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Abstract This paper is devoted to the global practical tracking by output-feedback for a class of uncertain

nonlinear systems with only the tracking error measurable. Different from the closely related works, the systems

have unmeasured states dependent growth with unknown constant rate, and the reference signal, as well as

its first order derivative, has unknown bound. Mainly because of these, the tracking problem can hardly be

solved by straightforwardly extending the existing results. In the paper, motivated by the related stabilization

results, and flexibly using the ideas of universal control and dead zone, an adaptive output-feedback controller is

designed to make the tracking error prescribed arbitrarily small after a finite time while keeping all the states of

the closed-loop system bounded. A numerical example demonstrates the effectiveness of the theoretical results.
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1 Introduction

Output tracking control is an important subject in control theory and has been extensively investigated
over the last decades [1–16]. Specifically, three types of output tracking are mostly encountered: asymp-
totic output tracking (see e.g. [1–3]), practical output tracking (or λ-tracking) (see e.g. [5, 8, 10–13]), and
output tracking with prescribed transient behavior (see e.g. [14–16]). The first type generally requires the
more restrictions on the systems and the reference signal, such as good models, to establish the desired
asymptotic behavior of the tracking error. This would make many familiar systems inapplicable since the
unmodeled dynamics and uncertainties inevitably exist in the practical control plants. As the degener-
ated cases, the second and third types are devoted to the specified sufficiently small range achieved for
the tracking error, which is adequate for many practical applications. Besides, the latter two types need
less conditions than the first type and, particularly, allowing the existence of many kinds of uncertainties
and unknowns. Mainly because of these, the latter two types have attracted many attentions during the
past three decades and is still an active area of research.
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Up to now, many classes of nonlinear systems have been considered to achieve the practical output
tracking [4–9,11–13]. As the recent development, when all the states available for feedback, a series of
research results have been obtained (see e.g. [6–9]), and in particular, [6] is devoted to a more general
class of strict-feedback uncertain systems, and [7–9] are concerned with high-order uncertain nonlinear
systems. When only partial states or output available for feedback, some representative results have
been obtained in [11–13]. Specifically, [11] addressed adaptive λ-tracking of nonlinear systems with
unknown control coefficient and the growth of polynomial-of-output multiplying an unknown constant,
and proposed the backstepping design procedure. Different from [11], [12] further studied the systems
with the dominating nonlinearities linearly composed of unmeasurable states with a factor of bounded
function and presented a much simpler controller than [11]. Ref. [13], with less information on the
reference signal than that in [11, 12], addressed the practical tracking for nonlinear systems with higher-
order unmeasurable states dependent growth. It is worth mentioning that both in [11, 12], a dead zone is
employed in the updating law to effectively restrain the bursting phenomenon, and moreover to directly
establish the desired tracking objective.

This paper is devoted to the global practical tracking for a class of nonlinear systems which have
unmeasured states dependent growth with unknown constant rate, and for the reference signal whose
derivative and itself have bounds but unknown. To the best of authors’ knowledge, the problem has
remained open up to now and cannot be straightforwardly solved by the existing methods. This paper
requires less information on the reference signal than [11–13]. In fact, in [11, 12], the reference signal
is precisely known, and in [13], the bounds of the reference signal and its derivative are required to be
known. In addition, the nonlinearities of the systems under investigation are more general than the
dominating ones of [12], since the lower-order growing unmeasurable states are permitted in the former,
whereas they are excluded in the latter, and also different from [11, 13] for in [11], only output dependent
growth is admitted, and in [13], the growth rate is a known constant. Although with similar but somewhat
stronger constraints for the systems, the asymptotic stabilization problem has been studied in [17, 18], our
adequate investigations suggest that the tracking problem is extremely different from the stabilization one
and is more difficult to solve. Mainly motivated by [12, 13, 18], by combining the idea of universal control
with dynamic high-gain observer, the aforementioned practical tracking problem has been successfully
solved.

The main contributions of the paper are composed of two parts. First, a dynamic-high-gain observer
is introduced to reconstruct the system states. The novel updating law of high-gain, which is obtained
by using the idea of dead zone, can effectively deal with the uncertainties in the system nonlinearities
and reference signal. Based on the dynamic high-gain and the observer, an adaptive output-feedback
controller is explicitly designed to make the tracking error prescribed arbitrarily small after a finite time
while keeping all the states of the resulting closed-loop system bounded. The proposed output-feedback
controller is simple in structure and can easily be implemented in practice. Second, different from
the common patterns in the performance analysis, a new one is proposed to successfully overcome the
significant technical difficulties caused by the novel updating law for the high-gain. This pattern also offers
a deeper understanding on the theoretical results and is no doubt helpful to tackling practical tracking
problems of more general nonlinear systems. The remainder of the paper is organized as follows. Section
2 presents the system model and the control objective. Section 3 develops the corresponding globally
practical tracking control design scheme and summarizes the main results. In section 4, a numerical
example is provided to illustrate the correctness of the theoretical results. Some concluding remarks are
given in section 5. The paper ends with an appendix which is an important and necessary part since it
collects detailed proofs of a crucial lemma and two fundamental propositions.

