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Abstract Repetitive control, which adds a human-like learning capability to a control system, is widely used in

many fields. This paper deals with the problem of designing a robust repetitive-control system based on output

feedback for a class of plants with time-varying structured uncertainties. A continuous-discrete two-dimensional

hybrid model is established that accurately describes the features of repetitive control so as to enable independent

adjustment of the control and learning actions. A sufficient condition for the robust stability of the repetitive-

control system is given in terms of a linear matrix inequality. The condition is then used to obtain the parameters

of the repetitive controller. Finally, a numerical example demonstrates the effectiveness of the method.
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1 Introduction

People often master a skill through repetition. By repeating the same action, a person gradually comes
to understand the essential points, finally achieving great efficiency and precision. This is a process of
learning and gradual progress. An investigation of the process reveals two main characteristics: 1) the
same action is performed; and 2) the action currently being performed is based on the action performed
in the previous repetition.

Inoue et al. [1] devised a new control strategy called repetitive control that adds a human-like learning
capability to a control system. A repetitive-control system is different from other types of control systems
in that it possesses a self-learning capability. For example, Inoue et al. [2] designed a control system
for supplying power to the magnet of a proton synchrotron that tracks a given periodic reference input,
namely the excitation current. After self-learning for 16 periods, the relative tracking precision reached
10−4. This high precision was unobtainable by any other control method at that time. So the theory of
repetitive control immediately received a great deal of attention; and it is now widely used in many fields
from aerospace to public welfare systems.

From the standpoint of control theory, the self-learning mechanism of a control system involves em-
bedding an internal model of a period signal in a repetitive controller. This theoretically guarantees
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Figure 1 Configuration of basic repetitive control system.

gradual improvement, which is a chief characteristic of the human learning process, and finally provides
precise tracking for any periodic reference input. Figure 1 shows the configuration of a repetitive-control
system.

In the figure, r(t) is a periodic reference input with a period of T , G(s) is the compensated plant, and
s is a Laplace operator. The part enclosed by the dotted line is the repetitive controller; it contains a
pure delay with a positive-feedback loop. A repetitive-control system carries out learning in the following
way: the control input, v(t − T ), of the last period is added to the control input, v(t), of the present
period by means of a pure-delay positive-feedback line so as to regulate the current control input. This
allows the system to eliminate any tracking error and gradually provide very precise control.

The repetitive-control system in Figure 1 is a neutral-type delay system with an infinite number of
poles. That makes the stability difficult to analyze and a controller hard to design. As pointed out in
[3], a repetitive-control system can be stabilized only when the relative degree of the plant is zero. To
stabilize a plant when the relative degree is not zero, the controller must be modified by the insertion
of a low-pass filter, q(s), into the time-delay feedback line. This reorganization of the system makes it
a retarded-type delay system, and the stabilizing condition is much laxer than for a repetitive-control
system. However, the laxness comes at the cost of tracking precision at high frequencies; that is, there
is a trade-off between stability and steady-state tracking error. Since a repetitive-control system for a
plant with a relative degree of zero is very difficult to stabilize and exhibits limited control performance,
discussion of the design of such systems is theoretically significant.

A close examination of repetitive control shows that it actually involves two independent types of
actions: continuous control within each repetition period and discrete learning between periods. Since,
from the standpoint of system design, it is difficult to stabilize a repetitive-control system, all design
methods developed so far focus mainly on stability; that is, they do not accurately describe what actually
happens or thoroughly investigate the essence of the control and learning actions; they only consider the
overall results in the time domain. As a result, they impose not only very strict requirements on the
plant, but also a limit on how much control performance can be improved [4, 5].

A design method based on a two-dimensional (2D) continuous-discrete hybrid model of repetitive
control was described in [6]. It employs 2D system theory [7, 8]; and unlike other methods, it enables
independent adjustment of the control and learning actions. However, the whole state of the plant is
needed for the design of the controller, which unfortunately is unavailable in many practical applications.
A design method that employs only the output of a plant is more practical.

