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Abstract In this paper, we introduce polygonal fuzzy numbers to overcome the operational complexity of

ordinary fuzzy numbers, and obtain two important inequalities by taking advantage of their fine properties. By

presenting an actual example, we demonstrate that the approximation capability of polygonal fuzzy numbers

is efficient. Furthermore, the concepts of K-quasi-additive integrals and K-integral norms are introduced.

Whenever the polygonal fuzzy numbers space satisfies separability, the density problems for several functions

spaces can be studied, by means of fuzzy-valued simple functions and fuzzy-valued Bernstein polynomials. We

establish that the class of the integrally-bounded fuzzy-valued functions spans a complete and separable metric

space in the K-integral norms. Finally, in the sense of K-integral norms, the universal approximation of four-

layer regular polygonal fuzzy neural networks for fuzzy-valued simple functions is discussed. Furthermore, we

show that this type of networks also possesses universal approximation for the class of integrally-bounded fuzzy-

valued functions. This result indicates that the approximation capability which regular polygonal fuzzy neural

networks for continuous fuzzy systems can be extended as for general integrable systems.
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1 Introduction

A fuzzy neural network is an organic combination of an artificial neural network and fuzzy techniques,
that form a hybrid intelligent system with both intelligent information processing and adaptability. As
a particular type of pure fuzzy systems, fuzzy neural networks can effectively handle natural language
messages. In the real world, there are more data messages of digital type than language messages.
Thus, we may obtain data messages with corresponding input-output relationship of a fuzzy system
by measurement date and transmission. In studying the universal approximation of regular fuzzy neural
networks in 1994, Buckley [1] conjectured that a regular fuzzy neural network is a universal approximator
of a continuously-increasing fuzzy function class. Later, from the point of view of system approximations
and learning algorithms, this class of networks was thoroughly and systematically studied by many
scholars both domestically and internationally [2–5]. In China, the Professor Liu Puyin [6–10] later
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developed a great deal of useful work in regard to the above two aspects. He negated Buckley’s conjecture
by providing a counterexample, and introduced various concepts associated with Bernstein polynomials,
closure fuzzy mappings and integral norms, and subsequently, three classes of fuzzy functions in which
multiple-layer regular fuzzy neural networks constituting a universal approximator were given. In recent
years, the universal approximation of four-layer regular fuzzy neural networks for a class of fuzzy-valued
functions was investigated based on Lebesgue’s and Sugeno’s integral norm [11, 12]. In applications, all
of these results have important value for fuzzy inference, fuzzy control, and image restoration techniques.

In 1987, beginning with quasi-addition and quasi-multiplication, Sugeno et al. [13] developed definitions
of quasi-additive measures and integrals. In 1993, the Kt and tK integrals were defined by Jiang in [14] by
taking advantage of special operators K and t. With this foundation, induced operators were introduced
in 1998, and K-quasi-additive integrals were proposed in [15]. Furthermore, their convergence properties
were investigated, and some useful results [15–18] were obtained. Liu [7] introduced for the first time
in 2002 the two concepts, polygonal fuzzy numbers and polygonal fuzzy neural networks. In this paper,
we provide a definition of the K-integral norm using K-quasi-additive integrals, and study completeness
properties and separability of the spaces of μ̂-integrable-bounded fuzzy-valued functions in the sense of
this integral norm. Later, we discuss the universal approximation of polygonal fuzzy neural networks
for the class of μ̂-integrable-bounded fuzzy-valued functions in K-integral norm by means of the integral
transformation theorem and the operation properties with respect to polygonal fuzzy numbers.

2 Fuzzy numbers

Let R
+ = [0, +∞), Rd a d-dimensional Euclidean space, ‖ · ‖ be a norm in R

d, and N the set of natural
numbers. For arbitrary ∀A, B ⊂ R

d, define

dH(A, B) = max{ ∨
x∈A

∧
y∈B

‖ x − y ‖, ∨
y∈B

∧
x∈A

‖ x − y ‖}.

From [23], we know that dH(A, B) is an Hausdorff distance between A and B. In particular, dH(A, B) =
| a − c | ∨ | b − d | whenever A = [a, b] and B = [c, d] ⊂ R. If [a1, b1] ⊂ [a2, b2] ⊂ [a3, b3] ⊂ R, then is the
following can easily verified

dH([a1, b1], [a2, b2]) ∨ dH([a2, b2], [a3, b3]) � dH([a1, b1], [a3, b3]).

Definition 2.1. Let ˜A : R −→ [0, 1] be a mapping, then ˜A is called a fuzzy number, if the following
conditions (1) and (2) are satisfied: (1) Ker( ˜A) = {x ∈ R | ˜A(x) = 1} 
= ∅; (2) the cut set ˜Aλ = {x ∈ R |
˜A(x) � λ} is a bounded closed interval, for arbitrary λ ∈ (0, 1].

Let F0(R) denote the family of all fuzzy numbers on R. For each a ∈ R, define ã(a) = 1; ã(x) = 0, x 
= a.
Obviously, the real number a is a special fuzzy number, and for all λ ∈ (0, 1], ãλ = {a} = [a, a].

In fact, for classical sets, only single point sets and bounded closed units intervals constitute fuzzy
numbers. This is Because (2) in Definition 2.1 is very hard to satisfy for other types of classical sets. For
example, let A = {1, 2, 3} and B = (1, 2], then for arbitrary λ ∈ [0, 1], both Aλ = {1, 2, 3} and Bλ = (1, 2]
do not constitute closed intervals, and thus A and B are not fuzzy numbers. For the order, operations
and limits with respect to fuzzy numbers, the reader is referred to [19].

In this paper, on space F0(R) of fuzzy numbers, we introduce following [19] a Hausdorff metric to define
D( ˜A, ˜B) = ∨λ∈[0,1]dH( ˜Aλ, ˜Bλ), for arbitrary ˜A, ˜B ∈ F0(R). In light of [19], it follows that (F0(R), D)
constitute a complete metric space.

3 Polygonal fuzzy numbers

The application of fuzzy numbers poses significant problems for fuzzy theory. Unfortunately, fuzzy
arithmetic operations are nonlinear and extremely complex, even for the simplest cases, the triangular
and ladder fuzzy numbers. The reason is that the four arithmetic operations in Zadeh’s extension principle
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do not satisfy closeness. Therefore, a significant question of interest is for general fuzzy numbers how to
develop these nonlinear operations in some approximation scheme. One such approximation was proposed
in [7], involves the n-symmetric polygonal fuzzy numbers (simply called polygonal fuzzy numbers) which
have excellent linear properties that simplifies their operations. In this section, we summarize some of
these properties to develop the important Theorem 3.2. This theorem lays the theoretical foundation for
discussing a universal approximation of fuzzy neural networks.

Definition 3.1 [7]. Let ˜A ∈ F0(R), for given n ∈ N, divide the closed interval [0,1] along the y-axis
into n equi-sized closed intervals bounded by points xi = i

n , i = 1, 2, . . . , n − 1. If there exists a set of
ordered real numbers: a1

0, a
1
1, . . . , a

1
n, a2

n, . . . , a2
1, a

2
0 ∈ R with a1

0 � a1
1 � · · · � a1

n � a2
n � · · · � a2

1 � a2
0

such that ˜A(aq
i ) = i

n , q = 1, 2 and ˜A(x) is defined below, takes straight lines in [a1
i−1, a

1
i ] and [a2

i , a
2
i−1],

where i = 1, 2, . . . , n, (see Figure 1), i.e., for any x ∈ R,

˜A(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

i−1
n + (x−a1

i−1)

n(a1
i −a1

i−1)
, x ∈ [a1

i−1, a
1
i ], i = 1, 2, . . . , n,

1, x ∈ [a1
n, a2

n],
i−1
n + (a2

i−1−x)

n(a2
i−1−a2

i )
, x ∈ [a2

i , a
2
i−1], i = 1, 2, . . . , n,

0, otherwise,

where we define 0
0 = 0. Then ˜A = (a1

0, a
1
1, . . . , a

1
n, a2

n, . . . , a2
1, a

2
0), or more simply ˜A, is called an n-

polygonal fuzzy number.
For given n ∈ R, let Zn(F0(R)) denote the family of all n-polygonal fuzzy numbers on F0(R). Obviously,

if n = 1, a 1-polygonal fuzzy number ˜A reduces to a ladder fuzzy number or a trigonometric fuzzy number
whenever. In addition, by ˜A(aq

i ) = i
n , it is clear to see that

˜A(aq
i ) − ˜A(aq

i−1) =
1
n

, i = 1, 2, · · ·, n; q = 1, 2.