Notations. The following notations will be used throughout this paper. R denotes the set of all real
numbers. R

+ denotes the set of all nonnegative real numbers. R
n denotes the real n-dimensional space.

For a given vector or matrix X , XT denotes its transpose; for any x ∈ R
n, ‖x‖1 denotes the 1-norm, i.e.,

‖x‖1 = |x1| + · · · + |xn|; ‖x‖ denotes the Euclidean (or 2-) norm of vector x, and for the matrix P , we
use ‖P‖ to denote its norm induced by the 2-norm of the corresponding vector; for any x ∈ R

n, there
always holds ‖x‖1 � √

n‖x‖.
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2 System model and control objective

2.1 System model

Consider the tracking control problem for a class of uncertain nonlinear systems in the following form:
⎧
⎪⎪⎨

⎪⎪⎩

η̇i = ηi+1 + ψi(t, η), i = 1, . . . , n− 1,

η̇n = u+ ψn(t, η),

y = η1 − yr,

(1)

where η = [η1, . . . , ηn]T ∈ R
n is the system state vector with the initial value η0 = η(0); u ∈ R, y ∈ R and

t �→ yr(t), t ∈ R
+ are the control input, system output (tracking error) and reference signal, respectively;

and ψi : R
+ × R

n → R, i = 1, . . . , n are unknown functions but continuous in the first argument and
locally Lipschitz in the second one. In what follows, suppose only the system output is measurable.

To obtain the desired objective of the paper, the following assumptions are imposed on the system (1)
and the reference signal yr.

Assumption 1. There exists an unknown positive constant θ such that ∀t ∈ R
+, ∀η ∈ R

n,

|ψi(t, η)| � θ(|η1| + · · · + |ηi|) + θ, i = 1, . . . , n.

Assumption 2. The reference signal yr is continuously differentiable, and moreover, there is an
unknown constant M � 0 such that supt�0(|yr(t)| + |ẏr(t)|) � M.

Remark 1. From Assumptions 1 and 2, it is not hard to know that system (1) is substantially different
from those in [11–13]. Unlike [11], the nonlinearities of system (1) heavily depend on the unmeasurable
states (implied by Assumption 1), and the reference signal is not available for feedback. Different from
[12], in the paper, the relative degree of system (1) is not necessarily known a priori, only tracking error
(i.e., system output) is measurable (the rationality has been discussed in [13]) and only reference signal
and its derivative have bounds but unknown (implied by Assumption 2), and moreover, by Assumption
1, the lower-order growing unmeasurable states are permitted in system (1). Although [13] considered
the nonlinear systems with higher-order growing unmeasurable states, the growth rate is known to be
constant, so are the bounds of the reference signal and its derivative.

2.2 Control objective

Rigorously speaking, the objective of this paper is to search for an adaptive output-feedback controller
for system (1) under Assumptions 1 and 2 as follows:

χ̇ = αλ(χ, y), u = βλ(χ, y), (2)

which guarantees that (i) the solutions of the resulting closed-loop system are well defined and globally
bounded on [0,+∞), (ii) for any initial condition, there is a finite time Tλ > 0 such that supt�Tλ

|y(t)| =
supt�Tλ

|η1(t)− yr(t)| � λ, where χ is the state vector of observer and updating law with the appropriate
dimension and the initial value χ0 = χ(0). λ is an arbitrary prescribed positive constant to represent
the tracking accuracy; functions αλ(·) and βλ(·) are vector-valued continuous and scalar continuously
differentiable, respectively.

The control just formulated is called global practical tracking control with accuracy λ [7 − 9, 13], and
sometimes it is also referred to as λ-tracking control [4, 5, 10 − 12].

3 Global practical tracking control via output-feedback

The section is to design a tracking controller for system (1) under Assumptions 1 and 2. As described
in section 2, we will explicitly design an adaptive output-feedback controller, which is composed of a
full-order dynamic high-gain observer and an adaptive controller.

We first introduce the coordinates x1 = y, xi = ηi, i = 2, . . . , n. Then
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⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2 + φ1(t, x, yr, ẏr),

ẋi = xi+1 + φi(t, x, yr), i = 2, . . . , n− 1,

ẋn = u+ φn(t, x, yr),

(3)

where φ1 = ψ1(t, x1 + yr, x2, . . . , xn) − ẏr, φi = ψi(t, x1 + yr, x2, . . . , xn), i = 2, . . . , n.
By Assumptions 1 and 2, it is easy to show that, for i = 1, . . . , n,

|φi| � θ(|x1 + yr| + |x2| + · · · + |xi|) + |ẏr| + θ � θ(|x1| + |x2| + · · · + |xi|) + θ1, (4)

where θ1 = θ(M + 1) +M > 0 is an unknown constant.
Then, we select suitable design parameters ai > 0, ki > 0, i = 1, . . . , n, such that the matrices A and

B are Hurwitz, and there exist P = PT > 0 and Q = QT > 0 satisfying
{
ATP + PA � −I and DP + PD � 0,

BTQ+QB � −2I and DQ+QD � 0,
(5)

where D = diag{1, 2, . . . , n},

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−a1 1 · · · 0
...

