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Controllability of multi-agent systems based on

agreement protocols
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This paper investigates the controllability of multi-agent systems based on agreement protocols. First,
for a group of single-integrator agents, the controllability is studied in a unified framework for both net-
works with leader-following structure and networks with undirected graph. Some new necessary/suffi-
cient conditions for the controllability of networks of single-integrator agents are established. Second,
we prove that, under the same topology and same prescribed leaders, a network of high-order dynamic
agents is completely controllable if and only if so is a network of single-integrator agents. Third, how
the selection of leaders and the coupling weights of graphs affect the controllability is analyzed. Finally,
some numerical simulations are presented to demonstrate the effectiveness of the theoretical results.
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1 Introduction

In recent years, studies on multi-agent dynamic
systems have received much attention in vari-
ous research fields[1−24]. Distributed control and
coordination of multi-agent systems have made
great progress due to the rapid developments of
computer science and sensing & communication
technologies[4−20]. Applications of these researches
pertain to cooperative control of unmanned air ve-
hicles, distributed estimation over sensor networks,
swarm-based computing, etc. Research directions
in distributed control and coordination of multi-
agent systems include flocking motion of multiple
autonomous agents[4−6], formation control of mul-

tiple mobile robots[7−10], rendezvous problem[11,12],
agreement/consensus problem[13−20], and so on.

As a kind of coordination behavior, the agree-
ment of multi-agent systems, that is, the corre-
sponding states of all the agents converge to a
common desired quantity by implementing appro-
priate agreement protocols, has attracted consid-
erable research efforts[13−20]. On the other hand,
the controllability is a fundamental and important
issue for controlled systems. The controllability
plays a basic and fundamental role in numerous re-
search, such as pole assignment, structure decom-
position, optimal control and robust control. How-
ever, exploring the controllability of multi-agent

Received January 25, 2009; accepted July 13, 2009

doi: 10.1007/s11432-009-0185-7
†Corresponding author (email: longwang@pku.edu.cn, longwang@mech.pku.edu.cn, jiangfc@pku.edu.cn)

Supported by the National Natural Science Foundation of China (Grant Nos. 60674050, 60736022, 10972002, 60774089), and the 11-5 Project

(Grant No. A2120061303)

Citation: Wang L, Jiang F C, Xie G M, et al. Controllability of multi-agent systems based on agreement protocols. Sci China Ser F-Inf Sci,

2009, 52(11): 2074–2088, doi: 10.1007/s11432-009-0185-7



systems is a challenging task. This is because
the behavior of networks of dynamic agents is af-
fected by many factors, such as the dynamics of
agents, the information flows among agents, and
the distributed control laws of the networks involv-
ing agreement/consensus protocols.

This paper studies the controllability for both a
network of single-integrator agents and a network
of high-order dynamic agents based on agreement
protocols. The interactions among agents are mod-
eled by graphs. For a given multi-agent system,
all the agents are divided into two roles: leader
and follower. An agent is regarded as a leader
if the agent is actuated by some exogenous con-
trol inputs besides the interactions coming from
its neighboring agents; an agent is recognized as a
follower if the movement of the agent is only dom-
inated by the interactions of its neighbors. We as-
sume that the states of the leaders can be steered
to arbitrary values by the exogenous control in-
puts. The controllability of multi-agent systems
reflects whether the states of the leaders are able
to drive those of the followers to arbitrary states
in finite time or not, or say, reflects the ability of
the leaders controlling the followers. For a group of
single-integrator agents, the controllability is stud-
ied in a unified framework for networks with leader-
following structure[21−24] and networks with undi-
rected graph[25,26]. Some new necessary/sufficient
conditions for the controllability of networks of
single-integrator agents are established. For net-
works of high-order dynamic agents, we investigate
the controllability under two kinds of agreement
protocols. It is proved that the controllability of
networks of high-order dynamic agents is equiva-
lent to that of networks of single-integrator agents
under the same topology and same prescribed lead-
ers. In addition, we analyze that the selection of
leaders and the coupling weights of graphs have
important influence on the controllability of net-
works. Based on graphical characterization, a nec-
essary condition for the controllability of networks
is established, and a relation between the controlla-
bility of networks and the structural controllability
of linear systems is revealed.

