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Abstract Existing algorithms for isolating real solutions of zero-dimensional polynomial systems do not com-
pute the multiplicities of the solutions. In this paper, we define in a natural way the multiplicity of solutions
of zero-dimensional triangular polynomial systems and prove that our definition is equivalent to the classical
definition of local (intersection) multiplicity. Then we present an effective and complete algorithm for isolat-
ing real solutions with multiplicities of zero-dimensional triangular polynomial systems using our definition.
The algorithm is based on interval arithmetic and square-free factorization of polynomials with real algebraic

coefficients. The computational results on some examples from the literature are presented.

Keywords real solution isolation, local multiplicity, local ring, polynomial system solving

Citation Zhang Z H, Fang T, Xia B C. Real solution isolation with multiplicity of zero-dimensional triangular
systems. Sci China Inf Sci, 2011, 54: 60-69, doi: 10.1007/s11432-010-4154-y

1 Introduction

Real solution isolation for polynomials/zero-dimensional polynomial systems/semi-algebraic systems is
one of the central topics in computational real algebra and computational real algebraic geometry, which
has many applications in various problems with different backgrounds.

The so-called real root /zero/solution isolation of a polynomial /zero-dimensional polynomial system /semi-
algebraic system with & distinct real solutions is to compute k disjoint intervals/“boxes” containing the
k solutions, respectively. To our knowledge, designing algorithms for real root isolation for polynomials
with rational coefficients was initiated by [1] in 1976, which was closely related to the implementation
of CAD algorithm [2]. Designing and implementation of such algorithms have been deeply developed by
many subsequent work [3-7] since then. Those algorithms are mainly based on Descartes’ rule of sign or
Vincent’s theorem.

To generalize the real root isolation algorithms for polynomials to zero-dimensional triangular polyno-
mial systems, one must consider real root isolation for polynomials with real algebraic coefficients. There
are indeed some work to generalize Descartes’ rule of sign to polynomials with algebraic coefficients.
However, dealing with algebraic coefficients directly may affect efficiency greatly.

In [8, 9] we considered real solution isolation for semi-algebraic systems with finite solutions. We
introduced a method which always enables us to avoid handling directly polynomials with algebraic
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coefficients and to deal with polynomials with rational coefficients only. A recent algorithm in [10] can
compute the parity of the solutions as well as isolate real roots of zero-dimensional triangular polynomial
systems.

In this paper, we define in a natural way the multiplicity of solutions of zero-dimensional triangular
polynomial systems and prove that our definition is equivalent to the classical definition of local (intersec-
tion) multiplicity. Then we present an effective and complete algorithm for isolating real solutions with
multiplicities of zero-dimensional triangular polynomial systems using our definition. The algorithm is
based on square-free factorization of polynomials with real algebraic coefficients and our previous work
[9]. We also provide computational results on some examples from the literature.

In this paper, all polynomials are in C[X] = Clx1,...,z,] if not specified.

2 Multiplicities of zeros of triangular sets

First, let’s recall the definition of local (intersection) multiplicity. We follow the notations in Chapter 4 of
[11]. Although some notations and definitions can be stated in a more general way, we restrict ourselves
to the ring C[X] = C[zy, ..., x,] since we are interested in the complex or real zeros of zero-dimensional
polynomial systems.

For p = (m,...,n,) € C", we denote by M, the maximal ideal generated by {z1 —m,..., 2, —nn} in
C[X], and write

(C[X]]Wp = {ﬁ :fmg € C[X]vg(n17"'777n) 7é 0}

It is well-known that C[X]xz, is the so-called local ring.
Definition 1 [11]. Suppose I is a zero-dimensional ideal in C[X] and p € Zero(I), the zero set of I in
C. Then the multiplicity of p as a point in Zero([) is defined to be

dim (C[X}JWP/I(C[X]MP-

That is, the multiplicity of p is the dimension of the quotient space C[X]xs, /IC[X]ys, as a vector space
over C.