From Definition 3.1, we easily find that the properties of polygonal fuzzy numbers are similar to those
of either ladder or trigonometric fuzzy numbers. For given n ∈ N, the n-polygonal fuzzy number of a ˜A

can be completely determined by the finite number of points a1
0, a

1
1, . . . , a

1
n, a2

n, . . . , a2
1, a

2
0 on R. Therefore,

for each fuzzy number in F0(R) determines a unique n-polygonal fuzzy number. The explicit construction
is as follows:

For fixed n ∈ N, let Zn : F0(R) → Zn(F0(R)) be a mapping where Zn is said to be an n-polygonal
operator. For ˜A ∈ F0(R), divide the unit closed interval [0, 1] on y-axis into n equal parts hat is, insert
n − 1 partitioning points λi = i

n , i = 1, 2, . . . , n − 1. For arbitrary λ ∈ [0, 1], let ˜A(x) � λ1 = 1
n ;

from Definition 2.1, we know that this inequality has a unique solution on Supp ˜A and solve for x such
that a1

1 � x � a2
1. Let ˜A(x) � λi = i

n , i = 1, 2, . . . , n − 1; similarly, we can solve for x that satisfies
a1

i � x � a2
i , and [a1

n, a2
n] ⊂ [a1

n−1, a
2
n−1] ⊂ · · · ⊂ [a1

1, a
2
1] ⊂ [a1

0, a
2
0].

Thus, we obtain a set of real numbers aq
i , i = 0, 1, 2, . . . , n; q = 1, 2 with a1

0 � a1
1 � · · · � a1

n � a2
n �

· · · � a2
1 � a2

0, that is to say that ˜A can be changed into an n-polygonal fuzzy number, denoted as
Zn( ˜A) = (a1

0, a
1
1, . . . , a

1
n, a2

n, . . . , a2
1, a

2
0) ∈ Zn(F0(R)).

Alternatively, let ˜A i
n

= [a1
i , a

2
i ] where i = 0, 1, 2, . . . , n, connect the knot points (a1

0, 0), (a1
1,

1
n ), (a1

2,
2
n ),

. . . , (a1
n, 1), (a2

n, 1), . . . , (a2
2,

2
n ), (a2

1,
1
n ), (a2

0, 0) which are the points on the curve of membership function
˜A(x) with straight line segments in order. Consequently, we get one ladder polygonal with continuity
from the right whenever x < a1

n, and continuity from the left whenever x > a2
n. Obviously, it is not hard

to see that
Ker(Zn( ˜A)) = Ker ˜A = [a1

n, a2
n], Supp(Zn( ˜A)) = Supp ˜A = [a1

0, a
2
0];

(Zn( ˜A)) i
n

= ˜A i
n

= [a1
i , a

2
i ], i = 0, 1, 2, . . . , n.

Note 1. It is clear that polygonal fuzzy numbers are a special type of fuzzy numbers, i.e., Zn(F0(R)) ⊂
F0(R). As for a given fuzzy number, its corresponding polygonal fuzzy number depends on the selection
of n; the larger the value of n is, the more knots there are in the polygonal representation. Consequently,
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Figure 1 n-polygonal fuzzy number.

the approximation capability of large n-polygonal fuzzy numbers of a given fuzzy numbers is much
stronger, at the moment, they are becoming more complex.

Definition 3.2. For given n ∈ N, let ˜A, ˜B ∈ F0(R), and Zn( ˜A) = (a1
0, a

1
1, . . . , a

1
n, a2

n, . . . , a2
1, a

2
0), Zn( ˜B) =

(b1
0, b

1
1, . . . , b

1
n, b2

n, . . . , b2
1, b

2
0) ∈ Zn(F0(R)), where aq

i , b
q
i ∈ R, i = 0, 1, 2, . . . , n; q = 1, 2, we define addition,

subtraction, multiplication, and scalar multiplication, as follows:
(1) Zn( ˜A) + Zn( ˜B) = (a1

0 + b1
0, a

1
1 + b1

1, . . . , a1
n + b1

n, a2
n + b2

n, . . . , a2
1 + b2

1, a
2
0 + b2

0);
(2) Zn( ˜A) − Zn( ˜B) = (a1

0 − b2
0, a

1
1 − b2

1, . . . , a1
n − b2

n, a2
n − b1

n, . . . , a2
1 − b1

1, a
2
0 − b1

0);
(3) Zn( ˜A) · Zn( ˜B) = (c1

0, c
1
1, . . . , c

1
n, c2

n, . . . , c2
1, c

2
0) where c1

i = a1
i b

1
i ∧ a1

i b
2
i ∧ a2

i b
1
i ∧ a2

i b
2
i and c2

i =
a1

i b
1
i ∨ a1

i b
2
i ∨ a2

i b
1
i ∨ a2

i b
2
i , i = 0, 1, 2, . . . , n;

(4) k · Zn( ˜A) = (ka1
0, ka1

1, . . . , ka1
n, ka2

n, . . . , ka2
1, ka2

0) where k � 0.

Note 2. Definition 2.1 implies that [a, b]λ = [a, b] for any λ ∈ (0, 1] whenever ˜A reduces to a closed
interval [a, b]. In particular, {a}λ = {a} = [a, a]. Hence, the single point set {a} constitutes a fuzzy
number defined by Zn({a}) = (a, a, . . . , a, a, . . . , a, a) for arbitrary a ∈ R with Zn(a) = Zn({a}). In
general though, Zn( ˜A) has no significance whenever ˜A does not constitute a fuzzy number; for example
Zn({1, 2, 3}).
Theorem 3.1 [7]. If ˜A, ˜B ∈ F0(R), for given n ∈ N, then the following properties (1) and (2) hold

(1) Zn( ˜A ± ˜B) = Zn( ˜A) ± Zn( ˜B), Zn( ˜A · ˜B) = Zn( ˜A) · Zn( ˜B);
(2) Zn(Zn( ˜A)) = Zn( ˜A); Zn(k · ˜A) = k · Zn( ˜A), k � 0 where k � 0 and k can be regarded as {k}.
Evidently, the space Zn(F0(R)) of polygonal fuzzy numbers is closed with respect to the linear op-

erations, its extension operations are simpler than the corresponding operations in Zadeh’s extension
principle, and possess excellent properties, all of which contribute to the success of polygonal fuzzy
numbers.

Note 3. For given n ∈ N and for any ˜A, ˜B ∈ F0(R), we find from [7]

D(Zn( ˜A), Zn( ˜B)) =
n∨

i=0
dH((Zn( ˜A)) i

n
, (Zn( ˜B)) i

n
) =

n∨
i=0

(| a1
i − b1

i | ∨ | a2
i − b2

i |),

where D is a metric in F0(R). Specifically, whenever ˜B = ˜0, we define the norm of a polygonal fuzzy
number Zn( ˜A), i.e., ‖ Zn( ˜A) ‖= D(Zn( ˜A), Zn({0})). In addition, (Zn( ˜A)) i

n
= [a1

i , a
2
i ] with (Zn({0})) i

n
=

[0, 0], and therefore, ‖ Zn( ˜A) ‖= ∨n
i=0(| a1

i | ∨ | a2
i |) satisfying the inequalities

| aq
i |�‖ Zn( ˜A) ‖, | aq

i − bq
i |� D(Zn( ˜A), Zn( ˜B)), q = 1, 2; i = 0, 1, 2, . . . , n.

Lemma 1 [7]. For any ai, bi ∈ R, if there exists a real number β > 0 such that | ai − bi |� β, where
i = 1, 2, . . . , n, then | ∧n

i=0ai − ∧n
i=0bi |� β, where ∧ =inf.

Lemma 2. Let aij > 0 (i = 1, 2, . . . , n; j = 1, 2, . . . , m) be a set of positive real numbers, then
(1)(

∑m
j=1 aij ) ∨ (

∑m
j=1 bij ) �

∑m
j=1(aij ∨ bij ); (2) ∨n

i=0(
∑m

j=1 aij ) �
∑m

j=1(∨n
i=0aij).

Proof. (1) For any i ∈ {1, 2, . . . , n}, then
∑m

j=1 aij �
∑m

j=1(aij ∨ bij ) and
∑m

j=1 bij �
∑m

j=1(aij ∨ bij )
are obvious. Hence, the (1) holds.
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(2) For any j = 1, 2, . . . , m, we have aij � ∨n
i=0aij ⇒ ∑m

j=1 aij �
∑m

j=1(∨n
i=0aij); whereas the left

hand side depends on i, the right side is independent of i and j. Taking the maximum with respect to
i ∈ {1, 2, . . . , n}, then we can prove that the inequalities hold. Applying Lemma 1 and Lemma 2, we next
give the following important Theorem 3.2 for this paper.

Theorem 3.2. Let ˜A1, ˜A2, ˜A3 ∈ F0(R), ˜Bk, ˜Ck ∈ F0(R) for k = 1, 2, . . . , m, for given n ∈ N, then the
following conclusions (1)–(2) hold

(1) D (Zn( ˜A1 · ˜A2), Zn( ˜A1 · ˜A3)) �‖ Zn( ˜A1) ‖ ·D (Zn( ˜A1), Zn( ˜A3));
(2) D (Zn(

∑m
k=1

˜Bk), Zn(
∑m

k=1
˜Ck)) �

∑m
k=1 D (Zn( ˜Bk), Zn( ˜Ck)).