...
. . .

...

−an−1 0 · · · 1

−an 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
n×n, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

−k1 −k2 · · · −kn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
n×n.

In view of Lemma 1 in [19], one easily knows that the above mentioned choice of design parameters can
always be achieved.

Thus, for any pre-given λ > 0, we construct the following adaptive output-feedback controller for
system (3):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̂xi = x̂i+1 + Liai(y − x̂1), i = 1, . . . , n− 1,
˙̂xn = u+ Lnan(y − x̂1),

L̇ = max
{

2(y − x̂1)2 + 2x̂2
1 − λ2

2

L2
, 0

}

, L(0) = 1,

(6)

and
u = −(Lnk1x̂1 + Ln−1k2x̂2 + · · · + Lknx̂n), (7)

where x̂ = [x̂1, . . . , x̂n]T is the observer state vector with the initial value x̂0 = x̂(0).

Remark 2. From (6) or Proposition 1 below, one can easily seen L � 1. Therefore, the above designed
controller consists of a full-order high-gain observer, a novel gain updating law and an adaptive high-
gain controller, and obviously is covered by the general form (2). It should be pointed out that the
novel updating law of the high-gain is introduced to effectively deal with the uncertainties in the system
nonlinearities and reference signal, and highlights the main contribution in the paper. Although the
expression of the gain updating law is somewhat complicated, it is essential to establish the boundedness
of all the signals in the closed-loop system (composed by (1), (6) and (7)) and achieve the global practical
tracking, as will be shown in the proof of Theorem 1.

The following proposition describes the basic properties of the dynamic high-gain L given above.

Proposition 1. The gain L determined by (6) is monotone nondecreasing on its existence interval,
and its dynamics are locally Lipschitz in (y, x̂1, L).

Proof. Observe that by (6), L̇ � 0 and therefore L is monotone nondecreasing and for any time t in
its existence interval, L(t) � L(0) = 1. As a result, (2(y − x̂1)2 + 2x̂2

1 − λ2

2 )/L2 is smooth with respect
to (y, x̂1, L). Then, it can be proven that L̇ is locally Lipschitz in (y, x̂1, L). In fact, for any two points
(y′, x̂′1, L

′) and (y′′, x̂′′1 , L
′′) in certain neighborhood, one easily gets
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|L̇′ − L̇′′| �
∣
∣
∣
∣
2(y′ − x̂′1)

2 + 2(x̂′1)
2 − λ2

2

(L′)2
− 2(y′′ − x̂′′1)2 + 2(x̂′′1 )2 − λ2

2

(L′′)2

∣
∣
∣
∣

� N(|y′ − y′′| + |x̂′1 − x̂′′1 | + |L′ − L′′|),
where N is a proper positive constant related with the neighborhood.

By Proposition 1, it is easy to verify that the right-hand side of the resulting closed-loop system is
continuous and locally Lipschitz in (η, x̂, L) in an open neighborhood of the initial condition, and hence
the closed-loop system has a unique solution on a small interval [0, ts) (see Theorem 3.1, page 18 of [20]).
Let [0, tf ) be its maximal interval on which a unique solution exists, where 0 < tf � +∞ (see Theorem
2.1, page 17 of [20]). If one can prove tf = +∞, then all the closed-loop system states are well defined
on [0, +∞).

Before addressing the main results of the paper, we first present two fundamental propositions (whose
detailed proofs are given in Appendix A). Specifically, Proposition 2 characterizes the dynamic behavior
of the closed-loop system via a Lyapunov candidate function. It is worth emphasizing that the degree of
L is required to be −2 in the second term on the right-hand side of (8). This point is very important
for guaranteeing the boundedness of L, as will be shown in the proof of Lemma 1 (see in Appendix A3).
Proposition 3 reveals the intrinsic relationship between the high-gain L and the other variables and shows
that it suffices to prove the boundedness of L for that of the closed-loop system.

Proposition 2. Define ei = xi − x̂i, εi = ei

Li , zi = x̂i

Li , i = 1, . . . , n, and denote ε = [ε1, . . . , εn]T, z =
[z1, . . . , zn]T. Then, there exist positive constants γ and Θ, such that V (ε, z) = γV1(ε) + V2(z) :=
γεTPε+ zTQz satisfies the following inequality on [0, tf ):

V̇ � −(L− Θ)(‖ε‖2 + ‖z‖2) +
Θ
L2
, (8)

where P and Q are symmetric positive definite matrices satisfying (5).