The remainder of the paper is organized as
follows. Section 2 presents some mathematical

preliminaries of graph theory. Section 3 studies
the controllability of networks of single-integrator
agents. Section 4 deals with the controllability for
networks of high-order dynamic agents. Section 5
analyzes the effects of the selection of leaders and
the coupling weights of graphs on the controllabil-
ity. Section 6 contains some numerical examples
and the last section makes the conclusions.

Notations: R is the set of real numbers, R
m

denotes the real vector space of real m-vectors.
Let Im be an identity matrix with order m × m.
0 denotes a zero matrix with appropriate order.
ei ∈ R

m is the ith standard basis vector in R
m.

m = {1, . . . , m} is an index set. ⊗ denotes the
Kronecker product of matrices.

2 Mathematical preliminaries

In this section, we present some concepts and basic
results on graph theory, which are very useful for
the development of the paper.

A digraph (undirected graph) G consists of a ver-
tex set V = {v1, v2, . . . , vN}, and an arc (edge) set
E ⊂ V × V, denoted by G = (V, E). An arc (edge)
of G, denoted by eij = (vi, vj), is an ordered (un-
ordered) pair of distinct vertices of V. The first ver-
tex and the second vertex are called the tail and the
head of eij , respectively. If eij = (vi, vj) is an arc,
then we say that vi and vj are adjacent or vi is a
neighbor of vj. In this paper, we assume that there
are no self-loops, i.e., eii �∈ E . Denote the neighbors
of vertex vi by Ni = {vj : eji = (vj, vi) ∈ E}. A
path from vi to vj means that there is a sequence of
distinct arcs in E , (vi, v1), (v1, v2), . . . , (vr, vj);
if vi = vj we say the sequence of arcs to be a cyclic
path. A directed tree is a digraph, where each ver-
tex has exactly one tail except for one special ver-
tex without any tail. The special vertex is called
the root of the tree. We say a graph has a spanning
tree if there exists a subset of the arcs E ′ ⊂ E such
that the graph (V, E ′) is a directed tree. A directed
graph is said to be strongly connected, if there ex-
ists a path between any two distinct vertices of
the graph. For undirected graph, the strongly con-
nected property is usually called connected. Let
G = (V, E) and G′ = (V ′, E ′) be two graphs. We
call G′ a subgraph of G, denoted by G′ ⊂ G, if
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V ′ ⊂ V, E ′ ⊂ E . In addition, if two vertices of V ′

are adjacent in G′ if and only if they are adjacent
in G, then we say that G′ is an induced subgraph
of G. An induced subgraph of G that is maximal
and strongly connected, is said to be a strong com-
ponent of the graph. For an undirected graph, it
is called a connected component. An undirected
graph is called complete if every pair of distinct
vertices are adjacent.

Next, let A = [aij ] be a nonnegative matrix with
rows and columns indexed by the vertices of G (a
nonnegative matrix means that all the entries of
the matrix are nonnegative). A weighted graph is
a graph G = (V, E) with a nonnegative matrix A,
denoted by G(A), such that (vi, vj) ∈ E if and only
if aji > 0. Here A is called a weighted adjacency
matrix of G, and aji is called a weight of the arc
(vi, vj). Particularly, if A is a 01-matrix (which
means that the entries of A are 0 or 1), then we
say G(A) is an un-weighted graph, or say, G(A)
depicts the topological structure of G. Throughout
this paper, we always use G and G(A) to represent
an un-weighted graph and a weighted graph with
the weighted adjacency matrix A, respectively. If
G(A) is an undirected graph then A is symmetric,
i.e., AT = A.

The Laplacian matrix L(G(A)) = [lij ] ∈ R
N×N

of a graph G(A), abbreviated as L, is defined as

lij =

{∑
vj∈Ni

aij , i = j,

−aij, i �= j.