Proof. (1) For fixed n ∈ N, let Zn( ˜Ai) = (a1
i0, a

1
i1, . . . , a

1
in, a2

in, . . . , a2
i1, a

2
i0) ∈ Zn(F0(R)) where i =

0, 1, 2, . . . , n, in light of Theorem 3.1 and Definition 3.2, it follows that

Zn( ˜A1 · ˜A2) = Zn( ˜A1) · Zn( ˜A2) = (c1
0, c

1
1, . . . , c

1
n, c2

n, . . . , c2
1, c

2
0),

where c1
j = a1

1ja
1
2j ∧a1

1ja
2
2j ∧a2

ija
1
2j ∧a2

ija
2
2j and c2

j = a1
1ja

1
2j ∨a1

1ja
2
2j ∨a2

ija
1
2j ∨a2

ija
2
2j with j = 0, 1, 2, . . . , n.

Analogously,
Zn( ˜A1 · ˜A3) = Zn( ˜A1) · Zn( ˜A3) = (d1

0, d
1
1, . . . , d

1
n, d2

n, . . . , d2
1, d

2
0),

where d1
j = a1

1ja
1
3j ∧ a1

1ja
2
3j ∧ a2

ija
1
3j ∧ a2

ija
2
3j and d2

j = a1
1ja

1
3j ∨ a1

1ja
2
3j ∨ a2

ija
1
3j ∨ a2

ija
2
3j .

Substituting the corresponding terms c1
j and d1

j , combined with the definition of the norm ‖ Zn(·) ‖,
we derive from the above expressions

| ap
1ja

q
2j − ap

1ja
q
3j |=| ap

ij | · | aq
2j − aq

3j |�‖ Zn( ˜A1) ‖ ·D (Zn( ˜A2), Zn( ˜A3)), p, q = 1, 2.

In accordance with Lemma 1, we can obtain

| c1
j − d1

j |�‖ Zn( ˜A1) ‖ ·D (Zn( ˜A2), Zn( ˜A3)).

Similarly,
| c2

j − d2
j |�‖ Zn( ˜A1) ‖ ·D (Zn( ˜A2), Zn( ˜A3)).

Thus, by Note 3, we immediately have

D (Zn( ˜A1 · ˜A2), Zn( ˜A1 · ˜A3)) �‖ Zn( ˜A1) ‖ ·D (Zn( ˜A2), Zn( ˜A3)).

(2) Let Zn( ˜Bk) = (b1
k0, b

1
k1, . . . , b

1
kn, a2

kn, . . . , b2
k1, b

2
k0) and Zn( ˜Ck) = (c1

k0, c
1
k1, . . . , c

1
kn, c2

kn, . . . , c2
k1, c

2
k0)

for k = 1, 2, . . . , n. Taking advantage of Theorem 3.1(1) and Definition 3.2(1), it follows that

Zn

( m
∑

k=1

˜Bk

)

=
m

∑

k=1

Zn( ˜Bk) =
( m

∑

k=1

b1
k0,

m
∑

k=1

b1
k1, . . . ,

m
∑

k=1

b1
kn,

m
∑

k=1

b2
kn, . . . ,

m
∑

k=1

b2
k1,

m
∑

k=1

b2
k0

)

;

Zn

( m
∑

k=1

˜Ck

)

=
( m

∑

k=1

c1
k0,

m
∑

k=1

c1
k1, . . . ,

m
∑

k=1

c1
kn,

m
∑

k=1

c2
kn, . . . ,

m
∑

k=1

c2
k1,

m
∑

k=1

c2
k0

)

.

Obviously, | ∑m
k=1 bq

ki −
∑m

k=1 cq
ki |� ∑m

k=1 | bq
ki − cq

ki | for q = 1, 2 and i = 0, 1, 2, . . . , n. By Note 3
and Lemma 1, we find

D

(

Zn

( m
∑

k=1

˜Bk

)

, Zn

( m
∑

k=1

˜Ck

))

=
n∨

i=0

(∣

∣

∣

∣

m
∑

k=1

b1
ki −

m
∑

k=1

c1
ki

∣

∣

∣

∣

∨
∣

∣

∣

∣

m
∑

k=1

b2
ki −

m
∑

k=1

c2
ki

∣

∣

∣

∣

)

�
n∨

i=0

( m
∑

k=1

| b1
ki − c1

ki | ∨
m

∑

k=1

| b2
ki − c2

ki |
)

�
n∨

i=0

m
∑

k=1

(| b1
ki − c1

ki | ∨ | b2
ki − c2

ki |)

�
m

∑

k=1

n∨
i=0

(| b1
ki − c1

ki | ∨ | b2
ki − c2

ki |)
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=
m

∑

k=1

D (Zn( ˜Bk), Zn( ˜Ck)).

Lemma 3 [7]. The (Zn(F0(R)), D) constitutes a completely separable metric space.

Lemma 4 [7]. Let ˜A, ˜B ∈ F0(R), for arbitrary n ∈ N, then D (Zn( ˜A), Zn( ˜B)) � D ( ˜A, ˜B) and satisfies
limn→∞ D ( ˜A, Zn( ˜A)) = 0.

Example 1. Let fuzzy numbers ˜A and ˜B satisfy

˜A(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

√
x + 1 − 1, 0 � x < 3,

1, 3 � x � 4,

3 −√
x, 4 < x � 9,

0, otherwise,

˜B(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

2x − x2, 0 � x < 1,

1, 1 � x � 2,

4x − x2

4
, 2 < x � 4,

0, otherwise.

Clearly, for the fuzzy number ˜A, Supp ˜A = [0, 9], Ker ˜A = [3, 4].
Putting n = 3, we choose divided points λ1 = 1

3 , λ2 = 2
3 ; whenever x ∈ [0, 3), let ˜A(x) � 1

3 , 2
3 ⇒ x �

7
9 , x � 16

9 ; whenever x ∈ [4, 9], let ˜A(x) � 1
3 , 2

3 ⇒ x � 64
9 , x � 49

9 . Hence, we can obtain a 3-polygonal
fuzzy number of ˜A, which plotted in Figure 2. It is easy to see that

Z3( ˜A) =
(

0,
7
9
,

16
9

, 3, 4,
49
9

,
64
9

, 9
)

.

Putting n = 4, we select divided points λ1 = 1
4 , λ2 = 2

4 , λ3 = 3
4 , then one obtains similarly a 4-polygonal

fuzzy number for ˜A in the form

Z4( ˜A) =
(

0,
9
16

,
5
4
,

33
16

, 3, 4,
81
16

,
25
4

,
121
16

, 9
)

.

Now, returning to n = 3, the coordinates of the knots of ˜A are in increasing order (0, 0), (7
9 , 1

3 ), (16
9 , 2

3 ),
(3, 1), (4, 1), (49

9 , 2
3 ), (64

9 , 1
3 ), (9, 0). The membership function Z3( ˜A)(x) of the 3-polygonal fuzzy number

of ˜A can be obtained and is given in Figure 2.
By utilizing the same method, the fuzzy number for ˜B can be shown to be

Z4( ˜B) =
(

0, 1 −
√

3
2

, 1 − 1√
2
,
1
2
, 1, 2, 3, 2 +

√
2, 2 +

√
3, 4

)

.

In light of Theorem 3.1(1) and Definition 3.2(1), we get

Z4( ˜A + ˜B) = Z4( ˜A) + Z4( ˜B) =
(

0,
25
16

−
√

3
2

,
9
4
− 1√

2
,
41
16

, 4, 6,
129
16

,
33
4

+
√

2,
153
16

+
√

3, 13
)

.

Next, we use Lemma 4 to discuss how well the the n-polygonal fuzzy number Zn( ˜A) approximates to
˜A.

In fact, for every λ ∈ (0, 1], let ˜Aλ = [ϕ1(λ), ϕ2(λ)], we can infer ϕ1(λ) = (1 + λ)2 − 1 and ϕ2(λ) =
(3−λ)2. The function ϕ1(λ) increases on [0,1], whereas ϕ2(λ) decreases on [0,1]. Moreover, for arbitrary
λ ∈ (0, 1] and n ∈ N, there exists i ∈ {1, 2, . . . , n} such that λ ∈ [ i−1

n , i
n ] with

(Zn( ˜A)) i
n

= ˜A i
n
⊂ ˜Aλ ⊂ ˜A i−1

n
= (Zn( ˜A)) i−1

n
.

Since dH is a Hausdorff distance, for arbitrary i ∈ {1, 2, . . . , n}, it is straightforward to see that

dH( ˜Aλ, ˜A i−1
n

) � dH( ˜A i
n
, ˜A i−1

n
), dH( ˜A i−1

n
, (Zn( ˜A)) i−1

n
) = 0.
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Z3( ˜A)(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

3

7
x, 0 � x � 7

9
,

1

3
x +

2

27
,

7

9
< x � 16

9
,

3

11
x +

2

11
,

16

9
< x � 3,

1, 3 < x � 4,

− 3

13
x +

25

13
, 4 < x � 49

9
,

−1

5
x +

79

45
,

49

9
< x � 64

9
,

− 3

17
x +

27

17
,

64

9
< x � 9.