Proposition 3. For the resulting closed-loop system, if L is bounded on [0, tf ), then z and ε are
bounded on [0, tf ) as well.

Now, we are ready to address the main results in this paper, which are summarized in the following
theorem.

Theorem 1. Consider system (1) under Assumptions 1 and 2. If the design parameters ai, ki, i =
1, . . . , n are suitably chosen such that Proposition 2 holds, then based on the dynamic high-gain observer
(6), the output-feedback controller (7) guarantees that, for any initial condition, all the states of the
resulting closed-loop system are well defined and bounded on [0, +∞), and furthermore, the global
practical tracking (with tolerance λ) can be achieved, i.e., for any given λ > 0, there exists a finite time
Tλ such that |y(t)| � λ, ∀t � Tλ.

Proof. To successfully prove the boundedness of the closed-loop solutions, it is necessary to first show
that tf = +∞, and thus the solution of the closed-loop system exists and is unique on [0, +∞). Then, by
a contradiction argument, we prove the boundedness of L. From this and Proposition 3, we conclude the
boundedness of the solution of the closed-loop system. In fact, the first claim of the theorem is directly
obtained from the following lemma whose proof is provided in Appendix A for the sake of compactness.

Lemma 1. For the closed-loop system given in Theorem 1 with the proper design parameters, tf = +∞
and all the states are bounded on [0, +∞).

Next, let us show the second claim in Theorem 1, i.e., for any given λ > 0, there exists a finite time
Tλ, such that |y(t)| � λ, ∀t � Tλ. It is easy to see that L is continuously differentiable and limt→+∞ L(t)
exists by virtue of the boundedness and the nondecreasing property of L on [0, +∞). Using (3), (6) and
the boundedness of y, x̂1, L on [0,+∞), we conclude that ẏ (i.e., ẋ1), ˙̂x1 and L̇ are bounded on [0,+∞),
and hence (2(y − x̂1)2 + 2x̂2

1 − λ2

2 )/L2 in L̇ has a bounded derivative on [0,+∞). Denoting by N1 this
upper bound, one can prove that L̇ is uniformly continuous on [0,+∞). In fact, ∀ε > 0, taking δ = ε

2N1
,

for any t1, t2 ∈ [0,+∞), if only |t1 − t2| < δ, then
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|L̇(t1) − L̇(t2)| �
∣
∣
∣
∣
2(y(t1) − x̂1(t1))2 + 2x̂2

1(t1) − λ2

2

L2(t1)
− 2(y(t2) − x̂1(t2))2 + 2x̂2

1(t2) − λ2

2

L2(t2)

∣
∣
∣
∣

� N1|t1 − t2| < ε.

Thus, by Barbălat’s Lemma1), we have limt→+∞ L̇(t) = 0. That is, for any initial condition (η(0), x̂(0)),
there exists a finite time Tλ > 0 such that for all t > Tλ, (2(y(t)− x̂1(t))2 + 2x̂2

1(t)− λ2

2 )/L2(t) � L̇(t) �
λ2

2L2(t) holds, which implies |y(t)| = |η1(t) − yr(t)| � λ, ∀t > Tλ. The proof of the theorem is complete.

4 A numerical example

In this section, we give a numerical example to illustrate the correctness and effectiveness of the theoretical
results by considering the following second-order nonlinear system:

⎧
⎪⎪⎨

⎪⎪⎩

η̇1 = η2,

η̇2 = u− θsign(η2)
(
1 + |η2|

)
,

y = η1 − yr,

where sign(·) denotes the signal function, that is sign(η2) = 1(= −1) when η2 > 0 (< 0) and sign(η2) = 0
when η2 = 0; yr is the signal to be tracked. Suppose θ = 0.5, yr = sin(t).

Then a direct application of our proposed method yields an adaptive output-feedback controller as
follows: ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

˙̂x1 = x̂2 + La1(y − x̂1),
˙̂x2 = u+ L2a2(y − x̂1),

L̇ = max
{

2(y − x̂1)2 + 2x̂2
1 − λ2

2

L2
, 0

}

with L(0) = 1,

and u = −(L2k1x̂1 + Lk2x̂2), where a1 = 1, a2 = 10, k1 = 12, k2 = 1. For the chosen a1, a2 and k1, k2,
by solving the matrix inequalities (5), we have

P =

[
5.5000 −0.5000

−0.5000 0.6000

]

, Q =

[
13.0833 0.0833

0.0833 1.0833

]

,

and therefore, in virtue of the proof of Proposition 2 in Appendix A1, one can easily obtain suitable posi-
tive constants γ and Θ. This shows that the chosen a1, a2 and k1, k2 are appropriate design parameters.