It is obvious that the sum of all entries in any row
of L is zero.

3 Networks of single-integrator dynamic
agents

In this section, we consider a multi-agent system
composed of N + nl agents, which are labeled 1
through N + nl. The dynamics of each agent is
described by

ẋi = ui, i ∈ N + nl, (1)

where xi ∈ R
d is the state of agent i, and ui ∈ R

d is
the control input. In the context of agreement for
multi-agent systems, the control input is called an
agreement protocol. The interactions or commu-
nication links among agents are realized in their

control inputs. We employ a graph G = (V, E)
to model the interaction relations among agents.
Each vertex vi in V represents an agent i of the
multi-agent system, and each arc eij in E means
that there is a communication link or an informa-
tion flow from agent i to agent j. If for any eij ∈ E ,
eji ∈ E as well, then the communication is said to
be bidirectional, namely, when agent i can receive
information from agent j, agent j can receive infor-
mation from agent i as well; otherwise, the commu-
nication is said to be unidirectional. Interactions
among agents are realized through the following
typical linear agreement protocol:

ui =
∑
j∈Ni

(xj − xi), i ∈ N + nl, (2)

which is widely studied in refs. [13–15] from the
perspective of the convergence to agreement.

For a given multi-agent system under an agree-
ment protocol, we refer to Gx = (G, x) as a network
with value x ∈ R

d(N+nl) and graph/topology G,
where x is the state collection of all the agents and
G captures the communication links among agents.
The controllability problem for networks based on
agreement protocols is called the controlled agree-
ment problem for networks. For simplicity, we as-
sume that the dimension of agents d = 1. All the
results in the present paper are valid for any di-
mension d, just rewriting the expressions based on
Kronecker product of matrices.

In what follows, we first recall some typical topo-
logical structures of networks in refs. [21–26], and
the modeling methods which transform the agree-
ment dynamics of a network into a controlled lin-
ear system. Furthermore, we establish some new
necessary/sufficient conditions for the controllabil-
ity of the associated controlled linear system. The
results of this section extend and improve the ex-
isting results to a certain extent.

We start with the partition of agents into leaders
and followers. For a given multi-agent system, an
agent is called a leader if the agent is actuated by
some exogenous control inputs besides the inter-
actions coming from its neighboring agents; other-
wise, the agent is called a follower.

3.1 Topological structures

In the literature, the controlled agreement prob-
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lems were mainly discussed for two kinds of net-
works: networks with leader-following struc-
ture[21−24] and networks with undirected
graph[25,26], which are restated as follows.
3.1.1. Networks with leader-following struc-
ture[21−24]1). The communication links among the
leaders and the followers are unidirectional, that is,
there only exist information flows from the leaders
to the followers; the communication links among
the followers are bidirectional. The dynamics of
the followers abides by (2), while the dynamics
of the leaders selects control inputs indifferently
and freely. In Figure 1, if we delete the links rep-
resented by dashed lines, the graph with vertices
1, 2, 3, 4 and 5 is an example of such a network.

Figure 1 Schematic diagram for topology structures of net-

works.

Suppose there are N followers and nl leaders over
a network with leader-following structure. Unless
it is explicitly specified, we will assume that the fol-
lowers have small labels and the leaders have large
ones, that is, we will label the followers from 1 to
N and the leaders from N + 1 to N + nl. For the
network, the associated Laplacian matrix can be
written as

L =

[
Lf lfl

0 Ll

]
, (3)

where Lf corresponds to the indices of the follow-
ers, and Ll corresponds to the indices of the lead-
ers.

