
. RESEARCH PAPERS .

SCIENCE CHINA
Information Sciences

June 2010 Vol. 53 No. 6: 1159–1169

doi: 10.1007/s11432-010-0090-0

c© Science China Press and Springer-Verlag Berlin Heidelberg 2010 info.scichina.com www.springerlink.com

L1/2 regularization

XU ZongBen1, ZHANG Hai1,2∗, WANG Yao1, CHANG XiangYu1 & LIANG Yong3

1Institute of Information and System Science, Xi’an Jiaotong University, Xi’an 710049, China;
2Department of Mathematics, Northwest University, Xi’an 710069, China;

3University of Science and Technology, Macau 999078, China

Received December 22, 2008; accepted February 26, 2009; published online May 8, 2010

Abstract In this paper we propose an L1/2 regularizer which has a nonconvex penalty. The L1/2 regularizer

is shown to have many promising properties such as unbiasedness, sparsity and oracle properties. A reweighed

iterative algorithm is proposed so that the solution of the L1/2 regularizer can be solved through transforming

it into the solution of a series of L1 regularizers. The solution of the L1/2 regularizer is more sparse than that

of the L1 regularizer, while solving the L1/2 regularizer is much simpler than solving the L0 regularizer. The

experiments show that the L1/2 regularizer is very useful and efficient, and can be taken as a representative of

the Lp(0 < p < 1) regularizer.
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1 Introduction

It is well known that variable selection and feature extraction are basic problems in high-dimensional and
massive data analysis. The traditional variable selection criteria such as AIC, BIC and Cp [1–3] involve
solving an NP hard optimization problem so they are infeasible for high dimensional data. Consequently,
innovative variable selection procedure is expected to cope with very high dimensionality, which is one of
the hot topics in machine learning. The regularization methods are recently used as feasible approaches
to solve the problem. In general, the regularization methods have the form

min
{

1
n

n∑
i=1

l(yi, f(xi)) + λ‖f‖k

}
, (1)

where l(., .) is a loss function, (xi, yi)n
i=1 is a data set, and λ is the regularization parameter. When f is in

the linear form and the loss function is square loss, ‖f‖k is normally taken as the norm of the coefficient
of linear model. Almost all the existing learning algorithms can be considered as a special form of this
regularization framework. For example, when k = 0, it is AIC or BIC, which is referred to as the L0

regularizer in this paper. When k = 1, it is the Lasso, which is called the L1 regularizer in this paper.
When k = 2, it is the ridge regression, which is called the L2 regularizer. And when k = ∞, it is the L∞
regularizer.
∗Corresponding author (email: zhanghai@nwu.edu.cn)
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The L0 regularizer is the earliest regularization method applied to variable selection and feature extrac-
tion. Constrained by the number of coefficients, the L0 regularizer yields the most sparse solutions, but
it faces the problem of combinatory optimization. The L1 regularizer (Lasso) proposed by Tibshirani [4]
provides an alterative for variable selection and feature extraction, which just needs to solve a quadratic
programming problem but is less sparse than the L0 regularization. At the same time, Donoho [5–7] pro-
posed Basis Pursuit when studying the signal sparsity recovery problem. They proved that under some
conditions the solutions of the L0 regularizer are equivalent to those of the L1 regularizer for the sparsity
problem, so the hard NP optimization problem can be avoided in the L1 regularizer. Based on the work
of the above mentioned scholars, the L1 regularizer and the L1 type regularizers, including SCAD [8],
Adaptive Lasso [9], Elastic net [10], Stagewise Lasso [11] and Dantzig selector [12], have become the
dominantly used tools for data analysis since then.

When the model has redundant irrelevant predictors, the variable selection and feature extraction are
to distinguish them from the true predictors with any amount of data and any amount of regularization.
A model is a sparse model if it has abundant irrelevant predictors. Clearly, the L0 regularizer is ideal for
variable selection in the sense of yielding the most sparse variables, but it is a combinatory optimization
problem which is difficult to be solved. While the L1 regularizer leads to a convex optimization problem
easy to be solved, but it does not yield sufficiently sparse solution. The solutions of the L2 regularizer
have the properties of being smooth, but they do not possess the sparse property. The solutions of L∞
regularizer do not have sparse property either. To our knowledge, the properties of the L∞ regularizer
are still unclear.

