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Abstract Almost all existing genetic programming systems deal with fitness evaluation solely by testing. In

this paper, by contrast, we present an original approach that combines genetic programming with Hoare logic
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formal genetic programming system that makes it possible to evolve reliable programs with mathematically-

verified properties.
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1 Introduction

Rich and Waters [1] have classified automatic programming techniques into four kinds: procedure, deduc-
tion, transformation, and inspection. Although deduction methods are the most important for dealing
with simple problems, they also claim that these deduction methods cannot play an important role in
more complex automatic programming challenges until they are combined with other methods.

Genetic programming (GP) was one of the most important automatic programming approaches, and
was first studied in detail by Koza [2] in 1992. It is based on Holland’s idea of genetic algorithms
(GAs) [3, 4]. Subsequently, a number of variants [5, 6] have been developed, including MEP (multi-
expression programming), GEP (gene expression programming), ADF-GP (automatic defined function
genetic programming), STGP (strongly typed genetic programming), LGP (linear genetic programming),
etc. Applications of GP are manifold: automatic design, pattern recognition, circuit design, cognitive
theory, robot control, to name just a few, as well as multi-objective optimization problems [2, 5–15].

GP, it could be said, is an illogical method. Although there are many variants on GP, as far as the core
problem solving processes are concerned, these methods all base their fitness evaluation on testing the
programs in the population on a sample of test data [16, 17]. If such methods are going to be developed
further and be applied to safety-critical domains, then it is important to combine these approaches with
logic-based approaches for proving and verifying program properties.
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This paper is dedicated to introducing a novel verification-focused GP method: Hoare logic-based
genetic programming (HGP ). Very few previous GP systems have taken this approach, but it is beginning
to be recognised. The authors of this paper first noted the heavy dependence of GP upon test and
proposed alternative approaches [17, 18]. Johnson [17] first introduced model checking into GP in 2007,
and this approach has been taken further by Katz and Peled [19]. In the present paper, we collaborate
together to elaborate on our original studies on formal GP by linking GP with formal approaches such as
Hoare logic, model checking, and finite state automaton. This kind of formal GP possesses good features
of both deductive and evolutionary methods, and is therefore sharply different from the traditional
“illogical” GP systems [2, 7–9]. In addition, this new system also allows GP systems to incorporate the
concepts such as components, which are widely used in software specification. Since the novel GP system,
Hoare logic-based GP, is essentially a program generation method based on Hoare’s semantics, we call it
HGP for brevity in subsequent discussion.

2 Motivation and related works

GP is essentially a GA [13] which applies evolutionary operators to populations consisting of computer
programs. Most typically, these programs are represented as parse trees. Refs. [7–9, 11, 13] introduce
many human-competitive results from real-world applications of GP, and ref. [7], specifically, gives eight
criteria deciding whether the product of a GP system should be regarded as human-competitive. With
automatic programming, Koza believes that search-based processes based on evolution are more effective
and fruitful than logic-based approaches.

GP breeds computer programs to solve given problems as follows [8].
(1) Generate an initial population of programs using random composition of the functions and terminals

drawn from a function set and terminal set.
(2) Iteratively perform the following substeps until the terminal criterion has been satisfied:
(A) Execute each program in the population and assign it a fitness value using the fitness measure,

which will depend on the problem at hand.
(B) Create a new population of computer programs by applying the following operations. The opera-

tions are applied to computer programs selected from the population with a probability based on fitness
(a number of different selection schemes are found in the literature):

i) Reproduction: Copy an existing program to the new population.
ii) Crossover: Create new offspring program(s) for the new population by recombining randomly chosen

parts of two existing programs.
iii) Mutation: Create one new offspring program for the new population by randomly mutating a

randomly chosen part of one existing program.
(3) The program that has the highest fitness in the final population is designated as the result of the

genetic programming system for the run. This result may be a solution (or approximate solution) to the
problem.

All other types of GPs such as MEP, GE, GEP, ADF-GP, STGP, and LGP are derivations from this
classical model. For instance, when expressing individual with concepts such as genotype and phenotype,
we get MEP, GE, GEP and LGP; and focusing on either functional reusability or the “closure property”
[16] of canonical GP, we naturally introduce ADF-GP or STGP.

To verify whether a program or an approximate solution obtained from evolutionary methods satisfies
some pre-given requirement, traditional GP relies on executing the programs in the population using a
set of test data, and then comparing the end results of that execution with a set of expected outputs
for that given set of test data. From the point of view of software engineering, this is not verification of
the program, but rather software testing. So, evolving programs this way is unable to safeguard software
reliability.

Software reliability [20] is an important issue of common concern among researchers all over the world.
The most common solutions to it include software testing, component oriented development, and formal-
isation of the software engineering process. As Dijkstra [21] put it, program testing can be used to show
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Skip statement: {P}skip{P}

Assignment: {P [t/x]}x := t{P}

If-statement:
{P ∧ e}S1{Q}, {P ∧ ¬e}S2{Q}
{P} if e then S1 else S2{Q}

Repetition:
{P ∧ e}S{P}

{P} while e do S{P ∧ ¬e}

Composition:
{P}S1{R}, {R}S2{Q}

{P}S1; S2{Q}

Rewriting:
P → P1, {P1}S{Q1}, Q1 → Q

{P}S{Q}

Figure 1 Proof rules of Hoare logic, where skip, also

denoted ε, stands for empty statement.

{y = 1 ∧ 5 = 5}

z := 5;

{y = 1 ∧ z = 5}

{y + z = 6}

y := y + z;

{y = 6}

Figure 2 Sample of proof tableaux.

the presence of bugs, but never to show their absence. So safety-critical software systems depend much
more on mathematical proofs, i.e. formal verifications, to guarantee their soundness.