Assume the nl leaders are governed by the ex-
ogenous control input z ∈ R

nl which can steer the
states of the leaders to arbitrary values. Based on
the partition of agents, we can write the agreement
dynamics (1)–(2) as[

ẋ

ẏ

]
= −

[
Lf lfl

0 Ll

][
x

y

]
+

[
0

z

]
,

where x is the stacked vector of the followers’ states
and y is the stacked vector of the leaders’ states.
Then the dynamics of the followers can be viewed
as the controlled linear time-invariant system

ẋ = −Lfx − lfly (4)

with the control input being the leaders’ states y.
We call the controlled linear time-invariant system
above a controlled agreement system of the net-
work. The following definition presents the concept
of a network being completely controllable.

Definition 1. For a given network Gx, we
say the network is completely controllable under
some prescribed leaders, if its associated controlled
agreement system is completely controllable (see
ref. [27]).
3.1.2 Networks with undirected graph[25,26].
The communication links of the whole network are
bidirectional. In order to transform the agreement
dynamics (1)–(2) into a controlled agreement sys-
tem, some agents are appointed the leaders. The
movements of these leaders are dominated by some
exogenous control inputs, besides the state infor-
mation obtained from their neighbors. In Figure 1,
if we view the two pairs of arcs in opposite direc-
tions, connecting 4, 1 and 5, 3, as two edges, then
the graph is an example of such a network.

Suppose there are N followers and nl leaders over
a network with undirected graph, then the associ-
ated Laplacian matrix is in the form

L =

[
Lf lfl

lTfl Ll

]
, (5)

where Lf and Ll have the same meanings as in (3).
Then from the dynamics[

ẋ

ẏ

]
= −

[
Lf lfl

lTfl Ll

][
x

y

]
+

[
0

z

]
,

1) Note that we use the terminology “leader-following structure” just to emphasize that there only exist information flows from the

leaders to the followers.
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we can derive the controlled agreement system of
the network is taken in the form (4) as well.

Remark 1. By observing the properties of
these two kinds of networks, we find that a network
with leader-following structure has the same con-
trolled agreement system as a network with undi-
rected graph, under the same partition of leaders
and followers and the same block matrices Lf and
lfl in their respective Laplacian matrices. Thus it
is natural to think that there may exist some con-
nections between the controllability of these two
kinds of networks.

Based on the observation above, we next es-
tablish a unified framework for the controllability
of these two kinds of networks. To this end, we
provide the following definition on the underlying
undirected graph of a graph.

Definition 2. For a given graph G = (V, E),
we say an undirected graph to be the underlying
undirected graph of G, denoted by Gu = (Vu, Eu),
if Vu = V and Eu is an edge set of unordered pairs
of distinct vertices of Vu, where an edge eu

ij ∈ Eu if
eij ∈ E or eji ∈ E .

Given a network Gx with some prescribed lead-
ers, denote the associated Laplacian matrix of G as
L = [Lf

llf

lfl

Ll
]. Let S be a collection of graphs, where

G ∈ S means that the Laplacian matrix associated
to its underlying undirected graph Gu has the form

Lu =

[
Lf lfl

lTfl L̃l

]
, (6)

where Lf and L̃l are symmetric matrices.

Remark 2. It is evident that networks with
leader-following structure studied in refs. [21–24]
and networks with undirected graph studied in refs.
[25, 26] belong to the collection S. Thus S brings
these two kinds of networks into a unified frame-
work. In addition, for a given network Gx with
G ∈ S, the controlled agreement system of the net-
work Gu

x is the same as that of Gx. Consequently,
the controllability of Gx is equivalent to that of Gu

x .
Under the unified framework, we derive some

new necessary/sufficient conditions for the control-

lability of networks with G ∈ S in the following
subsection.

3.2 Controllability criteria

Assumption 12). For a given graph G, let Gf

and Gl be the induced subgraphs on the followers
and the leaders, respectively; Gf and Gl are called
the follower subgraph and the leader subgraph, re-
spectively. We assume that the leader subgraph Gl

is linked to all the connected components of the
follower subgraph Gf . In other words, for each of
the connected components of Gf , there exists at
least one leader in Gl and one follower in the con-
nected component, such that there is a path from
the leader to the follower.