It is difficult to design a static output-feedback controller by conventional repetitive-control design
methods. This paper addresses the problem of designing a robust repetitive-control system based on
static output feedback for a class of linear systems with a relative degree of zero and with time-varying
structured uncertainties. First, a robust repetitive-control system configuration based on output feedback
is presented. With this configuration in mind, a 2D continuous-discrete hybrid model is established that
reflects the characteristics of repetitive control. Next, a sufficient condition for robust stability in the
form of a linear matrix inequality (LMI) is derived by combining a 2D Lyapunov functional with the
structural singular value decomposition of the output matrix. The control gains are easily computed
with the Matlab toolbox. Finally, a numerical example demonstrates the validity of the method.

Throughout this paper, R
n denotes n-dimensioned Euclidean space; R

n×m is the set of all n × m real
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matrices; I means an identity matrix with appropriate dimension; X > 0 (< 0) indicates that the matrix
X is positive (negative) definite; and [

A B

∗ C

]
=

[
A B

BT C

]
.

2 Problem description

This paper considers a repetitive-control system with the configuration in Figure 2. The SISO linear
plant with a relative degree of zero and with time-varying structured uncertainties is{

ẋ(t) = [A + δA(t)]x(t) + [B + δB(t)]u(t),

y(t) = Cx(t) + Du(t),
(1)

where x(t) ∈ R
n is the state of the plant; and u(t), y(t) ∈ R are the control input and output, respectively.

The assumption that the relative degree of the plant is zero implies that D �= 0. Assume that the
uncertainty of the plant is given by

[δA(t), δB(t)] = MF (t)[N0, N1], (2)

where M, N0, and N1 are known constant matrices; and F (t) ∈ R
n×n is a real unknown and possibly

time-varying matrix with Lebesgue measurable elements satisfying

FT(t)F (t) � I, ∀t > 0. (3)

The static output-feedback control law is

u(t) = kev(t) + kyy(t), ke, ky ∈ R, (4)

where ke is the feedforward gain of the repetitive controller and ky is the output-feedback gain. For the
system in Figure 2, the design problem can be stated as follows:

Design suitable static control gains ke and ky that robustly stabilize the repetitive-control system under
control law (4) and provide a steady-state tracking error of zero.

We make the following assumption, which is true for many control engineering problems:

Assumption 1. The uncertainties δA(t) and δB(t) satisfy

δA(T + t) = δA(t), δB(T + t) = δB(t), ∀ t > 0. (5)

(1) and (4) yield

u(t) =
ke

1 − kyD
v(t) +

kyC

1 − kyD
x(t).

Since
v(t) = e(t) + v(t − T ),

v(t) contains both the control result for the current period (e(t)) and the effect of learning in the previous
period (v(t − T )). So, directly changing the control gains, ke and ky, does not independently adjust
the control and learning actions. To do that, and thereby dramatically improve system performance, we
present an accurate 2D description of the repetitive-control system in Figure 2.

First, we divide the infinite interval [0, +∞) into an infinite number of finite intervals, [kT, (k+1)T ) (k =
0, 1, . . .). Then, for any t ∈ [0, +∞), there exists an interval [kT, (k + 1)T ) such that

t = kT + τ, τ ∈ [0, T ).

This allows us to write the variable ξ(t) in the time domain as

ξ(t) = ξ(kT + τ) := ξ(k, τ),
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Figure 2 Configuration of repetitive control system based on the static output-feedback

and
Δξ(t) := Δξ(k, τ) = ξ(k, τ) − ξ(k − 1, τ).

For a given periodic reference input r(t), the tracking error is

e(t) = e(k, τ) = r(k, τ) − y(k, τ).

Taking the change in the state variables of the system (Figure 2) between the present and previous periods
into account yields the following continuous-discrete 2D hybrid model:{

Δẋ(k, τ) = [A + δA(k, τ)]Δx(k, τ) + [B + δB(k, τ)]Δu(k, τ),

e(k, τ) = e(k − 1, τ) − CΔx(k, τ) − DΔu(k, τ).
(6)

And the 2D description of the control law (4) is

Δu(k, τ) = k1CΔx(k, τ) + k2e(k − 1, τ), (7)

where
k1 = − ke − ky

1 + (ke − ky)D
, k2 =

ke

1 + (ke − ky)D
. (8)

Unlike control law (4), which applies to the time domain, control law (7) in the 2D domain can be
used to independently adjust the control behavior (Δx(k, τ)) within one period and the learning process
(e(k− 1, τ)) between periods by tuning k1 and k2 in (7). Note that the relationships between the control
gains in Figure 2 and in (7) are

ke = k̃1 + k̃2 and ky = k̃2, (9)

where

k̃1 = − k1

1 + Dk1
, k̃2 =

(
1 − k1D

1 + Dk1

)
k2 +

k1k̃1

1 + k1D
. (10)