In recent years, there has been an explosion of researches on the properties of the L1 regularizer.
However, for many practical applications, the solutions of the L1 regularizer are often less sparse than
those of the L0 regularizer. To find more sparse solutions than L1 regularizer is, however, imperative and
required for many variable selection applications. Also, the L1 regularizer is inefficient when the errors
in data have heavy tail distribution [4]. A question then arises: whether we can find a new regularizer
which is more sparse than the L1 regularizer while it is still easier to be solved than the L0 regularizer? A
natural choice is to try the Lp(0 < p < 1) regularizer. But in so doing we have to answer the subsequent
two questions: (i) Which p is the best and should be chosen? (ii) Is there an efficient algorithm for solving
the nonconvex optimization problem deduced from the Lp(0 < p < 1) regularizer?

In this paper, our aim is to provide a satisfactory answer to the above questions. We propose the
L1/2(0 < p < 1) regularizer and show that the L1/2 regularizer can be taken as a representative of the
Lp(0 < p < 1) regularizers for the sparsity problem. Therefore what we need to do is to focus on the
situation when p = 1/2 for the Lp(0 < p < 1) regularizers. A reweighted iteration algorithm is proposed
so that the L1/2 regularizer can be efficiently solved through transforming it into a series of weighted L1

regularizer problems. We also present three application examples, a variable selection example, a prostate
cancer example and a compressive sensing example, to demonstrate the effectiveness and powerfulness of
the L1/2 regularizer. The variable selection example shows that the L1/2 regularizer is more efficient and
robust than Lasso when the errors have heavy tail distribution. The prostate cancer application shows
that the solutions of the L1/2 regularizer are not only more sparse than those of Lasso but they bring
about also the lower prediction error. In the compressive sensing example, it is shown that the L1/2

regularizer can significantly reduce the necessary sampling number for sparse signal exact recovery and
substantially require less measurements. Our research reveals that when 1/2 � p < 1, the L1/2 regularizer
is the most sparse and robust among the Lp regularizers, and when 0 < p < 1/2, the Lp regularizers have
similar properties to the L1/2 regularizer. So we conclude that the L1/2 regularizer can be taken as the
representative of the Lp(0 < p < 1) regularizers.

2 Regularization framework and L1/2 regularizer

To make things more clear, some notations used throughout the paper are introduced first. Then we
introduce the framework of regularization and discuss the differences among the existing regularizers.
Finally, we propose the L1/2 regularizer and present its theoretical properties.
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Let X be a set, and Y a subset of a Euclid space. Z = X × Y . Y is identified as the input space and
Y as the output space. Denote by F (X,Y ) an unknown probability distribution on Z = X × Y . The set

S = {(x1, y1), (x2, y2), . . . , (xn, yn)} ∈ Zn

of size n in Z drawn i.i.d. from P is called a training set. It is supposed that there exists a definite but
unknown function f∗(x) : X → Y (the true model). The goal is to select the real variables to predict the
sample data based on the training set by minimizing the expected loss (risk)

min
β
L(β) = Ex,yl(y, f(x, β)). (2)

Unfortunately, the distribution F is unknown and this quantity cannot be computed. So a common
practice is to substitute L(β) by an empirical loss Ln(β) and solve the problem via

min
β
Ln(β) =

1
n

n∑
i=1

l(yi, f(xi, β)). (3)