Proposition 1. For a given network Gx with
the dynamics (1)–(2) and G ∈ S, suppose there are
N followers and nl � 1 leaders, and the underlying
undirected graph is Gu with Laplacian matrix Lu.
If Assumption 1 is satisfied, then the correspond-
ing controlled agreement system (4) is completely
controllable if and only if there are no common
eigenvalues of Lu and Lf .

Proof. The proof is similar to the proof of
Lemma 2.2 in ref. [26], and hence is omitted.

Proposition 1 presents a necessary and sufficient
condition for the controllability of Gx with nl � 1
leaders based on the eigenvalues of Lf . We next
establish a necessary condition for the controllabil-
ity of the network characterized by the eigenvalues
and the eigenvectors of Lf , and provide a concise
proof theoretically.

Before establishing Theorem 1, we recall some
properties of symmetric matrices. It is well known
that any symmetric matrix has real eigenvalues
and is unitarily diagonalizable. Moreover, the left
eigenvector and the right eigenvector correspond-
ing to an eigenvalue of a symmetric matrix are
transpose mutually. Relations between the spec-
trum of a symmetric matrix and that of its princi-
ple sub-matrix are stated as follows.

Lemma 1 (Theorem 9.1.1 in ref. [28]). Sup-
pose S is a real symmetric n × n matrix and T is

2) Note that this assumption is a necessary condition for the controllability of controlled linear systems, which had been proved in

ref. [24], and it indicates that the state of each follower has direct or indirect connection with the control inputs (or the states of the

leaders). We will extend the necessary condition to the case of networks with general graph in section 5.
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a principal sub-matrix of S with order m×m. Let
λ1 � λ2 � · · · � λn and μ1 � μ2 � · · · � μm be
the respective eigenvalues of S and T . Then for
i = 1, . . . , m,

λn−m+i � μi � λi.

Theorem 1. For a given network Gx with the
dynamics (1)–(2) and G ∈ S, suppose there are
N followers and nl � 1 leaders, and Assumption 1
is satisfied. If the associated controlled agreement
system (4) is completely controllable, then 1) there
exists no eigenvalue of Lf with multiplicity more
than nl; 2) if there exists an eigenvalue of Lf with
multiplicity k � nl, then the product matrix Mlfl

has full row rank, where M ∈ R
k×N is composed

of the k linearly independent left eigenvectors cor-
responding to the eigenvalue.

Proof. Assume the underlying undirected
graph of G is Gu with the Laplacian matrix Lu.
According to Proposition 1, the system (4) be-
ing completely controllable indicates that there
are no common eigenvalues of Lu and Lf . Let
λ1 � · · · � λN+nl

and μ1 � · · · � μN be the respec-
tive eigenvalues of Lu and Lf . Then Lemma 1 im-
plies that λnl+i � μi � λi for i = 1, · · · , N . If 1)
does not hold, without loss of generality, we assume
nl = 2 and μ1 = μ2 = μ3, i.e. μ1 is an eigenvalue
of Lf with multiplicity three. Thus λ3 � μ1 � λ1,
λ4 � μ2 � λ2 and λ5 � μ3 � λ3. It follows that
λ3 = μ1, which contradicts the fact that there are
no common eigenvalues of Lu and Lf . Next, if 2)
does not hold, we assume the eigenvalue μs of Lf is
with multiplicity k � nl and the associated eigen-
vectors are u1, u2, . . . , uk, such that⎡

⎢⎢⎣
uT

1

...

uT
k

⎤
⎥⎥⎦ lfl

is row linearly dependent. It follows that there
exist some real numbers a1, . . . , ak, not all zero,
such that a1u

T
1 lfl + · · · + aku

T
k llf = 0. Let β =

a1u1 + · · · + akuk. Then β �= 0, Lfβ = μsβ and

Lu

[
β

0

]
=

[
Lf lfl

lTfl L̃l

][
β

0

]

=

[
Lfβ

lTflβ

]
= μs

[
β

0

]
,

which shows that μs is a common eigenvalue of Lf

and Lu. This is also a contradiction. The proof is
completed.