Generally speaking, computer aided proving approaches can be put into two kinds: the proof based
approaches and those based on model checking [22–24]. The strength of the latter is their high level
of automation. Since they have a close relationship with certain temporal logic languages [25], their
expressive power is weakened to some extent. For example, they are not suited to handling changes in
values [26]. Consequently, Visser et al. [27] has pointed out that model checking can be best applied to
the designs rather than the implementations.

Hoare logic [28] is the most important representative of proof based approaches. It describes pro-
gram properties in the first-order predicate logic, relying strongly on automated theorem proving (ATP)
techniques, and therefore is inferior to model checking in terms of automation. The major reasons for
choosing Hoare logic as our work basis are its strong expressiveness, deducibility, and applicability [29,
30].

In Hoare logic, a Hoare formula or triple is of the form {P}S{Q}, where P , Q are first-order predicates,
called pre- and post-conditions; S stands for a program segment. {P}S{Q} means: given that P holds
before execution of S, and that the execution of S can terminate, then Q will hold. Hoare logic [28,
31] (Figure 1) includes six proof rules from which program verifications can be carried out. In practical
applications, however, we often use proof tableaux [25] in place of the tree-like style of proofs. Figure 2
gives an example of proof tableaux.

A major task for automatic programming is reusability [1]. As a key technology in the development of
software industry and economies of scale [32], component approaches are no doubt important practical
activities in this aspect. HGP also considers components and reuse [33]. As proof and verification are so
complicated, it is unwise to prove everything from scratch. Consequently, HGP is based on the principle
that code should be reused, and more importantly, so should the proofs.

In recent researches [17, 18] we have explored the use of various approaches (Hoare logic, model
checking, and the theory of automata [34, 35]) as a way of formalising the process of fitness evaluation
in GP. In this paper we extend the work introduced in [18] that uses Hoare logic as the basis of fitness
evaluation. Here we weaken some of its restrictions to obtain, on one hand, scalability, and on the other
to present a distributed parallel algorithm for fitness evaluation. All of these are original. In fact, all
traditional GPs whose fitness calculations are based on the principle of executions cannot do this. In terms
of fitness evaluation, HGP uses verification: this is its essential difference when compared to traditional
GP. HGP first accepts pre- and post-conditions, then evolves Hoare formulae based on requirements
specifications. Once an evolved result like {P1, P2, . . . , Pn} {f}s{Q1, Q2, . . . , Qm} is found in the search
space, it can tell us with certainty that {P1∧P2∧· · ·∧Pn}f{Q1∧Q2∧· · ·∧Qm} is a Hoare triple, i.e. f is
correct with respect to its pre-condition {P1∧P2 ∧· · ·∧Pn} and post-condition {Q1∧Q2∧· · · ∧Qm}. As
for fitness evaluation, it relies directly on relation calculations, supporting distributed parallel evaluation
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of fitness at an arbitrarily fine granularity. HGP will now be introduced: first the language, then the
verification framework, followed by the GP concepts.

3 The language of components

The language of components used in HGP, denoted by LC(F ), is a language of while programs [28]
restricted to a given set of components F = {fi|i = 1, 2, . . . , n}. Its grammar is as follows. Note that the
components in F can be regarded as either a while program, a program in some other language, or even
an executable code. In short, they are transparent.

P → f1|f2| · · · |fn| if C{P} else {P}| while C{P}|P ; P,

where C stands for Boolean expression.

4 Search space

In the following, we will define the search space or verification task, denoted STP ∗, under a closed
environment for the component language given above. What we have done here is to weaken the restriction
in [18]; the result, nevertheless, is scalable. This extension to Hoare’s convention by introducing the so
called generalized concept is done only for proof reuse and evolutionary generation of programs. For
convenience, the discussion proceeds in functional form rather than assignments.

Definition 4.1 (Scalable formula). A formula of the form P{f}SQ is a scalable (Hoare) formula, if f

is a program segment, and P , Q sets of logic formulas satisfying the following: there exist some q in Q,
and at least a p in P such that {p}f{q} forms a Hoare triple. In this case, P , Q are called the generalized
pre- and post-conditions respectively; {p}f{q} an instance of P{f}SQ.

Definition 4.2 (Instance). Let H be a set of Hoare triples, and ∧X mean a conjunction of all elements
(logic formulas) in X . A Hoare triple {∧R}f{∧K} is an instance of some scalable formula P{f}SQ under
H , if R, K are nonempty subsets of P and Q satisfying that for any k ∈ K, there exists an r ∈ R such
that {r}f{k} ∈ H .

Definition 4.3 (Scalable representation). Let H be a set of Hoare triples. A set SH of scalable formulas
is a scalable representation of H , if each h ∈ H is an instance of some s ∈ SH under H and no two distinct
elements in SH share the same program segment.

Obviously, the scalable representation for a given set H of Hoare triples is not unique, but is uniquely
defined with respect to a given program segment.

Definition 4.4 (Search space). Given a set H of Hoare triples and its scalable representation SH , the
search space STP ∗ is a set constructed by applying the following rules a finite number of times.

1) {∧M}ε{∧M} ∈ STP ∗ for P{f}SQ in SH with M ⊆ P or M ⊆ Q;
2) Instances of some scalable formula in SH under H are all in STP ∗;
3) {∧P}f ; g{∧W}({∧P}fg{∧W} for short) in STP ∗, if {∧P}f{∧Q}, {∧R}g{∧W} in STP ∗ satisfy

that for each r ∈ R, there exists a q ∈ Q such that | − q → r.
In this case, elements in STP ∗ are either called the generalized results of H or provable under SH , a

generalized closed environment with scalability.

Theorem 1. Given H , a set of Hoare triples, and its scalable representation SH , STP ∗ under H is a
set of Hoare triples.

This is easy to demonstrate. In fact, for case 1 of Definition 4.4, the proof is trivial; for cases 2 and 3,
we can consult Definition 4.2, and apply both composition and rewriting rules of Figure 1.
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Table 1 Comparison of relevant formal approaches

Hoare logic Model checking Formal basis of HGP

The formal framework Hoare triples Finite state transition system Finite state automaton

The specification language Hoare triple Temporal logic Hoare triple

The verification method A calculus Model checking algorithm Verification algorithm

5 Model of search space

In this section we will introduce a model based approach to verification and generation of reliable programs
in STP ∗. In order, the topics are the modeling principle, method, proof, parallel verification, and
scalability.