In general, (3) is known as an ill-posed problem. A direct computation based on this scheme very often
leads to overfitting; that is, the empirical error is minimized, but the performance of prediction for new
sample is poor. A common remedy for this is to replace it with

min
β

1
n

n∑
i=1

l(yi, f(xi, β)) s.t. p(β) � t, (4)

where p(β) is a nonnegative function, reflecting the expection of the solutions to be found. Different p
and t here are in correspondence with different constraints to the model, so different solutions will be
obtained respectively. The constraint is the strongest when t = 0 and becomes weaker as t becomes
larger. Denote β̂ = β(t). Generally, the same procedure can be obtained through the penalized form of
(4)

min
β

{
1
n

n∑
i=1

l(yi, f(xi, β)) + λP (β)
}
, (5)

where λ is a tuning parameter controlling the complexity of the model. (5) is the general framework of
regularization. Note that setting λ = ∞ in (5) results in the totally constrained solution (t = 0) whereas
λ = 0 yields the unconstrained solution (t = ∞). Denote β̂ = β(λ). Obviously, (5) is determined by two
elements—the loss function (data term) and the penalty form (penalty term). The different loss functions
and different penalties will result in different regularization algorithms. For example, let the loss function
be square loss and the penalty be L1 norm of coefficients. It is the Lasso. When the loss function is
hinge loss and the penalty is the L2 norm of coefficients, it is the SVM. In this paper, we study the case
in which the loss function is square loss but the penalty is a nonconvex function.

Consider the sparse linear model,

Y = XTβ + ε, Eε = 0, Cov(ε) = σ2I, (6)

where Y = (Y1, . . . , Yn)T is an n × 1 response vector, X = (X1, X2, . . . , Xn) (XT
i = (xi1, . . . , xip),

i = 1, . . . , n) and β = (β1, . . . , βp)T is a vector of p× 1 unknown parameters. ε is random error and σ2

is a positive constant. We suppose that the true model is f∗(x, β) = β∗
1x1 + β∗

2x2 + · · · + β∗
p0
xp0 , where

p0 � p. Let A = {j : β∗
j �= 0}. Then the true model depends only on a subset of the predictors. That is

to say, Y is relevant to p0 predictors, while the others are irrelevant predictors. Without loss generality,
we assume that the data are normalized. Just as stated above, the L0 regularizer defined by

β̂L0 = argmin
β

{
1
n

n∑
i=1

(Yi −XT
i β)2 + λ

p∑
i=1

Iβi �=0

}
(7)
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is an ideal method for variable selection. But unfortunately it is NP hard to solve, which is infeasible for
high dimensional and huge data. Recently, researchers have shifted their interests to the L1 regularizer

β̂L1 = arg min
β

{
1
n

n∑
i=1

(Yi −XT
i β)2 + λ

p∑
i=1

|βi|
}
, (8)

which is referred to as Lasso or Basis Pursuit. A series of L1 type regularizers [8–12] have been proposed.
A natural question is how to select a proper regularizer among all those regularizers. Some criteria have
been suggested by Fan [8]. He proposed that a good regularizer should possess the sparsity property; that
is, the resulting estimator should automatically set the irrelevant variables to zero; a good regularizer
should be unbiased, i.e., the resulting estimator should have low bias; a good regularizer should also be
continuous: the resulting estimator is continuous such that instability in model selection is reduced. And,
he believed that a good regularizer should have the Oracle property: we can identify the right subset
model exactly whenever we have it. Let β̂ denote the estimation of the parameters. Then a regularizer
has the Oracle property if and only if the following hold:

(A1) : {j : β̂j �= 0} = A,

(A2) :
√
n(β̂ − β∗) →d N(0,Σ∗),

where Σ∗ is the covariance matrix of the known true subset model. All of those criteria have become the
rule to determine a good regularizer.

In this paper, we propose the following L1/2 regularizer:

β̂L 1
2

= argmin
β

{
1
n

n∑
i=1

(Yi −XT
i β)2 + λ

p∑
i=1

|βi| 12
}
, (9)

where λ is the tuning parameter. Different from the L1 regularizer, the penalty in the L1/2 regularizer is
nonconvex. To show the value of the L1/2 regularizer, we explain the relation between the L1/2 regularizer
and the exiting regularizers below. Under the transformation p → 1

p , the L0 regularizer corresponds to
the L∞ regularizer, both of which have some extreme properties. The L1 regularizer is at the center with
the properties of sparsity and continuity. The L1/2 regularizer clearly corresponds to the L2 regularizer
which yields the smooth solutions. So the L1/2 regularizer most probably has special properties, which
inspire us to explore it further.