For a zero of a zero-dimensional triangular set, there can be a natural and intuitional definition of
multiplicity as follows.

Definition 2. For a zero-dimensional triangular system,

Ji(x1) =0,
f2($1,$2) =0,

fn([l?l,...,ﬂfn) = O,

and one of its zeros, £ = (&1,...,&,), the multiplicity of £ is defined to be [[;_, m;, where m; is the
multiplicity of x; = &; as a zero of the univariate polynomial f;(&1,...,&—1,2;) fori=1,...,n.

Example 1. Consider the following triangular system:

g1 =2} + 223 + 72] =0,
go = x5 + 23 + 2172 = 0,

g3 = x% + x123 + 122 = 0.

Let’s compute the local multiplicity of (0,0,0) by Definition 2. The multiplicity of x; = 0, a zero of g1,
is 3. Substitute 71 = 0 in fo and the resulted go is g5 = 23 + 23. Thus, the multiplicity of 5 = 0, a zero
of g4, is 2. Finally, substitute z; = x5 = 0 in g3, and the resulted g3 is g4 = 2%. Thus, the multiplicity
of z3 = 0, a zero of g}, is 2. As a result, the local multiplicity of (0,0,0) is 3 x 2 x 2 = 12.
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In the following, we will prove that Definition 2 is equivalent to Definition 1. Many notations and
results are taken from [11].

Usually, a total order that is compatible with multiplication and that satisfies 1 > x; for all i’s, is
called a local order.

Definition 3 [12]. (Negative lexicographical ordering) Assume a = (ai,...,a,) € N and 3 =
(Brs---,0n) € NL. We say X* > X8 if

i (1<z<n)/\(w, 1<j<i:>aj:ﬁj)/\(ai<ﬁi).

Remark 1. The negative lexicographical ordering >,,; is obviously a local order.
For a given order, lc(f),lm(f) and 1t(f) denote the leading coefficient, leading monomial and leading
term of f, respectively. For a set S,

16(S) = {1t(f) : f € S}.

Definition 4 [11]. Let R = C[X]y;, and I C R be an ideal. A set {g1,...,gm} C I is called a standard
basis for I with respect to <, if

(6(1)) = (1(g1), - - -, 1t(gm))-

For a = (a1,...,an) € NL, define [a| = >, ;. For any polynomial g = 3~ ¢, X € C[X] with total
degree d, we will write g" =" c,t471%1 X for the homogenization of g with respect to ¢.

Definition 5 [11]. For the monomials in C[t, X], define t*X® >/ #* X% if a +|a| > b+|B| or a + |a| =
b+ 6] and X >,,; X5,
It is easy to verify that >/, is a monomial order over C[t, X].

Theorem 1 [11]. Let I be the ideal in C[X]ys, generated by G = {g1,...,gm} and > be any local order.
G is a standard basis for I if and only if applying Mora normal form algorithm to each S-polynomial
formed from elements of the set of homogenizations G" = {gh,..., g} yields a zero remainder.

For our purpose, we state the above criterion in another form as follows.

Theorem 2. Let notations be as in Theorem 1. G is a standard basis if and only if for any nonzero
S-polynomial of ¢! and g;h denoted by S;;, there exist homogeneous polynomials U, A, ..., A, € C[t, X]
such that

USij =Y Al (1)
=1

where 1t(U) =t for some a,
a + deg(Si;) = deg(Ar) + deg(g}')

for all [ whenever A; # 0, and
lt(Alglh) <’/I’Ll lt(US”)

Remark 2. We omit the proof of Theorem 2, which is almost the same as that of Theorem 1. The
criterion in Theorem 2 is independent to any algorithms. One can use Mora normal form algorithm to
get such representation as (1) for each S;; if G is a standard basis.