5.1 Modeling approach

5.1.1 Principle

As discussed by Huth and Ryan [25], verification techniques can be thought of as comprising three parts:
• a framework for modeling systems, typically a description language of some sort;
• a specification language for describing the properties to be verified;
• a verification method to establish whether the description of a system satisfies the specification.
From this point of view, we can compare the two commonly used formal approaches like Hoare logic

and model checking in columns 2 and 3 of Table 1. As we know, to conduct proofs for some assertions
often requires sophisticated guidance and expertise from the user. Since model checking is decidable, we
consider it advantageous to functionally employ these two approaches to give us the advantages of both.
Based on these ideas, the formal basis for the HGP system uses the three ideas outlined in column 4 of
Table 1. Now let’s illustrate how HGP is developed in the context of them.

First of all, we must clarify what are transition system and model checking. As far as transition system
is concerned, we mean a finite state automaton depicted by a mathematical model (or a labeled directed
graph called a transition diagram) that consists of [34, 35]: 1) a set of states S; 2) a set of input symbols;
3) transitions among states in response to inputs; 4) a start state s0 ∈ S, and 5) a set of final states in
S. Transition systems are useful for compiler implementations and protocol verifications, etc.

In general, model checking is a model-based approach to program verification in which the system and
the property of concern are represented by a model and a statement φ of some specification language;
and the task is to compute whether a model M satisfies φ (written M | = φ). When a transition system
is chosen for M , this can more explicitly be restated as the following proposition [25]: model checking is
the process of computing an answer to the question of whether M , s| = φ holds, where φ is a formula
of some logics, M is an appropriate model of the system under consideration, s is a state of that model
and |= is the underlying satisfaction relation. So substituting some temporal logic for φ, we will get the
commonly used model checking of Table 1.

Similarly, we can obtain another kind of model checking approach (column 4 of Table 1) if we link
together the ideas of a transition system M , Hoare triple {P}f{Q}, and some appropriate model checker
which checks the satisfaction of M , s| = {P}f{Q} with respect to Theorem 2 for some state s in M . To
this end, we must do the following things:

a) Model the before mentioned search space STP ∗ using transition system or finite state automaton,
arriving at a scalable model SM(H) as shown in subsection 5.1.2 and section 7.

b) Describe the property of a program system f of concern using some Hoare triple h : {P}f{Q}.
c) Design a model checker (or verification algorithm) to check whether SM(H), s| = h holds (i.e.

h ∈ STP ∗).
Regarding these problems, one can refer to subsections 5.1.2, 5.2, and section 7. Notice that a scalable

model SM(H) is a common model of all program systems involved in STP ∗. As for the usage of the
idea of finite state automaton, consider SM(H). Treating all states of SM(H), e.g. Figure 6 of section
7, as final states and choosing one from them, e.g. GC1 of Figure 6, as a start state, we will obtain a



628 He P, et al. Sci China Inf Sci March 2011 Vol. 54 No. 3

finite state automaton on which the well defined model checker or verification algorithm (see subsection
5.2) computes, with inputs SM(H), GC1 and h, say {P1 ∧P2 ∧P3}f1; f3; f2; f4{P1 ∧P5 ∧P7}, whether
SM(H), GC1| = h holds. This computation process is also reflected in generation 9 of Figure 7 where
it means a proof of SM(H), GC1| = {∧{P1, P2, P3}}f1; f3; f2; f4{∧{P1, P5, P7}}. In short, solving of
the maximum expansion ePost for some program, say f , over a given generalized pre-condition Gpre is
essentially a Hoare logic approach to the verification of SM(H), s| = {∧Gpre}f{∧ePost} for state s in
SM(H).

5.1.2 Method

Definition 5.1 (Passage). Let H be a set of Hoare triples, SH its scalable representation. Again let
G = 〈V, E〉 be a finite transition graph whose vertices represent sets (generalized pre-/post-conditions)
of logic formulas, and edges are labelled either by an “f”, a program segment of some scalable formula in
SH , or a “ε” symbol. A path V1f1V2f2 · · · fn−1Vn in G is a passage, if it defines the following maximum
expansion function m(Vi) for some nonempty subset P (⊆ V1):

1) m(V1) = P �= ∅;

2) m(Vi)=

{
{x ∈ Vi|∃p ∈ m(Vi−1)(p → x)} �= ∅, Vi−1 and Vi are linked by ε,

{x ∈ Vi|∃p ∈ m(Vi−1)({p}f{x} ∈ H)} �= ∅, Vi−1 and Vi are linked by f,
for 2 � i � n,

where Vi stands for vertex of G; the string α(=f1f2 . . . fn−1) concatenated from edge labels along the
passage is called a generalized body; m(Vi) is the maximum expansion of f1f2 · · · fi−1 on P .

Definition 5.2 (Scalable model). Given H , SH , G = 〈V, E〉 as above, G is a scalable model for
verification of STP ∗ under H , denoted by SM(H), if for any program segment f and nonempty subsets
P , Q of some two vertices, we have {∧P}f{∧Q} ∈ STP ∗ ⇔there exists a passage in G with f as its
generalized body and Q a subset of the maximum expansion of f on P .

Definition 5.3 (Generalized p-implication). Given two sets P , Q of logic formulas, they have general-
ized p-implication relationship, denoted | −P −→

p
Q, if there exist two nonempty sets S1(⊆ P ), S2(⊆ Q)

such that S2 = {q ∈ Q|∃p ∈ S1(p → q)} �= ∅.
Theorem 2. Given H , SH as above, there exists a scalable model SM (H) for STP ∗.