(a) (b)

Figure 2 (a) Analytic expressions of Z3(Ã)(x); (b) graph of Ã(x) and Z3(Ã)(x).

Furthermore, we deduce that

dH( ˜Aλ, (Zn( ˜A))λ) � dH( ˜Aλ, ˜A i−1
n

) + dH( ˜A i−1
n

, (Zn( ˜A)) i−1
n

) + dH((Zn( ˜A)) i−1
n

, (Zn( ˜A))λ)

� 2dH( ˜A i−1
n

, ˜A i
n
) = 2

[(

ϕ1

(

i

n

)

− ϕ1

(

i − 1
n

))

∨
(

ϕ2

(

i − 1
n

)

− ϕ2

(

i

n

))]

=
2
n
·
(

6 − 2i

n
+

1
n

)

� 2
n
·
(

6 − 1
n

)

<
12
n

.

Thus, D( ˜A, Zn( ˜A)) = ∨λ∈(0,1]dH( ˜Aλ, (Zn( ˜A))λ) � 12
n . For example, given an error ε = 0.1 > 0, if we

approximate this distance with D( ˜A, Zn( ˜A)) � 12
n < 0.1, then we only need choose n > 120. By varying

the error and making use of the n−polygonal fuzzy number Zn( ˜A) to approximate to ˜A, we can obtain
rough estimates of n (see Table 1).

4 K-quasi-additive integrals and K-integral norms

In 1998, the K-quasi-additive integral was suggested in [15] by introducing an induced operator, con-
vergence and auto-continuity have been studied in [15–18]. In this section, we shall state the relevant
definitions and give the concept of the K-integral norm.

Definition 4.1. Let K : R
+ → R

+ be a concave function that is strictly monotonically increasing. If
K satisfies K(0) = 0, K(1) = 1 and differentiable on R

+, then K is said to be an induced operator on
R

+.
Obviously, its inverse operator K−1 exists and is strictly increasing. For example, for any x ∈ R

+,
then K(x) = x, K(x) =

√
x and K(x) = log2(x + 1) are clearly induced operators.

Definition 4.2 [15]. Let K be an induced operator, for arbitrary a, b ∈ R
+, define their K−quasi-sum

⊕ and K−quasi-product ⊗ as follows a ⊕ b = K−1(K(a) + K(b)); a ⊗ b = K−1(K(a)K(b)).

Theorem 4.1. For any a, b ∈ R
+, then the following statements hold

(1) a + b � a ⊕ b and a + b � a ⊕ b iff K(a + b) � K(a) + K(b);
(2) K(a ⊕ b) = K(a) + K(b), K(a ⊗ b) = K(a) · K(b);
(3) K−1(a + b) = K−1(a) ⊕ K−1(b), K−1(a · b) = K−1(a) ⊗ K−1(b).

Proof. We only prove (1), the others can be verified directly. In fact, without loss of generality, assume
0 < a < b, for quasi-sum ⊕, there certainly exists an induced operator K. Furthermore, by the Lagrange
theorem of mean value, it follows that there exists ∃ξ1 ∈ (0, a) and ∃ξ2 ∈ (b, a + b) such that

K(a) = K(a) − K(0) = K ′(ξ1)a, K(a + b) − K(b) = K ′(ξ2)a.
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Table 1 Estimation of error

Error ε=0.1 ε=0.07 ε=0.04 ε=0.02 ε=0.008 ε=0.002

Estimation value n > 120 172 300 600 1500 6000

As K is a differentiable concave function iff K ′(x) is a decreasing function, it follows that ξ1 <

a < b < ξ2 ⇒ K ′(ξ2) � K ′(ξ1). Consequently, we obtain K(a + b) � K(a) + K(b) and therefore
a + b = K−1(K(a + b)) � K−1(K(a) + K(b)) = a ⊕ b.

Definition 4.3 [14, 15]. Let (X,�) be an arbitrary measurable space, K be an induced operator,
μ̂ : � → [0, +∞] a set function satisfying the following conditions (1)–(4).

(1) μ̂(∅) = 0;
(2) If A, B ∈ � and A ∩ B = ∅, then μ̂(A ∪ B) = μ̂(A) ⊕ μ̂(B);
(3) If An ⊂ � and An ↑ A, then μ̂(An) ↑ μ̂(A);
(4) If An ⊂ �, An ↓ A, and there exists n0 ∈ N such that μ̂(An0) < +∞, then μ̂(An) ↓ μ̂(A).
Then μ̂ is called a K-quasi-additive measure, and the corresponding triple (X,�, μ̂) is said to be a

space of K-quasi-additive measure.

Definition 4.4 [17]. Let (X,�, μ̂) be a space K-quasi-additive measure, K be an induced operator, f

a nonnegative measurable function, A ∈ � and T = {A1, A2, A3, . . . , An} an arbitrary finite measurable
partition of A. Putting

∫ (K)

A
fdμ̂ = supT SK(f, T, A) and SK(f, T, A) = ⊕∑n

i=1(infx∈Ai∩Af(x)⊗ μ̂(Ai ∩
A)), then

∫ (K)

A
fdμ̂ is called a K-quasi-additive integral of f with respect to μ̂ on A. In particular, f is

called μ̂-integrable whenever integral is finite,
∫ (K)

A fdμ̂ < +∞.

Lemma 5 [17](Integral transformation theorem). Let (X,�, μ̂) be a space of K-quasi-additive mea-
sures, K an induced operator, and f a nonnegative measurable function on (X,�), for all A ∈ �, putting
μ (·) = K(μ̂(·)), A ∈ �, then μ is a Lebesgue measure, and

∫ (K)

A
fdμ̂ = K−1(

∫

A
K ◦ fdμ̂).

Note 4. From Lemma 5, we know that a K-quasi-additive integral reduces to a Lebesgue integral
whenever K(x) = x. Thus, this kind of integral is a generalization of Lebesgue integrals. In addition, the
corresponding quasi-sum and quasi-product reduces to the ordinary sum and product, respectively. In
fact, Lemma 5 changes K-quasi-additive integrals into Lebesgue integrals. Hence, some of their properties
are very easily to obtain (see [14–18]).

Definition 4.5. Let F : R
d → F0(R) be a fuzzy-valued function, K an induced operator, and

n ∈ N, if there exists a nonnegative μ̂-integrable function ω(x) such that for any y ∈ (Zn(F (x)))λ implies
| y |� ω(x) for all λ ∈ (0, 1] and x ∈ R

d, then F is said to be μ̂-integrable bounded on R
d.

Denote L1(μ̂) = {F : R
d → F0(R) | F is a μ̂−integrable bounded fuzzy-valued function on R

d}.
Obviously, for any F ∈ L1(μ̂), ‖ Zn(F (x)) ‖= D (Zn(F (x)), Zn({0})) is Lebesgue integrable, and there
exists a μ̂−integrable function ω(x) such that ‖ Zn(F (x)) ‖� ω(x) with

∫ (K)

A ω(x)dμ̂ < +∞.

Definition 4.6. Let (X,�, μ̂) be a space of K-quasi-additive measures, and K an induced operator,
for given n ∈ N, for any F1, F2 ∈ L1(μ̂) and A ∈ �, define H(F1, F2) =

∫ (K)

A D (Zn(F1(x)), Zn(F2(x)))dμ̂.
Then H is called a K-integral norm. Clearly, according to Lemma 5, H can be expressed as

H(F1, F2) = K−1

( ∫

A

K(D (Zn(F1(x)), Zn(F2(x))))dμ

)

.

Theorem 4.2. For arbitrary F1, F2 ∈ L1(μ̂), then H(F1, F2) < +∞.

Proof. Actually, because F1, F2 ∈ L1(μ̂), then there exists μ̂-integrable bounded functions ω1(x) and
ω2(x), respectively, such that ‖ Zn(F1(x)) ‖� ω1(x) and ‖ Zn(F2(x)) ‖� ω2(x). As D is a metric, then
in light of Theorem 4.1(1), for every x ∈ R

d, we can deduce that

D (Zn(F1(x)), Zn(F2(x))) � D (Zn(F1(x)), Zn({0})) + D (Zn({0}), Zn(F2(x)))

= ‖ Zn(F1(x)) ‖ + ‖ Zn(F2(x)) ‖� ω1(x) ⊕ ω2(x).
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Combining Lemma 5, Theorem 4.1(2), and the fact that K−1 is strictly increasing, it shows that

H(F1, F2) = K−1

( ∫

A

K(D (Zn(F1(x)), Zn(F2(x))))dμ

)

� K−1

( ∫

A

K(ω1(x) ⊕ ω2(x))dμ

)

= K−1

( ∫

A

K(ω1(x))dμ +
∫

A

K(ω2(x))dμ

)

=
∫ (K)

A

ω1(x)dμ̂ ⊕
∫ (K)

A

ω2(x)dμ̂ < +∞.