Without loss of generality, in the rest of this section we assume p = (0,...,0) is a zero of the triangular
set under discussion and focus on its multiplicity. Consider the following triangular set with leading terms
™, ... cpzt respectively w.r.t. the order >,:

fi(z1) = iz + ta(2),

7 - ] P2(@1,32) = 225 +ta(21, 22),

cey

fo(@1, oo xn) = cpal + to(x1, ..., X)),
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where t;(x1,...,x;) is a polynomial in x1,...,z; for : = 1,...,n and ¢;’s are constants. Without loss of
generality, we assume ¢;’s are all 1 in the proof of the following proposition.

Proposition 1. Let T' be as above and I = (T') the ideal generated by 7" in the local ring C[X] (4, ... 4,)-
Then T is a standard basis for I with respect to >;.
Proof. According to Theorem 2, we only need to show that every nonzero S-polynomial of each pair of
Th={fl,..., f} can be represented in the form of (1).

Assume that f}' =tz +¢;, fjh = tbx;nj +t; and a < b. The S-polynomial, S;;, of [l and fjh is

b—a, mj ch i rh
Sij =1 axj]fi _x;nfj'

nl»

of po. If S;; # 0, there exists some ¢ such that under the order </, the ¢th term of p; is not equal to
the fth term of py and the kth term of p; is equal to the kth term of ps for all 1 < k < £. Then, the kth
terms of p; and py can be represented as "¢, and tb’ax;’lj qr for some gy, respectively. Thus, ff and
[} can be respectively rewritten as

fl =t + Q) + fio, ] = 7% (1 + Q) + iz,

Let py = "%} f* and py = 27" f}'. Under the order </,;, the first term of p; is equal to the first term

where Q = Y0 g and fz and fjo are the remained parts of f/* and [}, respectively, which satisfy that
(02" fiz) # 6(2™ fi2).
It is easy to verify that S;; = tb*ax;ﬂj fi2 — x" fj2. Then
Im(S;;) = max(lm(tb_ax;nj fi2), Im(z" f;2))
under the order </ ,. Thus,

(t" + Q)Sij = fuaf] — fiaf)-
Let U =1t"+Q,A; = fio, A; = fjo and A, =0 (s # ¢ and s # j). Then we have

USij = zn:Asfshv
s=1

and all the requirements in Theorem 2 are met. Thus T is a standard basis for (T') w.r.t <.
In order to prove the equivalence of Definitions 2 and 1 about the (local) multiplicity, we need the
following theorem, which can be found in [11].

Theorem 3 [11]. Let I be an ideal in a local ring R, and assume that dim R/(1t(I)) is finite for some
local order >. Then we have
dim R/I =dim R/(It(I)).

Theorem 4. Let notations be as above and T a zero-dimensional triangular set with a zero p =
(0,...,0). If the multiplicity of p defined by Definition 2 is m = []]_; m;, then the local multiplicity,
defined by Definition 1, of p as a point of Zero((T')) is also m.

Proof.  If the multiplicity is [[;—, m; in the sense of Definition 2, then 7' can be rewritten as

fi(z1) = (1 + tar (1)) 2™

Ja(z1,22) = (c2 + tar(z1, x2)) x5 + x1t2a (21, 22),

n—1

fo(X) = (cn + tp1(X))zi + ; Titniv1(X),

where X = (z1,...,2,), the t;;(X)s are polynomials in (x1,...,2;) and the t;;(X)s do not contain
constants.
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Under the order >,;, the leading monomial of f;(x1,...,2;) is ¢;a)" for i = 1,...,n. According to
Proposition 1, T is a standard basis of I = (T"). Thus,
WD)y = (x™, ...,z

n

Let R = C[X](z, ... 2,)- According to Theorem 3,

dimR/I = dim R/{z{",...,a)'") = Hmi.
i=1

3 Algorithm for real solution isolation with multiplicity

In this section, based on the results in last section, we present an algorithm for real root isolation with
multiplicity of zero-dimensional triangular polynomial equations. That is, we not only isolate the real
roots, but also compute the multiplicity of each real root by Definition 2 at the same time. In this section,
the input polynomial or polynomial set to our algorithms is taken from Q[X].