Proof. Without loss of generality, assuming the predicates involved in H are in {P1, P2, . . . , Pn, Q1,

Q2, . . . , Qn}, and SH = {Ri{fi}SWi|1 � i � m}. We first construct the model and then providing the
proof.

Step 1: Construction of SM (H).
1) Constructing matrices of predicate relation and generalized relation in Tables 2 and 3.
2) Drawing a node for each set of predicates in {Ri|1 � i � m} ∪ {Wi|1 � i � m}.
3) Drawing an arrow which is labelled as “f” from R to W , if R{f}SW ∈ SH .
4) Drawing a ε arrow from Xi to Yj , if Xi −→

g
Yj = T . Here X , Y stand for either R or W .

The graph obtained above is SM (H).
Step 2: Showing that for nonempty subsets K, L of two generalized conditions, {∧K}f{∧L} ∈ STP ∗ ⇔

there exists a passage in SM (H) taking f as its generalized body and L the subset of its maximum
expansion on K.

=>: By induction on the composition of passages.
1) Base: it is trivial for rules 1) and 2) in Definition 4.4.
2) Induction step: assuming {∧K}f1{∧P}, {∧Q}f2{∧L} ∈ STP ∗, by induction hypothesis, there

exist two passages, say R1e1R2e2 · · · eu−1Ru and W1g1W2g2 · · · gn−1Wn, which take f1 = e1e2 · · · eu−1,
f2 = g1g2 · · · gn−1 as their generalized body on the one hand, m(Ri)(∅ �= m(Ri) ⊆ Ri,1 � i � u) and
m′(Wj) (∅ �= m′(Wj) ⊆ Wj , 1 � j � n) the maximum expansion of e1e2 · · · ei−1 and g1g2 · · · gj−1 on
K and Q on the other. As such, K = m(R1), Q = m′(W1) and P ⊆ m(Ru), L ⊆ m′(Wn). Thus
∅ �= Q = m′(W1) ⊆ {w ∈ W1|∃p ∈ P (p → w)} ⊆ {w ∈ W1| ∃p ∈ m(Ru)(p → w)} = m(W1), if the two
Hoare formulas can be combined into {∧K}f1f2{∧L} ∈ STP ∗, i.e. for each q ∈ Q, there is a p ∈ P such
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Table 2 Predicate relation

−→
S

P1 . . . Pn Q1 . . . Qn

P1

.

..

Pn

Q1

..

.

Qn

Xi −→
S

Yj =

{
T, | − Xi → Yj ,

F, others,

where X, Y are P or Q, and

1 � i, j � n. Technically, the calcula-

tion of Table 3 relies on Table 2.

Table 3 Generalized relation

−→
g

R1 . . . Rm W1 . . . Wm

R1

..

.

Rm

W1

..

.

Wm

Xi −→
g

Yj =

⎧⎨
⎩

T, if | − Xi −→
P

Yj ,

F, others,

where X, Y are generalized pre- or post-

conditions R or W , and 1 � i, j � m.

R1 e1 · · · eu−1 Ru ε W1 g1 · · · gn−1 Wn

∪| · · · ∪| ∪| · · · ∪|
m(R1) · · · m(Ru) {w ∈ W1|∃p ∈ m(Ru)(p → w)} = m(W1) · · · m(Wn)

|| · · · ∪| ∪| ∪| · · · ∪|
K �= ∅ e1 · · · eu−1 P �= ∅ {w ∈ W1|∃p ∈ P (p → w)} ⊇ m′(W1) · · · m′(Wn)

|| · · · ∪|
Q �= ∅ g1 · · · gn−1 L �= ∅

Figure 3 Composition of two passages.

that | − p → q. Again by Definition 5.3 and the drawing method of SM (H), we have Ru −→
p

W1, which

means there exists a ε arrow between Ru and W1. Consequently, we can construct a new maximum
expansion m(Wj) for g1g2 · · · gj−1 on m(W1) such that ∅ �= m′(Wj) ⊆ m(Wj)(1 � j � n). Hence
combining them with all of those maximum expansions related to f1, say m (Ri)s, we will get from
induction hypothesis the proof for R1e1R2e2 · · · eu−1Ru ε W1g1W2g2 · · · gn−1Wn being a passage satisfying
m(R1) = K and L ⊆ m(Wn). The composition of two passages is shown in Figure 3.

<=: By induction on the number of edges in a passage.
1) Base: when the passage contains only one edge, the proof is trivial.
2) Induction step: suppose that V1e1V2e2 . . . en−1VnxVn+1 is a passage in SM(H) taking f = e1e2 · · ·

en−1x as its generalized body such that m(V1) = K �= ∅, ∅ �= L ⊆ m(Vn+1), where Vi stands for the vertex
or generalized condition, ei and x for edges. By induction hypothesis, we have {∧K}e1e2 . . . en−1{∧m(Vn)},
{∧m(Vn)}x{∧L} ∈ STP ∗. Again by the definition of STP ∗, it follows easily {∧K}f{∧L} ∈ STP ∗. This
completes the proof.

5.2 Parallel verification algorithm

A parallel verification algorithm carried out on the concerned model is given below. For the sequential
algorithm, one can refer to [18].

Algorithm 5.1. Given H = {{Xj}fj{Yj}|1 � j � k}, SH = {Zi{fi}SWi|1 � i � q}, SM(H) as above,
the algorithm for parallel verification of {P}α{Q} ∈ STP ∗(α = f1 · · · fn ∈ {f1, f2, · · · , fq}∗) is as follows.

1) Solving m(Z1) = {x ∈ Z1|P → x} for Z1{f1}SW1 ∈ SH . Because there is only one edge in SM(H)
annotated by “f1”.

2) Solving R[fi] = {(t, et)|t ∈ Zi, et is the maximum expansion of fi on {t} ⊆ Zi} for fi ∈
{f1, f2, . . . , fq}.

