burgess J P, Jeffrey R C. Computability and Logic. 4th ed. Cambridge: Cambridge Univ. Press, 2002

19 Wong M L, Mun T. Evolving recursive programs by using adaptive grammar based genetic programming. Genetic

Program Evolv Mach, 2005, 6: 421–455

20 Wilson D, Kaur D. Search, neutral evolution, and mapping in evolutionary computing: A case study of grammatical

evolution. IEEE Trans Evolut Comput, 2009, 13: 566–590

21 He P, Kang L S, Fu M. Formality based genetic programming. In: IEEE Congress on Evolutionary Computation. Hong

Kong, 2008

22 He P, Kang L S, Johnson C G, et al. Hoare logic-based genetic programming. Sci China Inf Sci, 2011, 54: 623–637

23 Harman M, Mansouri S A, Zhang Y Y. Search based software engineering: A comprehensive analysis and review of

trends techniques and application. Technical Report, TR-09-03, 2009

24 Hugosson J, Hemberg E, Brabazon A, et al. Genotype representations in grammatical evolution. Appl Soft Comput,

2010, 10: 36–43

25 O’Neill M, Brabazon A, Nicolau M, et al. πGrammatical evolution. In: Deb K, Poli R, Banzhaf W, et al. eds. Proc.

GECCO, LNCS, 2004, 3103: 617–629