It is well-known that there exist some efficient algorithms for real root isolation of polynomials or
polynomial equations or semi-algebraic systems [1, 3-6, 8-10]. To obtain the multiplicities of the real
roots at the same time, our idea is simple that is to take use of square-free factorization of polynomials
with rational or algebraic coefficients. When dealing with algebraic coefficients, we make use of the idea
in [8, 9] which enables us to deal with rational coefficients instead.

For the univariate case, suppose p = Hle pt. Isolating the real zeros of p with multiplicity contains
two main steps. One is to compute the squarefree factorization of p, the other is to isolate the real zeros
of the squarefree part of p. We can use many existing tools to obtain the squarefree factorization, i.e.,
those p;s. Then we know at once the multiplicities of those real zeros of each p;. In principle, we may
isolate the real zeros of the squarefree part of p in two ways. One way is to isolate the real zeros of
p1p2 - - - px first and then match the zeros with p; to obtain correct multiplicities. The other way is to
isolate the real zeros of each p; separately. However, in the latter way, we may need to compute a root
gap of p first. Anyway, the univariate case can be efficiently dealt with. Therefore, we do not enter the
details of such algorithms and only give a description of the input and output of such function.

Calling sequence  Unilsol(f(x))
Input: a univariate polynomial f(z).

Output: a set of elements of the form ([a,b],m) where [a,b] is an interval containing exact one real
root of f(x) = 0 and m is the multiplicity of the root. There are not any real roots of f(x) = 0 outside
the intervals.

Then let us consider the multivariate case. To be more precise, we state our problem as follows: That
is to isolate the real solutions with multiplicities of the following zero-dimensional triangular polynomial
set:

T = {fi(z1), fa(x1,22),. .., fulz1,. .., 20)}.

In principle, Definition 2 suggests a naive method to compute the local multiplicity as follows. First
compute all the zeros of fi(x1) and their multiplicities by Unilsol; then “substitute” the zeros for
in fo(xy,x2) one by one, and compute all the zeros of the resulted fa(z1,22) and their multiplicities
by Unilsol again, and so on. Of course, in general we cannot directly substitute the zeros in those
polynomials because they may be algebraic numbers of high degrees. Nevertheless, this naive method is
the main framework of our algorithm.

Let Ti = {fl(ai‘l), fQ(afl,a?Q), ceey fi(xl, . ,xl)} We will call

([&1,()1], vy [al,bl]) or ([al,bl], vy [ai,bi],m)

an interval solution (with multiplicity m) of T; if the “box” [a1,b1] X - -+ X [a;, b;] contains exact one real
solution of T; (and m is the multiplicity of the solution). If T; has k distinct real solutions, a set of k
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interval solutions of T; containing respectively the k real solutions is called a solution set of 7;. For an
interval solution r = ([a1,b1], ..., [ai, bi]), we define N, = [x1 —aq,b1 — 21, ..., 2; —a;,b;—x;] and N, > 0
stands for a; < 1 < by,...,a; <z < by, de., (T1,...,2) € [ar,b1] X -+ X [a;, b;].

Suppose we already have a solution set of T; and

(&1,...,&) € a1, b1] x -+ x [a;, by

is a real root of T; with multiplicity m. To isolate the real zeros of f;+1(&1, .., &, xir1) with multiplicity,
we need to
i) compute the algebraic squarefree factorization of fiy1(&1,...,&;, xi1+1), and

ii) isolate the real zeros of the squarefree part computed.