3) Solving R[α] for α = f1 · · · fn(|α| � 1) of the form
⋃

t∈Z1
{(t, et)}(et is the maximum expansion of α

on {t}) in parallel with the algorithm of Figure 4.
4) Interpreting the returned result as follows. If the result is {No}, then the goal to be verified is wrong

with respect to SH ; if the result is R[α] and Q′ =
⋃

∃t∈m(Z1):(t→u)∧(u,eu)∈R[α] eu satisfying | − ∧Q′ → Q,
then {P}α{Q} is correct; otherwise, the goal to be verified is unprovable under SH .
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CalculateExpansion(α, H, SM(H))

begin

Let |α| be the length of α;

if α ∈ {f1, f2, . . . , fq} then return (R[α])

else

begin

divide α into 2 halves: lHalf=f1 . . . f�|α|/2� and rHalf= f�|α|/2�+1 . . . fn;

if there is no ε arrow linking W�|α|/2� and Z�|α|/2�+1

then return({“No”})
else

begin

Solve R1 and R2 in parallel for lHalf and rHalf as follows:

R1:= CalculateExpansion(lHalf, H, SM(H)),

R2:= CalculateExpansion(rHalf, H, SM(H));

R[α] := { };
for each (t, et) ∈ R1 do

if there are e ∈ et and (u, v) ∈ R2 such that e → u

then R[α] := R[α] ∪ {(t, ⋃∃e∈et:(e→t′)∧(t′,et′ )∈R2 et′)};
return(R[α] )

end

end

end;

Figure 4 Parallel algorithm for calculation of the maximum expansion.

5.3 Verification of LC(F )

The principle for adapting the linear model to verify both the branch and iteration statements in LC(F )
is the multilayer strategy. That is, we verify program segments layer by layer: first proving some inner
segments, and then their immediate outsides. Algorithm 5.2 is based on this principle. Of course, we
should treat “if” and “while” statements as the same control structure when dealing with such concepts
as layer number and nested depth.

Algorithm 5.2. Given SM (H), to verify an arbitrary program P composed of components from H ,
we proceed in the following way:

(1) Initialize k (nested depth) as 1, and gathering all iterations and branch statements involved in P ,
denoted IB(P ), based on the following formula:

IB(P ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{ } neither iteration nor branch statement in P,

{while C {P1}} ∪ IB(P1), P is while C{P1},
{if C{P1} else {P2}} ∪ IB(P1) ∪ IB(P2), P is if C{P1} else {P2},
IB(P1) ∪ IB(P2), P is P1; P2.

(2) Verify all program segments of depth k in IB(P ) based on the algorithm given in the previous
subsection under the current SM(H).

(3) Maintain SM(H) by adding what were achieved in step (2) either as scalable formulas or properties
into the current SM(H).

(4) k := k +1; if there still remains some program segment of depth k in IB(P) untouched, go back to
step (2).

(5) Verify the original program in SM(H).

5.4 Scalability

From what was discussed above, it follows that a model may contain many states or ε arrows. To overcome
this shortcoming, we can apply the following property.
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Definition 5.4 (Subformula). Given two scalable formulas F1: P{f1}SQ and F2: R{f2}SW , F1 is a
subformula of F2, denoted F1 ⊆ F2, if P ⊆ R, Q ⊆ W , and f1 = f2.

Definition 5.5 (Subrepresentation). Let H be a set of Hoare triples and SH , S′
H its scalable represen-

tations. SH is a subrepresentation of S′
H , denoted SH ⊆ S′

H , if for each S ∈ SH there exists a S′ ∈ S′
H

such that S ⊆ S′.
Similarly, we can define the concept submodel. Furthermore, according to these definitions, we have:

Theorem 3. Given H such that SH ⊆ S′
H , if STP ∗, STP ′∗ are the search spaces of SH and S′

H , then
STP ∗ ⊆ STP ′∗.

6 HGP : A novel formal GP

By the model’s existence theorem that given a set H of Hoare triples and its scalable representation SH ,
there must exist a scalable model SM (H) for STP ∗, we can infer that the formal model obtained from
the use of the multilayer principle can not only be used to verify, but also to generate numerous reliable
programs in the well defined search space. As we know, to automatically generate the desired programs
is far more difficult than to verify them. Since the longest path problem (ND29 [36], i.e. whether for two
given points and an integer k there will exist a simple path of edge number over k in a directed graph) is
an NP-complete problem, we can search the most suitable solution or approximate program in the formal
model through the use of GA. In this case, the string concatenated from edge labels along a passage is
just a correct program with respect to its pre-/post-conditions.

HGP as a member of the GP family naturally shares with its brethren many general characteristics.
Because section 1 has given an overview of GP, in the following we will introduce the novel GP in terms
of its distinctive features. For other related aspects, the reader can refer to [13].

The representation is one of the major differences between classical GP and HGP. Since edge labels
in the formal model stand for the names of components, a string concatenated from edge labels along a
path naturally forms a program. Furthermore, if the path is a passage with respect to its input/output
conditions, this string must be a correct program with respect to its pre-/post-conditions. So given a
set H of (verified) Hoare triples and its scalable model SM (H), populations can be defined as sets of
programs comprised of only components in H . This certainly tells them apart.

In regard to fitness, HGP first calculates the maximum expansion for a randomly generated program
(passage) on some given pre-condition, then checking the similarity between the target condition (as the
post-condition) and the evolved maximum expansion. This leads to the following fitness function:

f(Gpre, S, Gpos) = n(m(S, Gpre), Gpos),

where the meanings of the symbols are: S: a program segment or a sequence of components. Gpre:
generalized pre-condition. Gpos : target requirement as generalized post-condition. HGP first accept
Gpre, Gpos as inputs, then automatically search reliable programs in search space. n(P, Q): n is a
function of sets P, Q of predicates calculating the order of {q ∈ Q|∃p ∈ P (p → q)}. m(S, Gpre): m is
a function solving the maximum expansion of generalized body S on a generalized pre-condition Gpre
based on a given scalable model.