3 Design of robust repetitive controller based on output feedback

Based on the above description, the problem of designing a repetitive-control system with the configura-
tion in Figure 2 is formulated as the problem of stabilizing the continuous-discrete 2D system (6). So, we
derive a sufficient stability condition for the closed-loop system of 2D system (6) under control law (7)
by constructing a 2D Lyapunov functional and using it in combination with 2D system stability theory
and the structural singular value decomposition of the output matrix.

Assume that the singular value decomposition of matrix Π is

Π = U [S, 0]V T,

where S is a semi-positive definite matrix, and U and V are unitary matrices.
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The following lemmas are employed in the derivation of the robust-stability condition for the continuous-
discrete 2D system.

Lemma 1 (see [9]). Let Π ∈ R
p×n, where rank(Π) = p. For matrix X ∈ R

n×n, there exists a matrix,
X̄ ∈ R

p×p, such that ΠX = X̄Π holds if and only if X can be decomposed into

X = V

[
X̄11 0

0 X̄22

]
V T,

where V is the unitary matrix in the above singular value decomposition form of Π, X̄11 ∈ R
p×p, and

X̄22 ∈ R
(n−p)×(n−p).

Lemma 2 (see [10]). Let Ω0(x) and Ω1(x) be two quadratic matrix functions over R
n, and let Ω1(x) � 0

for all x ∈ R
n −{0}. Then, Ω0(x) < 0 holds for all x ∈ R

n − {0} if and only if there exists an ε � 0 such
that

Ω0(x) − εΩ1(x) < 0, ∀x ∈ R
n − {0}.

Lemma 3 (Schur complement [11]). For the real matrix Σ = ΣT, the following assertions are equivalent:
1. Σ = [Σ11

∗
Σ12
Σ22

] < 0;
2. Σ11 < 0, Σ22 − ΣT

12Σ
−1
11 Σ12 < 0;

3. Σ22 < 0, Σ11 − Σ12Σ−1
22 ΣT

12 < 0.
Substituting the control input (7) into the continuous-discrete 2D system (6) yields the following

representation of the closed-loop repetitive-control system:[
Δẋ(k, τ)

e(k, τ)

]
=

[
A + Bk1C Bk2

−C − Dk1C 1 − Dk2

][
Δx(k, τ)

e(k − 1, τ)

]
+

[
M

0

]
Γ(k, τ), (11)

where ⎧⎪⎪⎨
⎪⎪⎩

Γ(k, τ) = F (k, τ)Υη,

Υ =
[

N0 + N1k1C, N1k2

]
,

ηT =
[

ΔxT(k, τ), eT(k − 1, τ)
]
.

(12)

It is clear from (3) that

ΓT(k, τ)Γ(k, τ) = ηTΥTFT(k, τ)F (k, τ)Υη � ηTΥTΥη. (13)

We obtain the following theorem from the above lemmas.

Theorem 1. If there exist symmetrical positive definite matrices X11, X22, and X2, together with
arbitrary matrices W1 and W2, such that the LMI⎡

⎢⎢⎢⎢⎢⎢⎢⎣

Φ11 BW2 M Φ14 Φ15

∗ −X2 0 Φ24 WT
2 NT

1

∗ ∗ −I 0 0

∗ ∗ ∗ −X2 0

∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (14)

holds, where the the structural singular value decomposition of the output matrix is C = U [S, 0]V T,
and

X1 = V

[
X11 0

0 X22

]
V T,

Φ11 = AX1 + X1A
T + BW1C + CTWT

1 BT,
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Φ14 = −X1C
T − CTWT

1 DT,

Φ15 = CTWT
1 NT

1 + X1N
T
0 ,

Φ24 = X2 − WT
2 DT,

then system (6) with uncertainties (2), (3), and (5) is asymptotically stable under control law (7). Fur-
thermore, the feedback gains are

k1 = W1USX−1
11 S−1UT and k2 = W2X

−1
2 . (15)