Let us first consider the second task, i.e., how to isolate the real zeros of fi11(&1,...,&, xiy1) if it is
squarefree. In [9], we proposed a complete algorithm, called RealZeros, for isolating the real solutions
(without multiplicities) of semi-algebraic systems. Our second task can be accomplished by a sub-
algorithm of RealZeros. The key idea of the sub-algorithm is to compute two suitable polynomials f; 1
and f;11 in x;41 with rational coefficients such that

Jir1 < fix1(&r, - & migr) < figa

by using interval arithmetic and those intervals [a1,b1],...,[as, b;]. One can isolate the real zeros of
fit1(&1y .-, &, wip1) through isolating the real zeros of f;11 and fiy1. Therefore, we can avoid dealing
with polynomials with algebraic coefficients directly. In the following, we call this sub-algorithm Alglsol.

Calling sequence Alglsol(g(z1,...,zi+1), i, 7)

Input:  a squarefree polynomial g(z1,...,x;+1), a zero-dimensional triangular polynomial set T; as
above and an interval solution r = ([a1,b1],. .., [a;, b;]) which contains exact one real zero (&1, ...,&;) of
T;.

Output: a list of isolating intervals of real zeros of g(&1,...,&, Tiy1)-

For the detail of the algorithm Alglsol, please refer to [9].

Now, we turn to the first task, i.e., compute the algebraic squarefree factorization of f;11(&1,. .., &, Zit1).
One may use some existing algorithms for algebraic factorization, see [13] for example, to accomplish the
task. In the following, we propose a method for algebraic squarefree factorization based on algebraic ged
computation. A key manipulation in the computation is to count real solutions of semi-algebraic systems
by an algorithm RealrootCount!) in [14].

Calling sequence RealrootCount(F, N, P, H)

Input: a zero-dimensional polynomial set F, a list of non-strict inequalities NV, a list of strict inequal-
ities P and a list of inequations H.

Output: the number of distinct real roots of the system {F =0, N > 0,P > 0, H # 0}.
Calling sequence AlgGCD(p1,ps,T;,7)

Input: two polynomials pi,ps in z1,...,z;11, a zero-dimensional triangular polynomial set T} as above
and an interval solution r = ([a1, b1], ..., [ai, b;]) of T;.

Output:  ged(p1(&1,---5 &, ziv1), p2(&1, -, &, xigr1)), the greatest common divisor of p; and ps viewed
as polynomials in x;41 w.r.t. the interval solution r. Here (§1,...,&;) is the only real solution in 7.

Step 0. Suppose the subresultant chain of p; and py w.r.t. x4y is S,,S,—1,...,5 with principal
subresultant coefficients R,, R,—1,..., Ro, respectively. Set j < 0.

Step 1. Compute R;.

1) The algorithm is called nearsolve in [14].
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Step 2. If RealrootCount(T;, Ny, [ ],[R;]) = 0, i.e., the interval solution makes R; vanish, then set
j <« j+ 1 and go to Step 1.

Step 3. Return S;.

There are several mature algorithms [15, 16] for squarefree factorization of polynomials in K[z] where
K is Z,Q or a finite field. It is well known that such algorithms for univariate case only contain two
main manipulation: ged computation and polynomial division in K[x]. If we replace the ged computation
in those algorithms with our AlgGCD computation and replace the division manipulation with pseudo-
division, then those algorithms will compute algebraic squarefree factorization as we want. Therefore, we
only give a simple description of our algorithm here.

Calling sequence AlgSF(p(x1,...,211),T;,7)

Input: a polynomial p in x1,...,%;y1, a zero-dimensional triangular polynomial set T; as above and
an interval solution r = ([a1,b1], ..., [a;, b;]) of T;.

Output: the squarefree factorization of p viewed as a polynomial in z;; w.r.t. the interval solution
r, i.e., the squarefree factorization of p(&1, ..., &, xiy+1) where (&1,...,&;) is the only real solution in 7.

Now, we are ready to describe our algorithm Multilsolate for real solution isolation with multiplicity
of zero-dimensional triangular polynomial sets.

Calling sequence Multilsolate(T')

Input: a zero-dimensional triangular polynomial set T = {f1(x1),..., fo(z1,...,2n)}
Output: a solution set of T' with multiplicity.