Let the tracking accuracy be λ = 0.1, and initial conditions be η1(0) = 0.5, η2(0) = 1, x̂1(0) =
2, x̂2(0) = −3, we obtain the following Figures 1–5 by numerical simulation. From these figures, all the
signals in the closed-loop system are bounded. From Figure 1, it can be see after about seven seconds,
the tracking error satisfies |y| = |η1 − yr| � 0.1, which means that the prescribed tracking performance
is achieved.

5 Concluding remarks

In this paper, the global practical tracking problem has been investigated for a class of uncertain nonlinear
systems under weaker conditions. By flexibly using the the idea of dead zone and the techniques in
universal control theory, an adaptive output-feedback controller has been successfully constructed to
achieve the prescribed tracking performance. It is worth pointing out that in order to solve the global

1) Barbălat’s Lemma: Suppose that ω : [0, +∞) → R is a continuously differentiable function, and limt→+∞ ω(t) exists

and is finite. If ω̇(t), t ∈ [0, +∞) is uniformly continuous, then limt→+∞ ω̇(t) = 0. For more basic and alterative forms of

Barbălat’s Lemma, we refer the reader to [21]
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Figure 1 The trajectory of tracking error y. Figure 2 The trajectories of system states η1 and η2.

Figure 3 The trajectories of observer states x̂1 and x̂2. Figure 4 The trajectory of control input u.

Figure 5 The trajectory of high-gain L.

practical tracking control problem of this paper, we introduce the novel updating law of the high-gain
and propose the new pattern of performance analysis process. Based on the main ideas and results of the
paper, the future work will be devoted to the practical tracking of other classes of uncertain nonlinear
systems, such as the nonlinear systems with unknown control coefficients.
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Appendix A

The appendix provides the rigorous proofs of fundamental Propositions 2 and 3 and crucial Lemma 1, which are

collected here for the sake of compactness.

A1 The proof of Proposition 2

Keeping in mind the definitions of ei’s, εi’s and zi’s, and in terms of (3) and (6), we have the following dynamics

⎧
⎪⎨

⎪⎩

ė1 = e2 − La1e1 + φ1(t, x, yr, ẏr),

ėi = ei+1 − Liaie1 + φi(t, x, yr), i = 2, . . . , n − 1,

ėn = −Lnane1 + φn(t, x, yr),

(A1)
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and {
ε̇ = LAε + Φ(t, x, yr, ẏr, L) − L̇

L
Dε,

ż = LBz + Laε1 − L̇
L

Dz,
(A2)

where x = [x1, . . . , xn]T, Φ = [ 1
L

φ1(t, x, yr, ẏr),
1

L2 φ2(t, x, yr), . . . ,
1

Ln φn(t, x, yr)]
T; a = [a1, . . . , an]T; and

A, B, D have been defined in (5).

For system (A2), choose the Lyapunov function V : R
n × R

n → R
+

V (ε, z) = γV1(ε) + V2(z), (A3)

where γ = ‖Qa‖2 + 1 and Vi : R
n → R

+, i = 1, 2 defined by V1(ε) = εTPε, V2(z) = zTQz.

Then, on the interval [0, tf ), the derivative of V along the solutions of (A2) and using matrix inequality (5)

satisfies

V̇ � −Lγ‖ε‖2 − γ
L̇

L
εT(DP + PD)ε − 2L‖z‖2 − L̇

L
zT(DQ + QD)z + 2γεTPΦ + 2Lε1z

TQa.

With the help of relationship (5) and the fact that L̇ � 0, L � 1 on [0, tf ), it is easy to obtain that

V̇ � −Lγ‖ε‖2 − 2L‖z‖2 + 2γεTPΦ + 2Lε1z
TQa. (A4)

For the last term of the above inequality, by the method of completing square, one has 2Lε1z
TQa � L‖z‖2 +

L‖Qa‖2‖ε‖2.

In addition, observe that

∣
∣
∣
∣
φi

Li

∣
∣
∣
∣ � θ

Li
(|x̂1| + · · · + |x̂i| + |e1| + · · · + |ei|) +

θ1

Li
� θ

√
n(‖z‖ + ‖ε‖) +

θ1

Li
.

Then, for the third term on the right-hand side of (A4), one has

|2γεTPΦ| � 4θγn‖P‖‖ε‖ · (‖z‖ + ‖ε‖) + 4γ
√

n‖P‖‖ε‖ · θ1

L

� 6θγn‖P‖(‖ε‖2 + ‖z‖2) +
4θ2

1γ‖P‖
θL2

.

Thus, from (A4), it follows that on [0, tf ),

V̇ � −(L − 6θγn‖P‖)(‖ε‖2 + ‖z‖2) +
4θ2

1γ‖P‖
θL2

. (A5)

Let Θ = max{6θγn‖P‖, 4θ2
1γ‖P‖

θ
}. Then (A5) becomes (8), and this completes the proof of Proposition 2.