We further show the sparsity property of the L1/2 regularizer from the aspect of geometry. Figure 1
shows the graphics of the penalty of the L1/2, L1, L2 and L∞ regularizers. As shown in Figure 1, the
constraint region of the L1 regularizer is a rotated square. The Lasso solution is the first place at which
the contours touch the square, and this will concur at a corner corresponding to a zero coefficient. The
graphs for L2 and L∞ are shown in Figure 1 too. There are no corners for the contours to hit and hence
zero solutions will rarely appear. It is obvious that the solution of the L1/2 regularizer occurs at a corner
with a higher possibility, which hints that it is more sparse than the L1 regularizer.

The following theorem shows the theoretical properties of the L1/2 regularizer.

Theorem 1. The L1/2 regularizer possesses sparsity, unbiasedness and Oracle properties.

Proof. Fan [8] has already proved the properties of sparsity and unbiasedness of the L1/2 regularizer.
In [13], Knight studied the asymptotic normal property of the L1 and the L1 type regularizers, and he
in essence has shown that the Lp(0 < p < 1) regularizer has the Oracle property. So Theorem 1 follows.

For the Lp(p > 1) regularizers, researcher have mainly focused on the L2 (ridge regression or SVM)
regularizer. Similarly, we will show that for the Lp(0 < p < 1) regularizers, only the L1/2 regularizer
should be worth considering. In the next section, we will present an algorithm for solving the L1/2

regularizer.
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Figure 1 Estimation pictures for (a) L1/2, (b) L1, (c) L2 and (d) L∞ regularizers.

3 An algorithm for L1/2 regularizer

In this section, we present an iteration algorithm to solve the L1/2 regularizer. We show that the solution
of the L1/2 regularizer can be transformed into that of a series of convex weighted Lasso, to which the
existing Lasso algorithms can be efficiently applied.

We first present the algorithm, and then analyze its convergence.

Algorithm.
Step 1. Set the initial value β0 and the maximum iteration step K. Let t = 0.
Step 2. Solve

βt+1 = argmin
{

1
n

n∑
i=1

(Yi −XT
i β)2 + λ

p∑
i=1

1√|βt
i |
|βi|

}
,

with an existing L1 regularizer algorithm, and let t := t+ 1.
Step 3. If t < K, go to Step 2, otherwise, output βt.
In the above algorithm, we have used K, the maximally allowable iteration step, as the termination

criterion. The initial value β0 normally can be taken as β0 = (1, 1, . . . , 1) though not necessary it should
be. However, with such a setting, the first iteration (t = 0) in Step 2 is exactly corresponding to solving
an L1 regularizer problem (thus, leading to a Lasso solution). When t = 1, Step 2 is to solve a reweighted
L1 regularizer problem, which can be transformed into an L1 regularizer via linear transformation. It is
possible that when t � 1, some βi are zero. So to guarantee the feasibly, we replace 1√

|βt
i |

with 1√
|βt

i |+ε

in Step 2 when implementing, where ε is any fixed positive real number.

Remark 1. The existing algorithms to solve the L1 regularizer include the gradient boosting [14],
quadratic programming [4], lars [15], piecewise linear [16] and interior point methods [17].

Below, we analyze the convergence of the algorithm. Let Rn(β) = Ln(β) + λ
∑p

i=1
1√
|βt

i |
|β| and
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R∗
n(β) = Ln(β) + λ

∑p
i=1

√|βi|. We rewrite (9) as

β̂1/2 = arg min
β+, β−

{
1
n

n∑
i=1

(Yi −XT
i (β+ − β−))2 + λ

p∑
i=1

√
β+

i + β−
i

}
,

where β+ = max(β, 0) and β− = −min(β, 0) are respectively the positive part and the negative part of
β. Obviously, β = β+ − β− and |β| = β+ + β−. So we get

Rn(β) =
1
n

n∑
i=1

(yi −XT
i (β+ − β−))2 + λ

p∑
i=1

1√
β+t

i + β−t
i

{β+
i + β−

i }.

Let βt = (β+, β−)t. Then Step 2 of the algorithm equates to minimizing Rn(β); thus βt+1 satisfies

−→�Ln(βt+1) = −λ−→�P (βt). (10)

We have the following theorem.