Theorem 4.3. For arbitrary F1, F2, F3 ∈ L1(μ̂), then integral norm H satisfies three points inequality
with respect to the quasi-sum ⊕.

Proof. Since D is a metric on Zn(F0(R)), by Theorem 4.1(1), we have for all x ∈ R
d

K(D (Zn(F1(x)), Zn(F3(x)))) � K(D (Zn(F1(x)), Zn(F2(x))) + D (Zn(F2(x)), Zn(F3(x))))

� K(D (Zn(F1(x)), Zn(F2(x)))) + K(D (Zn(F2(x)), Zn(F3(x)))).

Hence, in accordance with Lemma 5, Theorem 4.1(3), and that K−1 is a monotonic increasing function,
for every A ∈ �, we derive

H(F1, F3) = K−1

( ∫

A

K(D (Zn(F1(x)), Zn(F3(x))))dμ

)

� K−1

(
∫

A

K(D (Zn(F1(x)), Zn(F2(x))))dμ +
∫

A

K(D (Zn(F2(x)), Zn(F3(x))))dμ

)

= K−1

( ∫

A

K(D (Zn(F1(x)), Zn(F2(x))))dμ

)

⊕ K−1

( ∫

A

K(D (Zn(F2(x)), Zn(F3(x))))dμ

)

= H(F1, F2) ⊕ H(F2, F3).

Theorem 4.4. The (L1(μ̂), H) constitutes a metric space with respect to quasi-addition ⊕.

Proof. By Definition 4.6, H satisfies nonnegativity and symmetry; thus by synthesizing Theorem 4.2
and Theorem 4.3, the statement can be proved.

5 Separability of (L1(µ̂),H)

In the above section, we have outlined the concept of the K-integral norm by introducing K-quasi-
additive integrals, and determined that integrable system (L1(μ̂), H) constitutes a metric space by means
of the integral norm. In this section, we shall go on proving that (L1(μ̂), H) constitutes a completely
separable metric space. To overcome the shortcoming in [7], we will adopt the method of polygonal
fuzzy numbers to develop the space of general fuzzy numbers. This eventuates because n-polygonal fuzzy
numbers, handled via the Zn map constitutes a completely separable metric space. The algorithm is easy
to comprehend and the method is simple and clear.

Definition 5.1. Let (Rd,�, μ̂) be a space of K-quasi-additive measure, Ω ⊂ R
d, mapping S : Ω →

F0(R), {Ei | i = 1, 2, . . . , m} be a finite partition of Ω, i.e.,
⋃m

i=1 Ei = Ω and Ei ∩ Ej = ∅(i 
= j)
where Ei ∈ �, i = 1, 2, . . . , m. For any x = (x1, x2, . . . , xd) ∈ Ω, if there exists a set of fuzzy numbers
˜A1, ˜A2, . . . , ˜Am ∈ F0(R) with S(x) =

∑m
i=1

˜Ai · χEi(x), where χEi(x) is a characteristic function, then S

is called a fuzzy-valued simple function defined on Ω.
Let Sn(Ω) denote the family of all fuzzy-valued simple functions on Ω. Obviously, from Theorem 3.1

and Definition 3.2, we obtain Zn(S(x)) =
∑m

i=1 Zn( ˜Ai) · χEi(x) for every x ∈ Ω.
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Definition 5.2. For given n ∈ N, let Q : Ω → Zn(F0(R)) be a polygonal fuzzy-valued function,
x0 ∈ Ω, for arbitrary ε > 0, if there exists a δ > 0 such that D (Q(x), Q(x0)) < ε whenever η(x, x0) < δ,
then Q is said to be continuous at point x0, where η is a metric in Ω ⊂ R

d.
In addition, for every x = (x1, x2, . . . , xd) ∈ Ω, the polygonal fuzzy-valued function Q can be denoted

as Q(x) = (f1
0 (x), f1

1 (x), . . . , f1
n(x), f2

n(x), . . . , f2
1 (x), f2

0 (x)) ∈ Zn(F0(R)).

Definition 5.3. Let F : Ω → F0(R), for given n ∈ N, x0 ∈ Ω, if polygonal fuzzy valued function
Zn(F (·)) is continuous at point x0, then F is said to be continuous at point x0, if F is continuous at an
arbitrary point on Ω, then F is said to be continuous on Ω.

Taking Lemma 4 into account, F is continuous on Ω iff Zn(F (·)) is continuous on Ω and iff each f q
j (x)

is continuous on Ω for q = 1, 2; j = 0, 1, 2, . . . , n.
Next, we will verify that the class of fuzzy-valued simple functions Sn(Ω) is dense on the space L1(μ̂)

of integrable bounded functions; that is, Sn(Ω) possesses a universal approximation with respect to L1(μ̂)
in the sense of K-integral norms.

Theorem 5.1. Let (Rd,�, μ̂) be a space of a K-quasi-additive measure, μ̂(Ω) < +∞ with Ω ⊂ R
d, F :

Ω → F0(R) be μ̂-integrable, K an induced operator, n ∈ N, then Sn(Ω) can approximate F to arbitrary
accuracy with respect to K-integral norms.

Proof. For given n ∈ N and any ε > 0, we need only prove that there exists S0 ∈ Sn(Ω) such that
H(F, S0) < ε for every F ∈ L1(μ̂).

From Lemma 3, we know that the completely metric space (Zn(F0(R)), D) is separable. Without loss
of generality, suppose { ˜Az

i | i ∈ N} is a countably-dense subset of Zn(F0(R)), where each n-polygonal
fuzzy number ˜Az

i ∈ Zn(F0(R)), i = 1, 2, . . .. Thus, for every ε > 0, there exists i ∈ N and ˜X ∈ F0(R)
such that D(Zn( ˜X), ˜Az

i ) < ε. Let

E1 = {x ∈ Ω | D(Zn(F (x)), ˜Az
1 < ε},

E2 = {x ∈ Ω | D(Zn(F (x)), ˜Az
1) � ε, D(Zn(F (x)), ˜Az

2) < ε},
· · ·

Ek = {x ∈ Ω | D(Zn(F (x)), ˜Az
i ) � ε (i = 1, 2, · · · , k − 1), D(Zn(F (x)), ˜Az

k) < ε},
· · ·

Clearly, these sets fulfill Ei ∩Ej = ∅(i 
= j), and
⋃∞

k=1 Ek = Ω, where every Ek is measurable. In fact,
⋃∞

k=1 Ek ⊂ Ω is obvious. On the contrary, assume for any x ∈ Ω, then (1) if x ∈ E1, then Ω ⊂ ⋃∞
k=1 Ek

holds; else (2) if x /∈ E1, then in regard to the sequence {Ei} of the sets, we know that there exists an
i0 ∈ N such that D (Zn(F (x)), ˜Az

i0
) < ε.

As for the i0-th term, if D(Zn(F (x)), ˜Az
i ) � ε for every i ∈ {1, 2, . . . , i0−1}, by means of the definition of

the sequence {Ei} of sets, it follows that x ∈ Ei0 ⊂ ⋃∞
k=1 Ek; otherwise, if there exists ik ∈ {1, 2, . . . , i0−1}

such that D (Zn(F (x)), ˜Az
ik

) < ε, then may be this ik does not sole. Let ik0 be the smallest of all ik with
D(Zn(F (x)), ˜Az

i ) � ε, i = 1, 2, . . . , i0 − 1, thus, x ∈ Eik0
⊂ ⋃∞

k=1 Ek. Therefore, Ω =
⋃∞

k=1 Ek.
Furthermore, let μ (·) = K(μ̂ (·)), by Lemma 5, we can see that μ is a Lebesgue measure that

satisfies μ (E) = K(μ̂ (E)) � K(μ̂ (Ω)) < +∞ for all E ∈ �. Taking advantage of the countable
additivity of the Lebesgue measure μ with regard to sequence {Ek} of measurable sets, we find that
∑∞

k=1 μ (Ek) = μ (
⋃∞

k=1 Ek) = μ (Ω) = K(μ̂ (Ω)) < +∞. Hence, the series of positive terms
∑∞

k=1 μ (Ek)
is convergent, and thus, for arbitrary ε > 0, there exists a N ∈ N and whenever n � N such that

μ

( ∞
⋃

k=N+1

Ek

)

=
∞
∑

k=N+1

μ (Ek) =
∣

∣

∣

∣

∞
∑

k=1

μ (Ek) −
N

∑

k=1

μ (Ek)
∣

∣

∣

∣

< ε.