A2 The proof of Proposition 3

Note that L(tf ) = sup0�t<tf
L(t) since L is monotone nondecreasing, continuous, and bounded on [0, tf ). Let’s

first show that z is bounded on [0, tf ). Consider the function V2(z) = zT Qz for the z-dynamic system of (A2).

By a simple calculation, on the interval [0, tf ), one has

V̇2 � − L‖z‖2 + ‖Qa‖2Lε2
1

� − ‖z‖2 + ‖Qa‖2L

(

2ε2
1 + 2z2

1 − λ2

2L2

)

+ ‖Qa‖2λ2

� − μV2 + ‖Qa‖2L(tf )L̇ + ‖Qa‖2λ2, (A6)

where μ = 1
λmax(Q)

. From (A6), it follows that

d

dt
(eμtV2(z(t))) � ‖Qa‖2L(tf )eμtL̇(t) + ‖Qa‖2λ2eμt, ∀t ∈ [0, tf ).

Integrating both sides of the above inequality yields

eμtV2(z(t)) � V2(z(0)) + ‖Qa‖2L(tf )

∫ t

0

eμtdL(t) + ‖Qa‖2λ2

∫ t

0

eμtdt

� V2(z(0)) + ‖Qa‖2L2(tf )eμt + ‖Qa‖2λ2λmax(Q)eμt, ∀t ∈ [0, tf ),



2088 Yan X H, et al. Sci China Inf Sci October 2011 Vol. 54 No. 10

from which it follows that ∀t ∈ [0, tf ),

‖z(t)‖2 � 1

λmin(Q)
(zT(0)Qz(0) + ‖Qa‖2L2(tf ) + ‖Qa‖2λ2λmax(Q)).

This indicates that z is bounded on [0, tf ).

We next turn to prove the boundedness of ε on [0, tf ). For this purpose, we introduce the following change of

coordinates: ξi = ei
(L∗)i , i = 1, . . . , n, where L∗ is a constant satisfying

L∗ � max{L(tf ), 6θn‖P‖ + 3}. (A7)

Then, under the new change of coordinates, the error dynamics (A1) is transformed into

ξ̇1 = L∗ξ2 − L∗a1ξ1 + L∗a1ξ1 − La1ξ1 +
φ1(t, x, yr, ẏr)

L∗ ,

ξ̇i = L∗ξi+1 − L∗aiξ1 + L∗aiξ1 − L

(
L

L∗

)i−1

aiξ1 +
φi(t, x, yr)

(L∗)i
, i = 2, . . . , n − 1,

ξ̇n = − L∗anξ1 + L∗anξ1 − L

(
L

L∗

)n−1

anξ1 +
φn(t, x, yr)

(L∗)n
,

which can also be rewritten in the following compact form

ξ̇ = L∗Aξ + L∗aξ1 − LΓaξ1 + Φ∗(t, x, yr, ẏr), (A8)

where Γ = diag{1, L
L∗ , . . . , ( L

L∗ )n−1},

Φ∗ =

[
φ1(t, x, yr, ẏr)

L∗ ,
φ2(t, x, yr)

(L∗)2
, . . . ,

φn(t, x, yr)

(L∗)n

]T

.

Along the solutions of (A8), differentiating the quadratic function V3(ξ) = ξTPξ,

V̇3 � −L∗‖ξ‖2 + 2ξ1L
∗aTPξ − 2ξ1LaTΓPξ + 2Φ∗TPξ

holds on [0, tf ). By the method of completing the square, for the second and third terms on the right-hand side

of the above inequality, one gets

∣
∣
∣
∣2ξ1L

∗aTPξ

∣
∣
∣
∣ � L∗2‖aTP‖2ξ2

1 + ‖ξ‖2, |2ξ1LaTΓPξ| � L2‖aTΓP‖2ξ2
1 + ‖ξ‖2. (A9)

Moreover, with the definitions of εi and ξi, using (4) and (A7), one obtains

| φi

(L∗)i
| � θ

√
n(‖z‖ + ‖ξ‖) +

θ1

Li
, |2Φ∗TPξ| � 6θn‖P‖(‖ξ‖2 + ‖z‖2) + 4‖P‖θ2

1/θ,

which, together with (A7) and (A9), means that on [0, tf ),

V̇3 � − (L∗ − 6θn‖P‖ − 2)‖ξ‖2 + 6θn‖P‖‖z‖2 + (L∗2‖aTP‖2 + L2‖aTΓP‖2)ξ2
1 + 4‖P‖θ2

1/θ

� − ‖ξ‖2 + θ2‖z‖2 + θ2ε
2
1 + θ2

� − ‖ξ‖2 + θ2

(

sup
0�t<tf

‖z(t)‖
)2

+ θ2(2ε2
1 + 2z2

1 − λ2

2L2
) + θ2λ

2 + θ2

� − 1

λmax(P )
V3 + θ2L̇ + θ2

(

sup
0�t<tf

‖z(t)‖
)2

+ θ2λ
2 + θ2,

where θ2 = max{6θn‖P‖, L∗2‖aTP‖2 + L2(tf )‖aTΓP‖2, 4‖P‖θ2
1/θ}. Moreover, following similar arguments to

the proof of the boundedness of z, we easily have

‖ξ(t)‖2 � 1

λmin(P )

(

θ2

((

sup
0�t<tf

‖z(t)‖
)2

+ λ2 + 1

)

λmax(P ) + ξT(0)Pξ(0) + θ2L(tf )

)

, ∀t ∈ [0, tf ).