Theorem 2. βt converges to the stationary point set of R∗
n(β) as t→ ∞.

Proof. The convexity of Ln(β) implies

Ln(βt) � Ln(βt+1) + (βt − βt+1)
−→�Ln(βt+1), (11)

for all βt, βt+1. While λ
∑p

i=1

√
β+ + β− is a concave function about β+, β−, we have for all βt, βt+1,

λP (βt+1) � λP (βt) + (βt+1 − βt)λ
−→�P (βt). (12)

Combining (11) with (12) and using (10), we obtain

R∗
n(βt+1) � R∗

n(βt).

So R∗
n(β) is a bounded and monotonically decreasing function. By the well-known Lasalle invariance

principle, βt converges to the set of stationary points of R∗
n(β) as t→ ∞.

Theorem 2 shows that the L1/2 regularizer will always approach to the set of local minimizers of R∗
n(β),

andR∗
n(βt) will converge to one of its local minima. Since, for the first iteration, the algorithm degenerates

to solving an L1 regularizer problem, β1 is just the solution of Lasso. Consequently, the solution yielded
by the L1/2 regularizer algorithm must be more optimal than those of Lasso. Note that the nonconvex
optimization has been always a hot topic [18, 19]. The algorithm proposed in this paper is inspired
by their work. For example, Candes [20] recently proposed a regularization iteration methods βt+1 =
arg min{ 1

n

∑n
i=1(Yi−XT

i β)2+λ
∑p

i=1
1

|βt
i |+ε

|βi|}. The efficiency of this algorithm is shown by experiments.

It is easy to see that their work is just to iteratively solve min{ 1
n

∑n
i=1(Yi−XT

i β)2+λ
∑p

i=1{log(|βi|+ε)}},
the theoretical properties of which can then be analyzed in the framework of this section.

4 Experiments

In this section, we apply the L1/2 regularizer to three application examples: a variable selection example,
a prostate cancer example and a compressive sensing example.

Example 1 (Variable selection). We consider the following linear model used in Tibshirani [4] when
studying the sparsity of Lasso:

Y = XTβ + σε, (13)

where β = (3, 1.5, 0, 0, 2, 0, 0, 0), XT = (X1, . . . , X8) and ε is random error. We assume that ε obeys
the mixture of normal distribution and Cauchy distribution. We assume also that each xi obeys nor-
mal distribution and the correlation between xi and xj satisfies ρ|i−j| with ρ = 0.5. We have simulated 100
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Table 1 Results of Lasso and L1/2 regularizer

Method CAN of zero ICAN of zero

Lasso 4.01 0.07

L1/2 4.6 0.23

datasets consisting of 100 observations with the ε being drawn from the standard normal distribution
plus 30% outliers from the standard Cauchy distribution. Then each data set was divided into two parts:
a training set with 60 observations and a test set with 40 observations. We applied the Lasso and the L1/2

regularizer algorithm to the 100 datasets with the tuning parameter being selected by minimizing mean
square error (MSE) on the test data. We have used the gradient boosting to solve the L1 regularizer.
The average number of correctly identified zero coefficients (CAN of zero in brief) over the 100 tests, and
the average number of incorrectly identified zero coefficients (ICAN of zero in brief, that is, the number
of the coefficients whose value is zero in the resultant model but nonzero in the true model) are recorded.
These are shown in Table 1.

From Table 1, we can see that CAN of zero is 4.6 when the L1/2 regularizer is applied, while it is 4.01
when Lasso is applied. This shows that the L1/2 regularizer is more efficient and robust than Lasso when
the errors have heavy tail distribution.