Setting E0 =
⋃∞

k=N+1 Ek, then the above can be rewritten as μ (E0) < ε.
Synthesizing the above discussion, Ω = (

⋃N
k=1 Ek) ∪ E0 and {E1, E2, . . . , EN , E0} constitutes a new

finite measurable partition on Ω. Now, we select the front n−polygonal fuzzy numbers { ˜Az
k | k =

1, 2, . . . , N}; of course, ˜Az
k ∈ F0(R), k = 1, 2, . . . , N . Let S0(x) =

∑N
k=0

˜Az
k · χEk

(x) for all x ∈ Ω.
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Whenever k = 0, replenish ˜Az
0 = (0, 0, . . . , 0, 0, . . . , 0, 0), then S0 is a fuzzy-valued simple function on Ω,

i.e., S0 ∈ Sn(Ω). From Definition 3.2, we obtain Zn( ˜Az
k · χEk

(x)) = Zn( ˜Az
k) · Zn(χEk

(x)) = ˜Az
k · χEk

(x).
Consequently, Zn(S0(x)) = S0(x). In addition, the distance function D(Zn(F (x)), S0(x)) is bounded and
Lebesgue integrable on Ω, as also is K(D(Zn(F (x)), S0(x))). According to the absolute continuity of the
Lebesgue integrals, taking δ = ε > 0, whenever μ(E0) < ε = δ, we derive from

∫

E0

K(D(Zn(F (x)), S0(x)))dμ < ε. (1)

In light of the sequence {Ek}, for all x ∈ Ek, we can infer

D(Zn(F (x)), S0(x)) = D(Zn(F (x)), ˜Az
k) < ε, k = 1, 2, . . . , N. (2)

By use of Lemma 5, combining the monotonicity of K−1, (1) and (2), we have

H(F, S0) = K−1

( ∫

⋃

N
k=1 Ek

K(D(Zn(F (x)), S0(x)))dμ +
∫

E0

K(D(Zn(F (x)), S0(x)))dμ

)

� K−1

( N
∑

k=1

∫

Ek

K(ε)dμ + ε

)

= K−1

(

K(ε) · μ
(

N∪
k=1

Ek

)

+ ε

)

� K−1(μ(Ω) · K(ε) + ε).

Because K and K−1 are strictly increasing, μ(Ω) is finite, thus, for all ε > 0, it follows that μ (Ω) ·
K(ε) + ε can be made arbitrary small, and consequently, the expression K−1(μ (Ω) · K(ε) + ε) still can
be arbitrary small. Hence, Sn(Ω) can approximate F with respect to the K-integral norm to arbitrary
accuracy.

Theorem 5.2. Let (Rd,�, μ̂) be a space of K-quasi-additive measure, Ω ⊂ R
d be a bounded measur-

able set, K an induced operator, for given n ∈ N, let C(Ω) = {F : Ω → F0(R) | F is continuous on Ω},
then C(Ω) is dense in Sn(Ω).

Proof. Select a bounded set B ⊂ Ω, and construct the function and sequence of functions on Ω as
follows

ρ(x, B) = inf
y∈B

η(x, y), Gm(x) =
1

1 + mρ(x, B)
, ∀x ∈ Ω, m = 1, 2, . . . ,

where η is a metric on R
d, for all x ∈ Ω, the function ρ(x, B) and Gm(x) can be shown to be uniformly

continuous on Ω, and thus continuous on Ω satisfying

lim
m→∞Gm(x) =

{

1, x ∈ B

0, x /∈ B
= χB (x).

Now for any ˜A ∈ F0(R), and for a given n ∈ N, then Zn( ˜A) ∈ Zn(F0(R)) ⊂ F0(R). Let S(x) =
Zn( ˜A) · χB(x), Fm(x) = Zn( ˜A) · Gm(x), for arbitrary x ∈ Ω, m = 1, 2, . . . , then S ∈ Sn(Ω) and
Fm(x) ∈ Zn(F0(R)). By Note 2, we find Zn(S(x)) = S(x) and Zn(Fm(x)) = Fm(x).

Next, we are going to prove that the polygonal fuzzy-valued function Fm(x) is continuous on Ω.
Actually, for each x0 ∈ Ω, since each real function Gm(x) is continuous at point x0, then for any ε > 0,
there exists a δ > 0 such that | Gm(x)−Gm(x0) |< ε for all x ∈ Ω and whenever η(x, x0) < δ. Applying
Theorem 3.2(1) and Note 2, we immediately deduce

D (Fm(x), Fm(x0)) �‖ Zn( ˜A) ‖ · | Gm(x) − Gm(x0) |<‖ Zn( ˜A) ‖ ε.

By Definition 5.2, we get that each Fm(x) is continuous at point x0, furthermore, it is continuous on
Ω. Consequently, Fm ∈ C(Ω), m = 1, 2, . . ..

In addition, for any x = (x1, x2, . . . , xd) ∈ Ω, as χB(x), Gm(x) ∈ R, utilizing Note 2, Note 3, and
Theorem 3.2(1), it is straightforward to see that

D (S(x), Fm(x)) �‖ Zn( ˜A) ‖ ·D (χB(x), Gm(x)) =‖ Zn( ˜A) ‖ · | Gm(x) − χB(x) |→ 0 (m → ∞).
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Hence, limm→∞ D (S(x), Fm(x)) = 0, and by continuity of K, implies limm→∞ K(D (S(x), Fm(x))) =
K(0) = 0, applying the continuity of K−1 and the dominant convergence theorem of Lebesgue’s integral

lim
m→∞ H(S, Fm) = K−1

( ∫

Ω

lim
m→∞K(D (S(x), Fm(x)))dμ

)

= K−1(0) = 0.

Therefore, the polygonal fuzzy-valued simple function S may be approximated by polygonal fuzzy-
valued function Fm, that is to say that C(Ω) is dense in Sn(Ω).

Definition 5.4 [8]. Let f : [0, 1]d → F0(R) be a d−dimensional fuzzy-valued function, for all x =
(x1, x2, . . . , xd) ∈ [0, 1]d and m ∈ N, we introduce the expression Bm(f ; x) =

∑m
i1,i2,...,id=0 Qm; i1,i2,...,id

(x)·
J( i1

m , i2
m , . . . , id

m ). Then Bm(f ; x) is called a d−dimensional fuzzy-valued Bernstein polynomial of f , where
Qm; i1,i2,...,id

(x) = Ci1
mCi2

m · · ·Cid
mxi1

1 xi2
2 · · ·xid

d (1 − x1)m−i1 (1 − x2)m−i2 · · · (1 − xd)m−id is a real-valued
multi-variable polynomial function.

Note 5. Here
∑m

i1,i2,...,id=0 =
∑m

i1=0 ·
∑m

i2=0 · · ·
∑m

id=0, and
∑m

i1,i2,...,id=0 Qm; i1,i2,...,id
(x) = 1.

Lemma 6 [9]. Let F : [a, b]d → F0(R) be a continuous fuzzy-valued function and D a metric in F0(R).
For arbitrary ε > 0, then there exists a d-dimensional fuzzy-valued Bernstein polynomial Bm(F ; x) such
that D(Bm(F ; x), F (x)) < ε for any x ∈ [a, b]d.

Theorem 5.3. Let (Rd,�, μ̂) be a space of K-quasi-additive measure, Ω ⊂ R
d a bounded measur-

able set, and K an induced operator, for given n ∈ N, denote P (Ω) = {F : Ω → F0(R) | F (x) =
∑m

i1,i2,...,id=0
˜Ai1,i2,...,id

· Qm; i1,i2,...,id
(x), ˜Ai1,i2,...,id

∈ F0(R)}. Then P (Ω) is dense in C(Ω).

Proof. Obviously, P (Ω) is a countable set, since Ω is bounded. Thus, there exists a closed d-dimensional
rectangular parallelepiped [a, b]d such that Ω ⊂ [a, b]d.

Indeed, for every F ∈ C(Ω), by Lemma 6, we know that for any ε > 0, there exists a d−dimensional
Bernstein polynomial Bm(F ; x) =

∑m
i1,i2,...,id=0

˜Bi1,i2,...,id
·Qm; i1,i2,...,id

(x) such that D(Bm(F ; x), F (x))
< ε for all x ∈ Ω, where ˜Bi1,i2,...,id

∈ F0(R). Making use of Theorem 3.1, for given n ∈ N,

Zn(Bm(F ; x)) =
m

∑

i1,i2,...,id=0

Zn( ˜Bi1,i2,...,id
) · Qm; i1,i2,...,id

(x) ∈ Zn(F0(R)).

By means of Lemma 4, for each x ∈ Ω

D (Zn(Bm(F ; x)), Zn(F (x))) � D (Bm(F ; x), F (x)) < ε, (3)

In accordance with Lemma 3, suppose ℵ = { ˜Az
1,

˜Az
2, . . . ,

˜Az
k, . . .} is a countably dense subset of

Zn(F0(R)), then there exists corresponding polygonal fuzzy numbers {˜A′z
i1,i2,...,id

} ⊂ ℵ for a clus-

ter of polygonal fuzzy numbers Zn( ˜Bi1,i2,...,id
) such that D(˜A′z

i1,i2,...,id
, Zn( ˜Bi1,i2,...,id

)) < ε for any
i1, i2, . . . , id ∈ {0, 1, 2, . . . , m}.