This, together with the definitions of εi and ξi and the boundedness of z (just proved), implies that ε is bounded

on [0, tf ).
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A3 The proof of Lemma 1

In virtue of (8) and flexibly applying contradiction argument, we now prove the lemma. Noticing the definitions

of xi’s, ei’s, εi’s and zi’s, the boundedness of all closed-loop signals is implied by that of (ε, z, L), both on [0, tf ).

The proof of the lemma consists of two parts. The first part shows that tf = +∞, or the solution of the closed-loop

system exists on [0, +∞). Then, boundedness of all closed-loop signals on [0, +∞) is proven in the second part.

Part I tf = +∞.

This can be done by a contradiction argument. Suppose that tf is finite. Then there must exist at least one of

the following two cases: (1) L is bounded on [0, tf ); (2) L is unbounded on [0, tf ).

In case(1), by Proposition 3, we know that ε and z are bounded on [0, tf ). However, since the maximal existence

interval [0, tf ) is finite (by supposition) and L is bounded on [0, tf ), at least one of ε and z is unbounded on

[0, tf ), which leads to a contradiction. So, case(1) does not occur.

In case(2), by Proposition 1, L is a monotone nondecreasing function. Thus, there exists a finite time t∗ ∈
(0, tf ), such that L(t) � Θ + 1,∀t ∈ [t∗, tf ), under which, on the finite interval [t∗, tf ), (8) becomes V̇ �
−(‖ε‖2 + ‖z‖2) + Θ � −μ1V + Θ, where μ1 = 1

max{γλmax(P ), λmax(Q)} . From the above inequality, it is easy to see

that ε and z are bounded on [t∗, tf ). Integrating L̇ = max{2ε2
1 +2z2

1 − λ2

2L2 , 0} on the finite interval [t∗, tf ) yields

+∞ = L(tf ) − L(t∗) =

∫ tf

t∗
L̇(t)dt �

∫ tf

t∗
(2ε2

1(t) + 2z2
1(t))dt < + ∞,

which is a contradiction and hence shows that case (2) is also unlikely to occur.

In both cases, this contradicts the assumption on finiteness of tf . Therefore, tf = +∞.

Part II Boundedness of all closed-loop signals over the interval [0, +∞).

As mentioned in the above discussion, it suffices to prove the boundedness of (ε, z, L) over the interval [0, +∞)

for that of all closed-loop signals. By Proposition 3, the key is to prove the boundedness of L on the interval

[0, +∞).

Suppose that L is unbound on [0, +∞), i.e., limt→+∞ L(t) = +∞. Since L is a continuous and monotone

nondecreasing function, there exists a finite time Tσ ∈ (0, +∞), such that

L(t) � Θ +
1

σμ1
, ∀t ∈ [Tσ, +∞), (A10)

where σ � 1 is an arbitrary positive constant. Furthermore, on [Tσ, +∞), (8) becomes

V̇ � − 1

σμ1
(‖ε‖2 + ‖z‖2) +

Θ

L2
� − 1

σ
V +

Θ

L2
.

Multiplying both sides of the above inequality by e
1
σ

t, we have

d

dt
(e

1
σ

tV (t)) � Θ

L2(t)
e

1
σ

t, ∀t ∈ [Tσ, +∞). (A11)

Integrating (A11) yields

V (t) � e
1
σ

(Tσ−t)V (Tσ) +
σΘ

L2(Tσ)
, ∀t ∈ [Tσ, +∞). (A12)

This means that V is bounded on [Tσ, +∞). From (A10), we conclude that Tσ increases when σ decreases,

and so Tσ � T1, ∀σ ∈ (0, 1] holds, and when σ = 1, denote Tσ by T1. Furthermore, from (A12), one has

V (Tσ) � V (T1) + Θ and

V (t) � e
1
σ

(Tσ−t)(V (T1) + Θ) +
σΘ

L2(Tσ)
, ∀t ∈ [Tσ, +∞). (A13)

Now, we are in a position to find a finite time such that 2(y − x̂1)
2 + 2x̂2

1must enter the interval [0, λ2

2
] and

cannot escape from there forever. For this purpose, by searching for a sufficiently small analysis parameter σ > 0,

such that after the finite time each term on the right-hand side of (A13) is suitably small and L keeps unchanged.