Note that the case of breakpoint calculation in [18] can technically be avoided by using valid genetic
operation based on SM (H). The efficiency, however, is raised dramatically using this method.

Clearly, when evaluating the randomly generated programs, the greater the returned value the better.
Ideally, the returned value should be n(m(S, Gpre), Gpos)=|Gpos |.

So, another major difference between HGP and GP lies in their fitness evaluation. The latter applies
such a strategy as firstly executing the randomly generated programs on a sample data set, then check-
ing the approximation between the returned value and the target requirement. From the viewpoint of
software engineering, this method can only be categorized as testing rather than verification. Besides
the advantages of being a verification-based method, the method used here also brings with such new
properties as closure, sufficiency, etc. [13].
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Table 4 Classical GP and HGP

Classical GP HGP

Representation Parse tree Sequence of justified components

Fitness evaluation Execution and comparison Direct computation

Based on Logic No Yes

Soundness Software test Software verification

Underlying search space Sets of terminals and functions Hoare triples

Operators Similar to GA Similar to GA

Application areas Expression, Lisp Arbitrary programming language

Solution and result Approximation Both accuracy and approximation

HGP solves the fitness based only on property relations rather than execution or test. It is worth
noticing that the formal framework discussed above can also support distributed parallel evaluation at
arbitrarily fine granularity. Additionally, HGP also differs from the formal GP of [17]. The latter has
paved the way for introducing formal method into GP, focusing on the combination of model checking and
GP —in this system we use Hoare logic instead of the temporal logic of model checking as a specification
language. This can help to extend the expressiveness of the system.

Genetic operators are integral part of evolutionary computation. HGP has such operators as repro-
duction, crossover, mutation, etc. They are not applied to tree-like individuals but to sequences of
components. The genetic strategy involved in the evolutionary process is similar to that of classical GA.
What follows is the comparison between classical GP and HGP (Table 4). As for the pseudo-algorithmic
description of HGP, one can refer to the GP framework of section 2. They are similar in principle.

To facilitate the understanding of why HGP works effectively, we will go into more detail about genetic
operations.

Definition 6.1 (Context). Given that H is a set of Hoare triples, SH = {Pi{fi}SQi|1 � i � n} is its
scalable representation, SM(H) represents the corresponding scalable model, and S = {fi|1 � i � n}
is all the program components involved in SH , a context for f in S with respect to SM(H), denoted
C(SM(H), f), is a 2-tuple C(SM (H), f) = (front, rear) such that front, rear are subsets of S; and that
front= {g ∈ S| there exists a ε arrow in SM (H) linking g (i.e. the generalized post-condition of g) to f

(i.e. the generalized pre-condition of f)} and rear= {h ∈ S| there exists a ε arrow in SM (H) linking f

(i.e. the generalized post-condition of f) to h (i.e. the generalized pre-condition of h)}.
Definition 6.2 (Crossable space). Given H , SH , SM (H) and S as above, the crossable space for two
strings α, β ∈ S∗, denoted CS(α, β), is defined as CS(α, β) = {f ∈ S|f appears in both α and β}.

Now, it is time to algorithmically depict the semantic-based genetic operations in terms of Definitions
6.1 and 6.2. The genetic operators used in HGP are shown in Figure 5. As for the initialization step,
individuals (or sequences of program components) consistent with the concerned scalable model SM (H)
for STP ∗ can incrementally be generated through the use of context. For example, having figured out
the ith component fi of some individual along with C(SM (H), fi) = (front, rear), HGP will proceed to
generate fi+1 based on the set rear.

Consequently, combining these techniques with the algorithm of HGP can give birth to an effective
approach to reliable program generation. In fact, if the parents reflect some paths in SM (H), so do
the results obtained from either the crossover or the mutation of Figure 5. Of course, it is permissible
to make the genetic operators more complicated, but for the sake of the fact that these studies do not
benefit the framework of HGP fundamentally, we would not like to discuss it deeply.

7 Experiment and analysis

In this section we will elaborate on parallel evaluation, simulation experiments and scalability through
the use of the example of [18].
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Mutation: 1) Let P = f1f2 · · · fm be an individual to be mutated.

2) Choose a position, say i (i.e. fi), in the sequence P for mutation.

3) Define mutation space for the position i as follows:

case i of

1: let C(SM (H), f2) = (front, rear) in

mutation space:= front

end; //all possible program components which can be linked to f2

m: let C(SM (H), fm−1) = (front, rear) in

mutation space:= rear

end; //all possible program components to which fm−1 can be linked

1 < i < m : let C(SM(H), fi−1) = (front, rear) and C(SM (H), fi+1) = (front2, rear2) in

mutation space:= rear ∩ front2

end

end;

4) Replace fi of P with some randomly chosen program component, say f , in mutation space– {fi}
if mutation space – {fi} �= ∅.

Crossover: 1) Let P1 = f1f2 · · · fm, P2 = h1h2 · · ·hn with CS(P1, P2) �= ∅ be two individuals to crossover.

2) Determine the crossover positions in P1, P2 with substeps a) to b):

a) randomly choose some program component, say g, from CS(P1, P2);

b) randomly choose some positions, say i and j, in P1, P2 with g = fi = hj as the crossover positions.

3) Conduct crossover on P1, P2 through constructing such semantic-allowed individuals as f1f2 · · · fihj+1

· · ·hn and h1h2 · · ·hjfi+1 · · · fm for further use.

Figure 5 Genetic operators of HGP .

Problem. Given a set of Hoare triples H (Table 5) and a predicate relation matrix (Table 6), generating
a program which is correct with respect to the pre-condition (P1 ∧ P5 ∧ P7) and the post-condition
(P1 ∧ P5 ∧ P7∧ (u = 0 ∨ r < z)).