Remark 3. In the case of networks with one
leader, the result of Theorem 1 is consistent with
that of Theorem IV.1 of ref. [21].

Remark 4. Proposition 1 and the proof of
Theorem 1 are derived based on Remark 2, i.e.,
the equivalence in the context of modeling the con-
trolled agreement systems for the network Gx ∈ S

and the network Gu
x . In the viewpoint of networks

with leader-following structure, Proposition 1 pro-
vides a simple proof of Theorem 1. This improves
the results of refs. [21, 22, 24]. In the viewpoint
of networks with undirected graph, Proposition 1
expands the applicable ranges for the results of ref.
[26]. In other words, Proposition 1 indicates that if
the network with undirected graph studied in ref.
[26] is replaced by Gu

x , then the results of Theorem
4.5 and Corollary 4.6 in ref. [26] can be used to de-
termine the controllability of the network Gx ∈ S.

4 Networks of high-order dynamic
agents

In this section, we consider the controlled agree-
ment problem for a multi-agent system with high-
order dynamic agents. The dynamics of each agent
is given by the following mth order differential
equation:

ẋ
(1)
i = x

(2)
i , . . . , ẋ

(m−1)
i = x

(m)
i ,

ẋ(m)
i = ui, i ∈ N + nl, (7)

where m is a positive integer and denotes the order
of the differential equation (7); x

(1)
i ∈ R is called

an information variable of agent i for convenience
and x

(k+1)
i , k ∈ m − 1 is the kth order derivative

of x
(1)
i ; ui ∈ R is the control input. We will study

the controlled agreement problem for such a multi-
agent system under two agreement protocols: one
is with the feedbacks of all the relative state infor-
mation between neighboring agents (see ref. [29]),

ui = −
∑
j∈Ni

m−1∑
k=0

ck(x
(k+1)
i − x

(k+1)
j ),

i ∈ N + nl; (8)
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the other is with the feedbacks of partial relative
state information between neighboring agents (pro-
posed by ref. [30]),

ui =
m−1∑
k=1

ckx
(k+1)
i −

∑
j∈Ni

(x(1)
i − x

(1)
j ), (9)

for i ∈ N + nl, where c0, c1, . . . , cm−1 are nonzero
feedback gains.

For the convenience of expression, we refer a net-
work with the dynamics (7) and (8) to be network
I, and a network with the dynamics (7) and (9) to
be network II throughout this section.

We first explain why the high-order integrator is
employed to describe the dynamics of agents. The
idea is inspired by the following four facts. First,
any completely controllable continuous-time lin-
ear time-invariant (LTI) system, having the state-
space equation ẋ = Ax + Bv, can be equivalently
brought into a collection of decoupled and inde-
pendently controlled chains of integrators, under
an appropriate nonsingular linear transformation
and a suitable state feedback (see ref. [31]). Sec-
ond, if we simply use the matrix pair (A,B) to
denote the controlled system ẋ = Ax + Bu, then
the set of all completely controllable pairs (A,B)
is open and dense in the space composed of all ma-
trix pairs (A,B) (see ref. [32] and the references
therein). Third, take a single-input LTI system
ẋ = Ax + bu for example, where (A, b) is com-
pletely controllable and can be transformed into
the mth order integrator (7). (Note that any com-
pletely controllable multi-input LTI system can be
transformed into a completely controllable single-
input LTI system[33].) If the multi-agent system (7)
with the protocol (8) or (9) is completely control-
lable, then we can derive suitable agreement pro-
tocols, under which the multi-agent system with
agents modeled as ẋi = Axi + bvi is completely
controllable. (The agreement protocols are given
later on.) Finally, the high-order-integrator model
of agents is a generalization of the single/double-
integrator model, which were widely studied in refs.
[13, 14, 18, 20]. Hence it is of physical interest and
of theoretical interest to investigate the controlla-
bility of multi-agent systems with agents modeled
by high-order integrator.