Step 1. i<+ 1, L; < UniIsol(fy).

Step 2. L; is a solution set of T; with multiplicity. If ¢ = n, return L,,.

Step 3. For each interval solution r = ([a1, b1], ..., [ai, b;]) in L; with multiplicity, compute A/l\g/SF(fH_l
(z1,...,2i+1),Ti,7). Therefore, we know at once the multiplicity of each factor. Assume f;11 is the
squarefree part of f;11. Then, by applying AlgIsol(f;:l, T;,7) we can obtain the isolating intervals of real
zeros of f;11. Therefore, it is easy to obtain a solution set L; 1 of T;41 with multiplicity by Definition 2.
i+ 14 1 and go to Step 2.

Remark 3. Let r = ([a1,b1],...,[an,bn]) be an interval solution of T" and § = (&1,...,&,) is the real
solution in r. If le(f;)(&1,...,&—1) # 0 for 2 < i < n, T is said to be regular w.r.t. & (or r). If
fi(&1, ... &—1, ;) is squarefree for 1 < i < n, T is said to be squarefree w.r.t. £ (or r).

It is clear that Multilsolate(T") actually computes as well a regular and squarefree decomposition of
the given triangular set T w.r.t. its real zeros, respectively. That is to say, we compute a set of triangular
sets W; and their solution sets @); such that U;Q; is a solution set of 7" and each Wj is regular and
squarefree w.r.t. each solution in @);. If we modify slightly the algorithm Multilsolate, we can output
the regular and squarefree decomposition.

Now, let’s illustrate the main steps of the algorithm Multilsolate by a simple example.

Example 2. Consider the following triangular equations

{h = (2% - 3),
fo =y — (a* = 3)y.

Step 1. i =1,n = 2. Unilsol(f;) returns a solution set of f; as follows:

{([13/87 7/4]»4)7 ([_7/47 _13/8]74)}'

That means f; has two distinct real solutions contained respectively in the two intervals. Both of the
two solutions are of multiplicity 4.
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Please note that the solutions are represented by intervals with rational endpoints. The width of the
interval can be decreased arbitrarily on demand. By default, the algorithm will output the results when
the intervals do not intersect. Therefore, there is no approximate computation here and in principle the
algorithm does not need a precision input.

Step 2. Setting L; to be the solution set, because ¢ < n, we continue and go to step 3.

Step 3. For the first solution [13/8,7/4], by calling

AlgSF(f2, [f1], [13/8,7/4]),

we get a square-free factorization of fo w.r.t. the first solution [13/8,7/4] to the triangular set [f1], which
is y3. Therefore we know at once the multiplicity of the solutions to the square-free part, i.e., y, is 3.
Then, by calling
AlgTsol(y, [f1],[13/8,7/4]),

we obtain a solution [0, 0] to the second equation. Therefore, by Definition 2, we know that [[13/8,7/4], [0, 0]]
is a solution “box” to the system of multiplicity 3 x 4 = 12.

Similarly, for the second solution in L;, we obtain another solution “box”, [[—7/4,—13/8],10,0]], of
multiplicity 12.

Now, 7 «+ i+ 1. Because i = n, we are done.

At the same time, we also obtain a regular and square-free decomposition of the input system as
[12 -3, y]

4 Examples

The algorithm Multilsolate has been implemented as a Maple program which is included in our package
DISCOVERER [17]. For an input zero-dimensional triangular system, our program can compute the real
solution isolation of the system with multiplicity and output a regular and squarefree decomposition (see
Remark 3) of the system w.r.t. those real solutions. Our program can detect whether the input system
is zero-dimensional. If it is not, the program will return a message: “The dimension of the system is
positive.”

In this section, we illustrate the function of our program by some examples. The timings are collected
on a Thinkpad X200 running Maple 11 with 2.4GHz CPU, 1G memory and Windows Vista by using the
time command in Maple.