Example 2 (Prostate cancer). The data set in this example is derived from a study of prostate cancer
by Blake et al. [21]. The dataset consists of the medical records of 97 patients who were about to receive
a radical prostatectomy. The predictors are eight clinical measures: log (cancer volume) (lcavol), log
(prostate weight) (lweight), age, the logarithm of the amount of benign prostatic hyperplasia (lbph),
seminal vesicle invasion (svi), log (capsular penetration) (lcp), Gleason score (gleason) and percentage
Gleason score4 or 5 (pgg45). The response is the logarithm of prostate-specific antigen (lpsa). One of
the main aims here is to identify which predictors are more important in predicting the response. The
prostate cancer data were divided into two parts: a training set with 67 observations and a test set with
30 observations. The tuning parameter is selected again by minimizing the mean square error on the test
data. In simulation the gradient boosting algorithm was used to solve the L1 regularizer. The simulation
results are shown in Figure 2. From Figure 2, we can see that the Lasso has seleted lcavol, svi, lweight,
lbph and pgg45 as the variables in the final model, whereas the L1/2 regularizer selects lcavol, svi, lweight
and lbph. The prediction error of Lasso is 0.478 while that of the L1/2 regularizer is 0.468. Comparing
the results, we can conclude that the solutions of the L1/2 regularizer are not only more sparse than those
of Lasso but they have also lower prediction error.

Example 3 (Compressive sensing). The compressive sensing has been one of the hot topics of research
in recent years [22–24]. Different from the traditional Shannon/Nyquist theory, the compressive sensing
is a novel sampling paradigm that goes against the common wisdom in data acquisition. It brings the
reality of recovering certain signals from far fewer samples or measurements than Shannon sampling
method.

Consider a real-valued, finite-length signal x, viewed as an N × 1 vector in RN . x then can be
represented in an orthonormal basis {ψi}N

i=1 of RN . Let Ψ = [ψ1, . . . , ψN ]. Then x can be expressed as

x = Ψ̃s =
N∑

i=1

siψi, (14)

where s is the column vector of coefficients. If for the chosen basis, x is sparse, then many coefficients si

are equal to zero. Let us suppose that the signal x is K-sparse, namely it is a linear combination of only
K basis vectors; that is, only K of the si coefficients are nonzero and the others are zero.

The traditional signal reconstruction methods first take N measurements (samplings) of x, obtain a
complete set of coefficients si (via si = xTφi), and then, select the largest K nonzero coefficients s∗j and
get the reconstructed signal x∗ =

∑s
i=1 s

∗
jφi. Thus, to reconstruct an N length signal, N samplings are

needed. The compressive sensing addresses the problem in a different way: it directly takes the compressed
measurements of the signal without going through the intermediate step of acquiringN samples. Given an
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Figure 2 Comparison of variable selection results when Lasso (a) and L1/2 (b) regularizer are applied to Example 2.

Figure 3 Sparse signal recovery by Lasso and L1/2 regularizer.

M×N matrix Φ = [φ1, . . . , φM ] (called a sensing matrix, understood as the composition of a compression
matrix and an orthonormal basis matrix), we get M measurements yi (i = 1, . . . ,M) via the inner
products yi = 〈x, φi〉(K � M � N), and then we reconstruct x from the M measurements. For simplicity,
we will consider only the problem y = Φx where x is sparse. Since φ is a known basis, knowledge of
x equivalent to knowledge of s. It is shown in [22–24] that the reconstruction of x can be modeled as
finding the minimizer of the following L0 problem:
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min
x∈RN

N∑
i=1

Ixi �=0 s.t. y = Φx.

According to Donoho [23], the above L0 problem can be replaced by the following simpler problem:

min
x∈RN

N∑
i=1

|xi| s.t. y = Φx.

This is an L1 problem. We propose to apply the L1/2 regularizer to solve the problem, that is, to use the
solution of

min
x∈RN

N∑
i=1

|xi|1/2 s.t. y = Φx

to reconstruct the signal.
The following experiments were conducted to show the feasibility and powerfulness of the L1/2 regu-

larizer. We fixed x at a signal length of N = 512 which contains 60 nozero spikes. We took the sensing
matrix Φ being Gaussian random, let sampling be uniform in [0, 512], and then, applied the L1/2 reg-
ularizer together with L1 regularizer (L1 magic algorithm was used) to reconstructe the signal. The
error between the reconstructed signal and the original one, error=

∑512
i=1 |xi − x∗i |, was computed in the

simulation. The simulation results are shown in Figure 3.
Figure 3(a) shows the original signal, and FIgure 3(b) shows the reconstructed signal when the L1

regularizer is applied with 184 samplings. In this case, the reconstruction is perfect and error=2.6729e-
04. Figure 3(c) shows that when sampling number becomes 182, the L1 regularizer is very poor with
error=19.3224. Nevertheless, when the L1/2 regularizer is applied, as shown in Figure 3(d), the recon-
struction is still perfect, with error=9.7304e-006, even based on the same measurements. This experiment
shows that the lowest number of samplings for the L1 regularizer is at least 184. When the sampling
number is reduced, say, to 182, the L1 regularizer cannot perfectly reconstruct the signal any more, but
the L1/2 regularizer can.