7.1 Theoretical analysis

Thought: From Hoare logic, if there exists a program X which together with (P1 ∧ P5 ∧ P7)∧ (u �=
0 ∧ r � z) and (P1 ∧ P5 ∧ P7) forms a Hoare triple {(P1 ∧ P5 ∧ P7) ∧ (u �= 0 ∧ r � z)} X {P1 ∧ P5 ∧ P7},
then,

{P1 ∧ P5 ∧ P7} while (u �= 0 ∧ r � z){X}{P1 ∧ P5 ∧ P7 ∧ (u = 0 ∨ r < z)}.
So the desired program is: while (u �= 0 ∧ r � z){X}. Now we solve to find the value for X.

Method:
1) According to Table 5 we have a scalable representation SH={{P1, P2, P3}{f1}S{P2, P3, P4}, {P2,

P4, P6}{f2}S{P1, P5, P6}, {P2, P3, P4}{f3}S{P2, P4, P6}, {P1, P5, P6}{f4}S{P1, P5, P7}} for H .
2) Constructing the generalized relation matrix (Table 7) and the scalable mode SM (H) (Figure 6)

from SH and predicate relation matrix (Table 6) in the same way as that of Theorem 2.
3) By Theorem 2, searching for a desired passage in SM (H).
Because there is a passage in SM (H) with f1f3f2f4 as the generalized body, {P1, P5, P7} as its

maximum expansion on {P1: y+uz = xz, P2: u > 0, P3: x = r+qz∧r � z∧z > 0} verifying {P1∧P2∧P3}
f1; f3; f2; f4 {P1∧P5∧P7}∈ STP ∗, and satisfying |− (P1∧P5∧P7∧u �= 0∧ r � z) → (P1∧P2∧P3), we
have{( P1∧P5∧P7)∧ (u �= 0∧r � z)} f1; f3;f2;f4 {P1∧P5∧P7}, i.e. {P1∧P5∧P7} while (u �= 0∧r � z)
{f1; f3; f2; f4} {P1 ∧ P5 ∧ P7∧ (u = 0 ∨ r < z)}.
Formal principle: The verification process of f1; f3; f2; f4 in SM (H) is as follows.

Step 1: solving m(GC 1) = {x ∈ GC1|(P1 ∧ P5 ∧ P7)∧ (u �= 0 ∧ r � z) → x}={P1, P2, P3};
Step 2: solving R[f1]={(P1,{P4}), (P2,{P2}), (P3,{P3})}, R[f2]= {(P2,{P5}), (P4,{P1}), (P6,{P6})},

R[f3]= {(P2,{P2}), (P3,{P6}), (P4,{P4})} and R[f4]= {(P1,{P1}), (P5,{P5}), (P6,{P7})};
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Table 5 Set of Hoare triplesa)

Pre-condition Program Post-condition

P1 y + uz = xz f1 y + (u − 1)z = xz P4

P2 u > 0 f1 u > 0 P2

P3 x = r + qz ∧ r � z ∧ z > 0 f1 x = r + qz ∧ r � z ∧ z > 0 P3

P4 y + (u − 1)z = xz f2 y + uz = xz P1

P2 u > 0 f2 u � 0 P5

P6 x = r + (q + 1)z ∧ r � 0 ∧ z > 0 f2 x = r + (q + 1)z ∧ r � 0 ∧ z > 0 P6

P3 x = r + qz ∧ r � z ∧ z > 0 f3 x = r + (q + 1)z ∧ r � 0 ∧ z > 0 P6

P4 y + (u − 1)z = xz f3 y + (u − 1)z = xz P4

P2 u > 0 f3 u > 0 P2

P6 x = r + (q + 1)z ∧ r � 0 ∧ z > 0 f4 x = r + qz ∧ r � 0 ∧ z > 0 P7

P1 y + uz = xz f4 y + uz = xz P1

P5 u � 0 f4 u � 0 P5

a) Each row stands for a Hoare formula.

Table 6 Predicate relation

−→
S

P1 P2 P3 P4 P5 P6 P7

P1 T

P2 T T

P3 T T

P4 T

P5 T

P6 T

P7 T

Table 7 Generalized relation

−→
g

GC 1 GC 2 GC 3 GC 4 GC 5

GC 1

GC 2

GC 3

GC 4 F F

GC 5 F

Figure 6 The scalable model SM (H) of STP∗ under H. Here each GC i stands for a generalized condition, and edges

without labels are ε arrows.

Step 3: invoking CalculateExpansion(f1; f3; f2; f4, H , SM (H)), we have R[α]={(P1,{P1}), (P2, {P5}),
(P3, {P7})} for α = f1; f3; f2; f4;

Step 4: solving Q′=
⋃

∃t∈m(Z1):(t→u)∧(u,eu)∈R[α] eu={P1, P5, P7} from R[α] above. This means {P1 ∧
P2 ∧ P3} f1;f3; f2; f4 {P1 ∧ P5 ∧ P7}∈ STP ∗. By what was analyzed in 3), we get the desired result.

Apparently, the graph SM (H) is rather complicated. For this, we can use Theorem 3 for the simplifica-
tion. For example, solving the problem based on such a scalable representation SH={{P1, P2, P3}{f1}S

{P2, P3, P4, P6}, {P2, P3, P4, P6} {f2}S {P1, P5, P6}, {P2, P3, P4, P6}{f3}S{P2, P3, P4, P6}, {P1, P5,
P6}{f4}S{P1, P5, P7}} for H , the result is still correct.
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Figure 7 Screenshot of result.

7.2 Experimental analysis

The simulation includes 2 steps.
1) For each randomly generated programs, using {x ∈GC 1| (P1 ∧P5 ∧P7 ∧ u �= 0∧ r � z) → x}= {P1,

P2, P3}= GC 1 and tPost={P1, P5, P7} as the generalized pre-condition Gpre and the target requirement
Gpos to invocate the fitness function.

2) Let the population size be 8. Then pressing the button “Run”, we will get Figure 7, a screenshot of
the HGP. With the progress in solution evolution, the result approaches gradually to our target, say 157
in Figure 7, in terms of fitness. HGP must terminate some time under the case of either the maximum
number of generations or the given requirement being reached. Thus it is effective for generation of
solutions of both precision and approximation. With precision, we mean Hoare formulas can be obtained
through evolutionary approaches; with approximation, search methods are employed.