Proof. Choose the Lyapunov functional candidate to be

V (k, τ) = V1(k, τ) + V2(k, τ), (16)

where

V1(k, τ) = ΔxT(k, τ)P1Δx(k, τ),

V2(k, τ) = P2e
2(k, τ),

and P1 = X−1
1 , P2 = X−1

2 .
Along the time trajectory of (11), we have

dV1(k, τ)
dτ

= ΔẋT(k, τ)P1Δx(k, τ) + ΔxT(k, τ)P1Δẋ(k, τ) = η̄TΨ1η̄, (17)

ΔV2(k, τ) = eT(k, τ)P2e(k, τ) − eT(k − 1, τ)P2e(k − 1, τ)

= η̄TΨ2η̄ − eT(k − 1, τ)P2e(k − 1, τ), (18)

and the increment of V (k, τ) is

δV =
dV1(k, τ)

dτ
+ ΔV2(k, τ) = η̄T

⎛
⎜⎜⎝Ψ1 + Ψ2 +

⎡
⎢⎢⎣

0 0 0

0 −P2 0

0 0 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠ η̄, (19)

where

η̄T =
[

ΔxT(k, τ), eT(k − 1, τ), ΓT(k, τ)
]
,

Ψ1 =

⎡
⎢⎢⎣

Ω11 P1Bk2 P1M

∗ 0 0

∗ ∗ 0

⎤
⎥⎥⎦ ,

Ω11 = (AT + CTkT
1 BT)P1 + P1(A + Bk1C),

Ψ2 =

⎡
⎢⎢⎣

−CT − CTk1D
T

1 − kT
2 DT

0

⎤
⎥⎥⎦P2

⎡
⎢⎢⎣

−CT − CTk1D
T

1 − kT
2 DT

0

⎤
⎥⎥⎦

T

.

(19) yields

δV −
[
ΓT(k, τ)Γ(k, τ) − η̄T

[
ΥT

0

]
[Υ, 0]η̄

]
= η̄TΛη̄, (20)

where

Λ = Ψ1 + Ψ2 +

⎡
⎢⎢⎣

0 0 0

0 −P2 0

0 0 −I

⎤
⎥⎥⎦ +

[
ΥT

0

]
[Υ, 0].
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According to Lemma 3, Λ < 0 is equivalent to the LMI

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Θ11 P1Bk2 P1M Θ14 Θ15

∗ −P2 0 Θ24 (N1k2)T

∗ ∗ −I 0 0

∗ ∗ ∗ −P2 0

∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (21)

where

Θ11 = (AT + CTkT
1 BT)P1 + P1(A + Bk1C),

Θ14 = −CTP2 − CTkT
1 DTP2,

Θ15 = (N0 + N1k1C)T,

Θ24 = P2 − kT
2 DTP2.

Pre- and post-multiplying Θ by diag{X1, X2, I, X2, I} yields the following LMI, which is equivalent to
(21): ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

H11 Bk2X2 M H14 H15

∗ −X2 0 H24 H25

∗ ∗ −I 0 0

∗ ∗ ∗ −X2 0

∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (22)

where

H11 = X1(AT + CTkT
1 BT) + (A + Bk1C)X1,

H14 = −X1C
T − X1C

TkT
1 DT,

H15 = X1(N0 + N1k1C)T,

H24 = X2 − X2k
T
2 DT,

H25 = X2(N1k2)T.

Since X1 = V [X11
0

0
X22

]V T, from Lemma 1, we find that there exists X̄1 = USX11S
−1UT such that

CX1 = X̄1C, (23)

and
X̄−1

1 = USX−1
11 S−1UT. (24)

Substituting (23), (24), k1 = W1USX−1
11 S−1UT, and k2 = W2X

−1
2 into (22) yields LMI (14).

From Lemma 2 and the Lyapunov stability theorem, we can conclude that, if LMI (14) holds, then

δV < 0, ∀η̄T �= 0.

The following algorithm, which is based on Theorem 1, gives the parameters of the repetitive controller
in Figure 2.

Design Algorithm:
Step 1. Find a feasible solution to LMI (14).
Step 2. Use (15) to calculate k1 and k2.
Step 3. Use (10) to calculate k̃1 and k̃2.
Step 4. Use (9) to calculate ke and ky.