Another experiment was carried out to see whether the measurements required by the L1/2 regularizer
can be far less than the least measurements required by the L1 regularizer (184). We have simulated
the L1 regularizer and the L1/2 regularizer with many different measurements under M � 184. The
simulation results are uniform: when sampling number is less than 184 (the sampling numbers are 160
and 150), the L1 regularizer never can satisfactorily reconstruct the signal, as shown in Figure 4(a) and
(c) (in these cases, error is 17.0238 and 14.1106 respectively). However, when sampling is less than 184,
the L1/2 regularizer can be sure to reach a perfect recovery of the signal, as demonstrated in Figure
4(b) and (d). In these cases, the L1/2 reconstructed error respectively are 6.1918e-06 and 1.4769e-05.
This experiment shows that for the perfect signal recovery of x, the lowest sampling number required by
the L1/2 regularizer is under 150, far less than 184, the number at least required by the L1 regularizer.
This proves that the capability of signal recovery of the L1/2 regularizer is stronger than that of the L1

regularizer.
The performance of the Lp(0 < p < 1, p �= 1/2) regularizers were also evaluated in this application.

The evaluation shows that the L1/2 regularizer is always best for 1/2 � p < 1 and the Lp regularizers
perform similarly when 0 < p � 1/2.

5 Analysis of experiment results

From Experiment 1, we find that the L1/2 regularizer is more sparse than the L1 regularizer. At the same
time, the L1/2 regularizer is more efficient and effective for heavy tail datasets. From Experiment 2, we
find that the L1/2 regularizer is able to select less variables, which shows that the L1/2 regularizer is good
at the gene data analysis. In Experiment 3, we find that for the same original sparse signal and when
the completely reconstruction condition is met, the L1/2 regularizer requires far less samplings than the
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Figure 4 Capability comparison of signal recovery by Lasso and L1/2 regularizer.

L1 regularizer. Meanwhile, we find that in reconstructing the same original signal, the use of the Lp(0 <
p < 1/2) regularizer or the L1/2 regularizer bears no significant difference.

Although sparsity is widely studied in recent years, no unified criterion is available to measure the
sparsity of a problem. Our investigation into signal reconstruction in the compressive sensing example
suggests that “the sampling number needed for a regularizer to exactly reconstruct a sparse signal” may
serve as a measure, which might provide a feasible approach to analyzing the properties of an algorithm
in the field of variable selection.

6 Conclusions

The L1/2 regularizer proposed in this paper is easier to be solved than the L0 regularizer and, meanwhile,
more sparse and stable than the L1 regularizer. Consequently, the L1/2 regularizer can be more powerfully
and widely used than the L0 and L1 regularizers. We have suggested an efficient algorithm to solve the
L1/2 regularizer which transforms a nonconvex problem into a series of L1 regularizer problems to which
the existing L1 regularizer algorithms can be effectively applied.

Our experiments have shown that the solutions yielded from the L1/2 regularizer are more sparse and
stable than those of the L1 regularizer. It is particularly more appropriate for heavy tail data. Further-
more, the variable selection application experiments have shown that the Lp(0 < p < 1) regularizers can
be represented by the L1/2 regularizer because when 1/2 < p < 1, the L1/2 regularizer always yields the
best sparse solution and when 0 < p < 1/2, the L1/2 regularizer has a sparse property similar to that
of the Lp regularizers. All those properties show the great value of the L1/2 regularizer. The results
obtained in this work can be applied directly to other sparsity problems, such as blind source separation
and sparse image representation. All these problems are under our current research.
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