First, using (6), (A3) and (A13), one has

L̇(t) = max

{

2ε2
1(t) + 2z2

1(t) − λ2

2L2(t)
, 0

}

� max{μ2V (t), 0}

� μ2(V (T1) + (σ + 1)Θ), ∀t ∈ [Tσ, +∞),
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where μ2 = 2
min{γλmin(P ), λmin(Q)} . Integrating the above inequality leads to

L(t) � μ2(V (T1) + (σ + 1)Θ)(t − Tσ) + L(Tσ), ∀t ∈ [Tσ, +∞). (A14)

If σ > 0 is sufficiently small, then it is easy to verify that when

t � T := Tσ + σ ln
16μ2L

2(Tσ)(V (T1) + Θ)

λ2 − 32σ2μ3
2(V (T1) + Θ)(V (T1) + (σ + 1)Θ)2

> Tσ,

one has

16μ2e
1
σ

(Tσ−t)(V (T1) + Θ)(2μ2
2(V (T1) + (σ + 1)Θ)2σ2e

1
σ

(t−Tσ) + L2(Tσ)) � λ2.

From this and υ2

2
< eυ, ∀υ � 0, it is not difficult to prove that

e
1
σ

(Tσ−t)(V (T1) + Θ) � λ2

8μ2

(
μ2(V (T1) + (σ + 1)Θ)(t − Tσ) + L(Tσ)

)2 , ∀t � T. (A15)

Furthermore, from (A14), the first term on the right-side of (A13) satisfies

e
1
σ

(Tσ−t)(V (T1) + Θ) � λ2

8μ2L2(t)
, ∀t � T. (A16)

For the second term on the right-side of (A13), using (A14), one gets

σΘ

L2(Tσ)
=

σΘL2(T )

L2(Tσ)L2(T )
�

σΘ
(
μ2(V (T1) + (σ + 1)Θ)σ ln 16μ2L2(Tσ)(V (T1)+Θ)

λ2−32σ2μ3
2(V (T1)+Θ)(V (T1)+(σ+1)Θ)2

+ L(Tσ)
)2

L2(Tσ)L2(T )

�
σΘ

(
σμ2(V (T1)+(σ+1)Θ)

L(Tσ)
ln 16μ2L2(Tσ)(V (T1)+Θ)

λ2−32σ2μ3
2(V (T1)+Θ)(V (T1)+(σ+1)Θ)2

+ 1
)2

L2(T )
. (A17)

Obviously, when σ is sufficiently small, the numerator on the right-side of (A17) is less than any given positive

constant.

From the preceding arguments, for any given positive constant λ, by choosing sufficiently small σ, there hold

⎧
⎪⎪⎨

⎪⎪⎩

e
1
σ

(Tσ−t)(V (T1) + Θ) � λ2

8μ2L2(t)
, ∀t � T,

σΘ

L2(Tσ)
� λ2

8μ2L2(T )
.

(A18)

From (A13) and the monotone nondecreasing property of L, we have V (t) � λ2

4μ2L2(T )
,∀t � T, which together

with (A3) leads to

2ε2
1(t) + 2z2

1(t) � μ2V (t) � λ2

4L2(T )
<

λ2

2L2(T )
, ∀t � T. (A19)

Next, based on sufficiently small σ, under the premise of (A15)–(A19), let us establish the contradiction.

It is not difficult to verify that the closed-loop solution is continuous on [0, +∞). By supposition L(+∞) = +∞,

there must be a finite time T ′ > T , such that L(T ′) > L(T ). Then by (A19) and the expression of L̇, there must

exist some finite times satisfying 2ε2
1 + 2z2

1 − λ2

2L2 = 0 on the interval (T, T ′]. In such finite times, denote the first

time by T ′′. Thus, there holds

⎧
⎪⎪⎨

⎪⎪⎩

2ε2
1(T

′′) + 2z2
1(T ′′) =

λ2

2L2(T ′′)
,

2ε2
1(t) + 2z2

1(t) <
λ2

2L2(t)
, ∀t ∈ [T, T ′′).

(A20)

From the second relation of (A20) and the expression (6) of L̇, it follows that L̇(t) ≡ 0, ∀t ∈ [T, T ′′), and then by

the continuity of L, we have L(T ′′) = L(T ). From this and (A19), one easily obtains 2ε2
1(T

′′)+2z2
1(T

′′) < λ2

2L2(T ′′) ,

which contradicts with the first relation of (A20) and shows that L is bounded on [0, +∞).

The boundedness of z and ε can be established immediately by Proposition 3. By the definitions of z and ε,

x and x̂ are bounded on [0, +∞), so is η by Assumption 2. Using (7), we conclude that the control u is also

bounded on [0, +∞). This completes the proof of the boundedness of all closed-loop signals.