Let Pm(x) =
∑m

i1,i2,...,id=0
˜A′z

i1,i2,...,id
·Qm; i1,i2,...,id

(x), for all x ∈ Ω, then Pm ∈ P (Ω). From Theorem
3.1(2), we can obtain Zn(Pm(x)) = Pm(x) ∈ Zn(F0(R)) ⊂ F0(R). According to Theorem 3.2(2) and
Note 5, we immediately derive

D(Pm(x), Zn(Bm(F ; x))) �
m

∑

i1,i2,...,id=0

Qm; i1,i2,...,id
(x) · D(˜A′z

i1,i2,...,id
, Zn( ˜Bi1,i2,...,id

))

= 1. D(˜A′z
i1,i2,...,id

, Zn( ˜Bi1,i2,...,id
)) < ε. (4)

Furthermore, by applying Theorem 4.3 and Lemma 5, and combining (3) and (4), we can infer

H(Pm, F ) � H(Pm, Bm(F )) ⊕ H(Bm(F ), F )

= K−1

( ∫

Ω

K(D (Pm(x), Zn(Bm(F ; x))))dμ

)
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⊕ K−1

( ∫

Ω

K(D (Zn(Bm(F ; x)), Zn(F (x))))dμ

)

� K−1

( ∫

Ω

K(ε)dμ

)

⊕ K−1

( ∫

Ω

K(ε)dμ

)

= K−1

(

2μ (Ω) · K(ε)
)

.

Evidently, for arbitrary ε > 0, expression K−1(2μ (Ω) · K(ε)) will still arbitrary small. Therefore,
for every continuous fuzzy-valued operator F in C(Ω) can be approximated by the operator Pm of a
fuzzy-valued Bernstein polynomial in P (Ω). This means that P (Ω) is dense in C(Ω).

Theorem 5.4. let (Rd,�, μ̂) be a space of K−quasi-additive fuzzy measure, Ω ⊂ R
d a bounded

measurable set, and K an induced operator. Then (L1(μ̂), H) is a completely-separable metric space.

Proof. That (L1(μ̂), H) constitutes a metric space has been demonstrated in the proof of Theorem
4.3. In addition, repeating the arguments for the completeness with respect to the integrable space in
functional analysis, we may prove the completeness of (L1(μ̂), H). Thus, we need only demonstrate the
separability of (L1(μ̂), H).

Applying Theorem 5.3, Theorem 5.2, and Theorem 5.1, we immediately know that P (Ω) is also dense
in L1(μ̂), that is to say that P (Ω) is a dense subset in L1(μ̂). Hence, (L1(μ̂), H) is a completely-separable
metric space.

6 Universal approximation of polygonal fuzzy neural networks

A polygonal fuzzy number is solely determined by a finite number of points on a straight line R, which
can be used to approximate to a class of bounded fuzzy numbers up to arbitrary accuracy. Thus, it not
only is a generalization of trigonometric fuzzy numbers or a ladder fuzzy numbers, but also can give an
approximation of general bounded fuzzy numbers. In simplifying the extension principle (Definition 3.2
and Theorem 3.1), polygonal fuzzy numbers both assure the closeness of their four arithmetic operations,
and maintain similar properties to ladder fuzzy numbers. At the same, the space of polygonal fuzzy
numbers and Euclidean space have analogous properties.

The polygonal fuzzy neural networks introduced in this paper are a class of network systems in which
connection weights as well as threshold values take values that are polygonal fuzzy numbers, and their
inner operations are based on the simplified extension principle. Indeed, the structure of the following
polygonal fuzzy neural networks can be described as an operational system combining both addition and
multiplication with respect to polygonal fuzzy numbers. In other words, polygonal fuzzy neural networks
finish fuzzy information processing by a finite number of points that determine the polygonal fuzzy
numbers. Consequently, for a polygonal fuzzy neural network, its approximately-expressible capability is
readily solved by means of the linear operational properties of polygonal fuzzy numbers. In this section,
we shall discuss the universal approximation of four-layer regular polygonal fuzzy neural networks with
respect to the class of μ̂-integrable bounded fuzzy-valued functions in the sense of K-integral norms.

For the rest of this paper, we will always let uikj , vkj , and w̃k be a connected weight between the i-th
input neuron and the j-th neuron in the first hidden layer, the j-th neuron in the first hidden layer and
the k-th neuron in the second hidden layer as well as the k-th neuron in the second hidden layer and
output neuron, respectively, where uikj , vkj ∈ R, and w̃k ∈ F0(R). Let the neurons in the input layer
and the second hidden layer as well as the output layer be linear, and the activation function σ in the
first hidden layer be a bounded continuous function on R, where uk(j) = (u1kj , u2kj , . . . , udkj) ∈ R

d. For
x = (x1, x2, . . . , xd) ∈ R

d, and given n ∈ N, then a four-layer regular polygonal fuzzy neural network is
denoted as

�0[σ] =
{

Gpq : R
d → Zn(F0(R)) | Gpq(x) =

q
∑

k=1

˜Wk ·
( p

∑

j=1

vkj · σ(〈uk(j), x〉 + θkj )
)

,

p, q ∈ N, ˜Wk ∈ Zn(F0(R)), vkj , θkj ∈ R, uk(j) ∈ R
d

}

.
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where θkj ∈ R is a threshold value for the j-th neuron in the first hidden layer. Let p and q be the
number of neurons in the first hidden layer and second layer, respectively.

Actually, every element in �0[σ], where σ : R → R
+ is a four-layer regular polygonal fuzzy neural

network consisting of two hidden layer. As an activation function of the first hidden layer, it is bounded
with limx→−∞ σ(x) = 0, limx→+∞ σ(x) = 1.

Definition 6.1 [6]. Let Λ = { F : R
d → F0(R) | F is a fuzzy valued function}, Γ ⊂ Λ, for arbitrary

ε > 0, for any F ∈ Γ and a compact set U ⊂ R
d, if there exists p, q ∈ N, connection weight ˜Wk ∈

F0(R), vkj ∈ R, uk(j) ∈ R
d and threshold value θkj ∈ R for i = 1, 2, . . . , d; j = 1, 2, . . . , p; k = 1, 2, . . . , q

such that D (Zn(F (x)), Gpq(x)) < ε for all x = (x1, x2, . . . , xd) ∈ U , then we say that the four-layer
regular polygonal fuzzy neural network �0[σ] possesses a universal approximation to Γ , or it is called a
universal approximator of Γ .

Definition 6.2 [6]. Let σ : R → R
+ be an activation function and f : R

d → R be continu-
ous function, for arbitrary ε > 0 and for each compact set U ⊂ R

d, if there exists m hidden neu-
rons, connection weight vj ∈ R, Wj = (w1j , w2j , . . . , wdj) ∈ R

d, and threshold value θj ∈ R such that
| ∑m

j=1 vj · σ(〈Wj , x〉 + θj) − f(x) |< ε for all x = (x1, x2, . . . , xd) ∈ U , then σ is called a Tauber-Wiener
function.

Theorem 6.1. Let (Rd,�, μ̂) be a finite space of k-quasi-additive measure, σ a Tauber-Wiener func-
tion, K an induced operator, for given n ∈ N, then �0[σ] possesses a universal approximation for Sn(Ω)
with respect to K-integral norm H .

Proof. For arbitrary ε > 0 and S ∈ Sn(Ω) with Ω ⊂ R
d a compact set, we need only prove that there

exists Gmλ ∈ �0[σ] such that H(Gmλ, S) < ε.
Practically, from Definition 5.1, choose any fuzzy valued simple function S ∈ Sn(Ω) for given n ∈ N,

let S(x) =
∑m

i=1
˜Ai · χEi(x) for all x = (x1, x2, . . . , xd) ∈ Ω, where ˜A1, ˜A2, . . . , ˜Am ∈ F0(R) and with

⋃m
i=1 Ei = Ω, Ei ∩ Ej = ∅ (i 
= j). Without loss of generality, we can assume that from the norms

‖ Zn( ˜A1) ‖, ‖ Zn( ˜A2) ‖, . . . , ‖ Zn( ˜Am) ‖, at least exist one ‖ Zn( ˜Ai) ‖ satisfies ‖ Zn( ˜Ai) ‖
= 0 where
1 � i � m.

Since each characteristic function χEi(x) is a nonnegative measurable on Ω, i ∈ {1, 2, . . . , m}, then, in
light of the Lusin theorem, for arbitrary ε > 0, it follows that there exists a closed subset Δi ⊂ Ω such
that χEi(x) is continuous on Δi with μ(Ω − Δi) < ε

m , where μ(·) = K(μ̂(·)), μ is a Lebesgue measure,
every χEi(x) takes value 1 or 0 on Δi.