Example 3. Consider the following triangular system:
fl =T — 27

fo=(x+y—-3)°y+3),
fa=w2+az+ 12 ((x —y)z+2—y).

Within 1.6 s, our program outputs a solution set as follows:
1
e - o] a2 -ana
1 1
[272]7[_3?_3}7 _27_4 72 ’ [[[272]7[171]7[_1a_1“a15} }
That means the system has four real solutions which are of multiplicities 1,2,2,15, respectively. Our

program also outputs a regular and squarefree decomposition of the system w.r.t. the four distinct real
solutions respectively as follows:

[t —2,y+3,1+1252], [r—2,y+3,—1+322-2z2], [x—2,y—1,2z+1].
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Note that the second and third solutions are both solutions to the second equations above.

Example 4. Consider the following triangular system:

fi=@+1)(xz—2),
fo=(z—y+1)*(@y—5)+(y - 3)z,
fa=(xy —6)22 +22+1.

The system has seven real solutions all of multiplicities 1. The computation cost is 0.7 s.

[[[12:2], 3, 3], [=1/2, =172}, 1], [[[=1, =1], [=1, =3/4], [-3/8, = 1/8]], 1],
(=1, =1, [=1,=3/4], [3/8,7/8]], 1], [[[=1, —1],[1/2,3/4],[-3/8, -1/8]},1],
(=1, =11, [1/2,3/4], [3/8,3/4]], 1), [[[=1, =1}, [5,21/4], [=3/8, =1/8]], 1],
(=1, —1],[5,21/4], [1/4,1/2]], 1]].

A regular and squarefree decomposition is
[x—2,f,14+22], [x+1, f,9],
where f = 2%y — 52? — 22y? + 132y — 13z +y> — Ty + 11y — 5, g = y22x — 622 + 22 + 1.
Example 5. The following triangular system is taken from [18]:
fi=at,

fo=a?y +y*,
fz =2+ 22— 72> — 822

Within 0.1 s, we obtain two distinct real roots with multiplicities 16.
[[[07 0]7 [07 0]7 [_17 _1]}7 16}7 [[[07 0}7 [07 0}’ [07 0]]7 16]'
And a regular and squarefree decomposition is

[2,y, 2 + 22 — T2 — 827].

Example 6. The following triangular system is taken from [10]:

fi=a* =322 — 23 + 224+ 2,
fo =y* + zy® + 3y? — 622y + 4oy + 22y
— 42y + 4z + 2.

The time for computation is 3.6 s and we obtain 12 distinct real roots.

51/32,13/8], [~119/32, —475/128]],1], [[[51/32,13/8], [~147/128, —145/128]], 1],
51/32,13/8], [53/64,107/128]],1], [[[51/32,13/8],[307/128,77/32]], 1],

(Il

(Il

([[-=5/8,-19/32],[-3/8,1/4]],1], [[[-5/8,-19/32], [13/8,17/8]], 1],

[[[45/32,23/16], [-3025/1024, —1499/512]], 1], [[[45/32, 23/16], [~1347/1024, —2639/2048]], 1],
[[[45/32,23/16],[11/8,3/2]],2], [[[-23/16,—45/32],[-5/8, —1/8]], 1],

[[[-23/16, -45/32], [17/4,5]],1], [[[-23/16,-45/32],[~3/2, ~11/8]],2].

It is clear that two of the solutions are of multiplicities 2 and the others are of multiplicities 1. With
respect to those solutions, we have a regular and squarefree decomposition as follows:

[22 — 2 —1,hq], [2® — 2, ha], [2* — 2, h3],
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where

hy = y* + zy® + 3y — 622y? + 4oy + 22y — 42y + 4o + 2,

hy = — 23354573041809 — 9122537689096xy> + 394067331437252y + 171486177400542+
13135577714575y2 — 54735226134576y,

hs = — 104xy + 335y — 33bx + 208.
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