To better understand HGP, we annotate Figure 7 as follows. Each line in Figure 7 reflects the best
solution of the population of programs at that moment. The data under the names “Pre” (Precondition),
“ePost” (the maximum expansion of a program on the pre-condition) and “tPost” (the target requirement
or post-condition) represent properties of programs. For example, the data under the name Pre “123”
stands for {P1, P2, P3}. Similarly, the data under the name Program like “132” stands for “f1; f3;
f2”, a sequence of components, i.e. a program. As for the fitness value 0 of the first generation in
Figure 7, we can deduce it from the fact that the corresponding maximum expansion is an empty set,
therefore implying no element of {P1, P5, P7}, denoted tPost = 157. The fitness values of generation 3
through 8 are consistent, i.e. 2, because 15 shares two digits, i.e. the “1” and the “5” with 157; and so
does 57 with 157. Obviously, the desired result {∧{P1, P2, P3}}f1; f3; f2; f4{∧{P1, P5, P7}} appears in
generation 9. This is shown by the value for ePost and tPost being the same, i.e. 157. Since we have
| − (P1 ∧ P5 ∧ P7 ∧ u �= 0 ∧ r � z) → (P1 ∧ P2 ∧ P3), the desired program is

while (u �= 0 ∧ r � z){f1; f3; f2; f4},

which agrees with the theoretical analysis of subsection 7.1.

8 Discussion

It is really hard to make a precise comparison between search techniques of different natures. Apart
from the objective factors, we are subjectively dedicated to the establishment of HGP recently, therefore
having not explored the efficient issues comprehensively and deeply. However, HGP along with its search
technique has the following characteristics.

1) Usefulness. Verification and testing are two major kinds of approaches to software reliability. A
very fundamental problem with software testing is that testing under all combinations of inputs and
preconditions (initial state) is not feasible, even for simple examples [37]. Consequently, classical GP
cannot establish that its result functions properly under all conditions, because it works according to
executions of members of the population over some limited sample dataset.

However, this is not the case for HGP. This approach searches the desired computer programs through
the use of Hoare logic style reasoning. Once the result, say the Hoare formula {P1 ∧ P5 ∧ P7} while



636 He P, et al. Sci China Inf Sci March 2011 Vol. 54 No. 3

(u �= 0 ∧ r � z){X}{P1 ∧ P5 ∧ P7∧ (u = 0 ∨ r < z)} in subsection 7.1, is obtained, we can say with
certainty that the program while (u �= 0 ∧ r � z){X} is correct with respect to P1 ∧ P5 ∧ P7 and
P1 ∧ P5 ∧ P7∧ (u=0 ∨r < z). This means for any values of x, y, z, u, r, q such that P1 ∧ P5 ∧ P7 holds
before the program runs, so will the post condition P1 ∧ P5 ∧ P7∧ (u = 0 ∨ r < z) after that program’s
termination for their returned values. As such, it is in this sense that HGP is superior to classical GP. Of
course, each method has its own strong points, and so we maintain that both of them merit deep study.
Indeed, one interesting area for future study is hybridizing logic-based and testing-based approaches to
GP.

2) Scope. Whether a probabilistic approach is useful should depend, first, on its effectiveness, and then
its technical efficiency. In view of the following analysis, we have reason to claim that HGP gives more
scope to us than the standard search.

Without loss of generality, assuming g is an element of some GP function set which takes the form
of repeat f ; y := y − 4 until y = 5 (where f stands for a program whose execution has no effect on y

and particularly can terminate), it follows that g cannot work or contribute the search process effectively
unless its loop control variable y satisfies y = 4 × k + 5 (k � 1). In other words, since GP relies on
executions of programs (for the fitness values) to guide the evolution of populations, its probabilistic
search must suffer from the endless loops for which y has been assigned values such that y �= 4× k +5 by
the previous computation steps of g, thus resulting in failures in evaluating programs as well as further
searches. This makes the standard search vulnerable. Solving of this problem must seek help from the
semantic measures. Also, GP search still faces the challenge of addressing the closure problem [13].
This problem, to put it simply, concerns type consistency. As such, it is necessary to introduce some
mechanisms to ensure this type consistency into the standard search for program evaluations. Fortunately,
HGP provides a means for these issues on the basis of Hoare triples. For instance, it can cope with these
cases on the condition that the execution terminations have been deliberately provided for the concerned
components (say g), and reflected in the pre-/post-conditions. In summary, SM (H) based search may
not appear to be very efficient in all situations, but often is effective. In fact, its effort toward working
out the problem is evident. Since HGP evaluates programs in light of the computation of properties
of programs instead of program executions, its running, unlike that of standard GP which may fail in
executions, will succeed all the time. Consequently, we see from the above mentioned facts that not only
is semantic-based HGP a search method more effective than the standard search, but rather it has a
broader scope than traditional GP.

9 Conclusions

The work in this paper represents the first attempt to explore the use of various approaches (Hoare logic,
model checking, and the theory of automata) as a way of formalising the process of fitness evaluation
in GP ; it has the following characteristics. Firstly, HGP has not only the capability for generation and
verification of programs in the search space, but supports fitness evaluation at fine granularity. Secondly,
HGP takes ideas from earlier work on GP search using model checking, but differs from it in working
style. The former is a common model of Hoare semantics for verification of numerous program objects,
the latter nevertheless is a solution peculiar to a concrete problem. Thirdly, HGP generates programs
on demand, using a mixture of accuracy and approximation. These surely make it different from existing
GPs. So, if extended with modern automated theorem proving techniques, this method may become an
alternative approach to software reliability and program generations.

Our future studies will focus on such related topics as schema theory, the definition of new tasks,
efficient search algorithms, the unified theory of various kinds of GPs, service applications, and improved
implementations.
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