Remark 1. Theorem 1 provides an LMI-based sufficient stability condition for continuous-discrete 2D
system (6) under control law (7). The algorithm just given is used to directly apply it to the design of
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the static-output-feedback repetitive-control system in Figure 2. To the best of our knowledge, this is
the first result on robust static-output-feedback-based repetitive control.

In addition, we can derive a sufficient stability condition for the nominal continuous-discrete 2D system{
Δẋ(k, τ) = AΔx(k, τ) + BΔu(k, τ),

e(k, τ) = e(k − 1, τ) − CΔx(k, τ) − DΔu(k, τ)
(25)

under control law (7).

Corollary 1. If there exist symmetrical positive definite matrices X11, X22, and X2, together with
arbitrary matrices W1 and W2, such that the LMI⎡

⎢⎢⎣
Ξ11 BW2 Ξ13

∗ −X2 Ξ23

∗ ∗ −X2

⎤
⎥⎥⎦ < 0 (26)

holds, where the singular value decomposition of the output matrix is C = U [S, 0]V T and

X1 = V

[
X11 0

0 X22

]
V T,

Ξ11 = AX1 + BW1C + X1A
T + CTWT

1 BT,

Ξ13 = −X1C
T − CTWT

1 DT,

Ξ23 = X2 − WT
2 DT,

then the nominal continuous-discrete 2D system (25) is asymptotically stable under control law (7).
Furthermore, the feedback gains are

k1 = W1USX−1
11 S−1UT and k2 = W2X

−1
2 . (27)

4 Numerical example

This section considers the problem of designing a controller for a DC motor driven manipulator with a
PI regulator. The control input is the voltage applied to the armature, and the output is the rotational
torque of the manipulator. The dynamics of the motor in the state space can accurately be described
using form (1).

Assume that the parameters of uncertain plant (1) are

A =

[
−1.6 −0.04

5 −0.5

]
, B =

[
−0.1

1

]
, C =

[
10 0

]
, D = 1,

M =

[
1 0

0 1

]
, N0 =

[
0 0.01

0 0.001

]
, N1 =

[
0

0.005

]
, F (t) =

⎡
⎢⎣ sin

2π

10
t 0

0 sin
2π

10
t

⎤
⎥⎦ .

Consider the problem of tracking the reference input

r(t) = sin
2π

10
t + 0.5 sin

4π

10
t + 0.5 sin

6π

10
t.

The algorithm in section 3 was used to design a robust repetitive-control law for the system in Figure 2.
More specifically, solving the feasibility problem for LMI (14) and the equations in (15) yield k1 = −0.5993
and k2 = 0.6875. Substituting those values into (10) and (9) yields ke = 1.7156 and ky = 0.2201.

The simulation results in Figure 3 show that the system enters the steady state in the 9th period and
that the steady-state tracking error is zero.
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Figure 3 Simulation results for uncertain plant under control law (4).

Figure 4 Simulation results for optimal state-feedback repetitive control for nominal plant.

For comparison, the optimal state-feedback repetitive-control law u(t) = kev(t) + kpx(t) was also
designed by the following conventional design method for repetitive control.

First, choose the performance index to be

J =
∫ +∞

0

(ΔxT(t)QΔx(t) + Δu2(t))dt.

Then, the feedback gains ke = 3.5, kp = [0.1061, − 1.6503] are obtained by solving the optimal control
problem.

The simulation results in Figure 4 show that, for the nominal plant, the system entered the steady state
in the 16th period. Clearly, our new 2D static output-feedback repetitive-control method is superior. It
provides not only robust stability for a plant with structured uncertainties, but also satisfactory tracking
performance. Furthermore, our control system configuration requires only information on the output
of the plant. It is also simpler than a conventional full-state-feedback structure and is much easier to
implement. That makes it very practical.

5 Conclusions

This paper presents the configuration of a robust static output-feedback repetitive-control system and a
design method for a class of linear systems with a relative degree of zero and with time-varying structured
uncertainties. First, a continuous-discrete 2D hybrid model is established that exploits the special features
of a repetitive-control system. Next, the singular value decomposition of the output matrix is used,
and the problem of designing a controller is converted into the problem of designing a robust stabilizing
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controller for a continuous-discrete 2D system. Then, an LMI-based stability condition for the closed-loop
system is derived using 2D system stability theory and LMIs. The control gains of the repetitive-control
law are obtained from a feasible solution to the LMI. Simulation results demonstrate the validity of the
method.
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