Moreover, as Ω ⊂ R
d is a compact set iff Ω is a bounded closed set, each Δi(i = 1, 2, . . . , m) is a compact

set, and μ (Ω) < +∞. Because σ is a Tauber-Wiener function, for every continuous function χEi(x)(it
always is 1 or 0) on Δi, by Definition 6.2, for arbitrary ε > 0, we know that there exists quantity λi ∈ N

of the neurons in the hidden layer, connected weights u′
i(1), u′

i(2), . . . , u′
i(λi) ∈ R

d, v′i1, v
′
i2, . . . , v

′
iλi

∈ R,
and threshold values θ′i1, θ

′
i2, . . . , θ

′
iλi

∈ R such that

∣

∣

∣

∣

λi
∑

j=1

v′ij · σ(〈u′
i(j), x〉 + θ′ij ) − χEi(x)

∣

∣

∣

∣

<
ε

m
, (5)

for arbitrary x = (x1, x2, . . . , xd) ∈ Δi, i = 1, 2, . . . , m. Now, for all x ∈ Ω, we let

G′(x) =
m

∑

i=1

Zn( ˜Ai) ·
( λi

∑

j=1

v′ij · σ(< u′
i(j), x > +θ′ij )

)

,

and write max1�i�m ‖ Zn( ˜Ai) ‖= a, where a is regarded as a given constant. In accordance with Theorem
3.2 and (5), it is straightforward to see that

D(G′(x), Zn(S(x))) �
m

∑

i=1

‖ Zn( ˜Ai) ‖ · |
λi
∑

j=1

v′ij · σ(< u′
i(j), x > +θ′ij ) − χEi(x) |< ma · ε

m
= aε.
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Therefore, we obtain
∫

Ω
K(D(G′(x), Zn(S(x))))dμ �

∫

Ω
K(aε)dμ = μ (Ω) · K(aε) < +∞. This

means that function K(D(G′(x), Zn(S(x)))) is Lebesgue integrable on Ω. Putting Δ =
⋂m

i=1 Δi, then
Δ ⊂ Δi ⊂ Ω, and Δ is still a compact set. Applying the sub-countable additivity of the Lebesgue
measure μ, we immediately can infer μ(Ω − Δ) = μ (

⋃m
i=1(Ω − Δi)) �

∑m
i=1 μ(Ω − Δi) �

∑m
i=1

ε
m = ε.

Obviously, Δ 
= ∅, as if not then this would imply μ(Ω) < ε from the above formula contradicting
the fact that μ(Ω) is finite. Taking advantage of the absolute continuity of the Lebesgue integral, for
arbitrary ε > 0, select δ = ε > 0, whenever μ (Ω − Δ) < ε, it is not hard to see that

∫

Ω−Δ

K(D (G′(x), Zn(S(x))))dμ < ε. (6)

Next, we shall construct the transformation of a system. Assume λ =
∑m

i=1 λi, βi =
∑i−1

k=1 λk, and
take β1 = 0, i = 2, 3, . . . , m. Let

vij =

{

v′i(j−βi)
, βi < j � βi+1,

0, otherwise,
θij =

{

θ′i(j−βi)
, βi < j � βi+1,

0, otherwise,

ui(j) =

{

ui(j − βi), βi < j � βi+1,

0, otherwise.

Then for m, λ ∈ N, and for arbitrary x ∈ Δ =
⋂m

i=1 Δi ⊂ Δi, according to the transformation of above
system, the following formula holds

λ
∑

j=1

vij · σ(〈ui(j), x〉 + θij ) =
λi
∑

j=1

v′ij · σ(〈u′
i(j), x〉 + θ′ij). (7)

Let Gmλ(x) =
∑m

i=1 Zn( ˜Ai) ·
∑λ

j=1 vij · σ(< ui(j), x > +θij) for arbitrary x = (x1, x2, . . . , xd) ∈ Ω,
then we can infer that Gmλ ∈ �0[σ] with Zn(Gmλ(x)) = Gmλ(x). Of course, by the absolute continuity
of the Lebesgue integral, we have

∫

Ω−Δ
K(D (Gmλ(x), Zn(S(x))))dμ < ε.

Making use of Theorem 3.2(2), for arbitrary x = (x1, x2, . . . , xd) ∈ Δ =
⋂m

i=1 Δi, it follows that

D (Gmλ(x), Zn(S(x))) �
m

∑

i=1

‖ Zn( ˜Ai) ‖ ·
∣

∣

∣

∣

λ
∑

j=1

vij · σ(< ui(j), x > + θij ) − χEi(x)
∣

∣

∣

∣

=
m

∑

i=1

‖ Zn( ˜Ai) ‖ ·
∣

∣

∣

∣

λi
∑

j=1

v′ij · σ(< u′
i(j), x > + θ′ij ) − χEi(x)

∣

∣

∣

∣

� ma · ε

m
= aε.

By Lemma 5 and eq. (6), and combining the monotonicity of K−1, we derive

H(Gmλ, S) = K−1

(
∫

Δ∪(Ω−Δ)

K(D (Zn(Gmλ(x)), Zn(S(x))))dμ

)

= K−1

( ∫

Δ

K(D (Zn(Gmλ(x)), Zn(S(x))))dμ +
∫

Ω−Δ

K(D (Zn(Gmλ(x)), Zn(S(x))))dμ

)

� K−1

( ∫

Δ

K(aε)dμ + ε

)

= K−1(K(aε) · μ (Δ) + ε).

In fact, for any ∀ε > 0, as K is strictly increasing, hence μ(Δ) � μ(Ω) < +∞. Consequently, the
expression K(aε) · μ(Δ) + ε is an infinitesimal quantity. Furthermore, since K−1 is strictly increasing,
which implies that the expression K−1(K(aε) · μ(Δ) + ε) remains arbitrary small. Synthesizing the
above discussion, we argue that the four-layer regular fuzzy neural network �0[σ] possesses a universal
approximation for the class of fuzzy-valued simple functions with respect to the K-integral norm H .
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Theorem 6.2. Let (Rd,�, μ̂) be a finite space of K-quasi-additive measure, σ a Tauber-Wiener func-
tion, and K an induced operator, for given n ∈ N and arbitrary F ∈ L1(μ̂), then �0[σ] can approximate
F to arbitrary accuracy with respect to K-integral norm H .

Proof. In accordance with Theorem 5.1, we know that a fuzzy-valued simple function can approximate
F to arbitrary accuracy with respect to K-integral norm. This means that there exists S0 ∈ Sn(Ω) for
any ε > 0 and F ∈ L1(μ̂), such that H(S0, F ) < ε.

Using Theorem 6.1, the polygonal fuzzy neural network �0[σ] possesses a universal approximation with
respect to Sn(Ω), i.e., for the above-given S0 ∈ Sn(Ω), there exists a polygonal fuzzy-valued function
Gmλ ∈ �0[σ] such that H(Gmλ, S0) < ε.

Applying Theorem 5.4 and using the three-point inequality for the integral norm H , it is straightforward
to see that

H(Gmλ, F ) � H(Gmλ, S0) ⊕ H(S0, F ) < ε ⊕ ε = K−1(2K(ε)).

Actually, for all ε > 0, as K−1 and K are strictly increasing, we argue that the expression K−1(2K(ε))
remains arbitrary small. Therefore, for every F ∈ L1(μ̂), the polygonal fuzzy neural network �0[σ] can
approximate F to arbitrary accuracy with respect to K-integral norm H .

7 Conclusions

It is well known that operations between general fuzzy numbers are not simply linear, but depends on
Zadeh’s complex extension principle. Thus, studies of the applications of fuzzy numbers are very difficult,
even operations for the most simplest trigonometric or ladder fuzzy numbers do not possess closeness.
The big question is: how can one realize these nonlinear operations between fuzzy numbers? Solving this
problem has important significance in constructing a suitable fuzzy neural network that approximates
a given nonlinear function, and in studying learning algorithm, fuzzy inference, and fuzzy information
processing. In this context, The polygonal fuzzy number was presented in [7]. It overcomes the above
shortcomings by simplifying the extension principle, and consequently, such numbers were able to replace
traditional ones.

Moreover, a polygonal fuzzy neural network has the following merits: 1) it extends the scope over
which fuzzy valued functions had been approximated in the past, that is to say, extends it to μ̂-integrable
bounded fuzzy-valued functions; 2) it is similar to handling trigonometric fuzzy number information, and
their learning algorithms can be easily designed; 3) compared with traditional fuzzy neural networks, its
input-output capability is more stronger; and 4) its approximation capability has been improved. In fact,
the K-quasi-additive integral is a generalization of a traditional the Lebesgue integral. In addition, a
polygonal fuzzy neural network is far superior to traditional neural networks, through use of this kind of
integral to define the K-integral norm and the approximation afforded by adopting polygonal fuzzy neural
networks. All of these aspects undoubtedly generalize [11, 12]. Consequently, we shall be continuing and
developing Liu Puyin’s work [6–10]. Systems involving the class of integrable functions are pervasive in
research work, therefore, continued study of the approximation capability of fuzzy neural networks to
various fuzzy integrable functions will have important significance in theory as well as applications.
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