Next, we investigate the controlled agreement

problem for networks of high-order dynamic agents
with topology modeled by a graph G. Denote
x[k] = [x(k)

1 · · · x(k)
N+nl

]T, k ∈ m as the collection
of the states of the system (7). Assume there are
N followers and nl � 1 leaders over the network.
Label the followers 1 through N , and the leaders
N + 1 through N + nl. The movements of these
leaders are dominated by some exogenous control
input z = [z1 · · · znl

]T ∈ R
nl , which can drive the

states of all the leaders to arbitrary values. Specif-
ically, the dynamics of the leaders takes the form
of

ẋ
(1)
N+i = x

(2)
i , . . . , ẋ

(m−1)
N+i = x

(m)
N+i,

ẋ
(m)
N+i = ui + zi, i ∈ nl,

where ui is given in (8) or (9). The Laplacian ma-
trix of G can be written as

L =

[
Lf lfl

llf Ll

]
, (10)

where Lf ∈ R
N×N and Ll ∈ R

nl×nl have the same
meanings as those of (3), and llf indicates the com-
munication links from the followers to the leaders.

4.1 Controllability of network I

According to the partition of leaders and followers,
the multi-agent system (7) under the protocol (8)
can be rewritten as the following stacked form⎡

⎢⎢⎣
ẋ[1]

...

ẋ[m]

⎤
⎥⎥⎦ = Ω

⎡
⎢⎢⎣

x[1]

...

x[m]

⎤
⎥⎥⎦ +

[
0

z

]
, (11)

where

Ω = Em ⊗ IN+nl
− Fm ⊗

[
Lf lfl

llf Ll

]
,

Em =

[
0 Im−1

0 0

]
,

Fm =

[
0

θT

]
,

θ = [c0 c1 · · · cm−1]T,

and z ∈ R
nl is the exogenous control input of the

leaders. Consequently, we can interpret the dy-
namics of the followers as the controlled LTI sys-
tem below:

ξ̇ = (Em ⊗ IN − Fm ⊗ Lf )ξ − (Fm ⊗ lfl)ϕ, (12)
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where ξ = [x(1)
1 · · · x

(1)
N · · · x

(m)
1 · · · x

(m)
N ]T

is the stacked vector of all the followers’ states,
ϕ = [x(1)

N+1 · · · x
(1)
N+nl

· · · x
(m)
N+1 · · · x

(m)
N+nl

]T is the
stacked vector of all the leaders’ states. Note that
the control input of the system in (12) is all the
states of the leaders.

The terminologies and notations which appear
in this section have the same meanings as those in
section 3.

Theorem 2. For a given network I with a
graph G, suppose there are N followers and nl lead-
ers. Then the controlled agreement system (12)
is completely controllable if and only if the con-
trolled agreement system (4), i.e., (−Lf , −lfl), is
completely controllable.

Proof. Denote A = Em ⊗ IN − Fm ⊗ Lf and
B = −Fm ⊗ lfl. We start the proof by observing
the relations between the spectrum of A and that
of Lf . Let λ be an eigenvalue of A and [βT

1 · · · βT
m]

with βk ∈ R
N , k ∈ m be the associated left eigen-

vector. Then we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−c0β
T
mLf = λβT

1 ,

βT
1 − c1β

T
mLf = λβT

2 ,
...

βT
m−1 − cm−1β

T
mLf = λβT

m.

Consequently,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

βT
1 = λm−1βT

m + cm−1λ
m−2βT

mLf + · · ·
+c1β

T
mLf ,

...

βT
m−2 = λ2βT

m + cm−1λβT
mLf + cm−2β

T
mLf ,

βT
m−1 = λβT

m + cm−1β
T
mLf ,

(13)

and

− (cm−1λ
m−1 + · · · + c1λ + c0)βT

mLf

= λmβT
m. (14)

We say that f(λ) := cm−1λ
m−1 + · · ·+c1λ+c0 �= 0.

Otherwise, (14) means that λ = 0 or βT
m = 0. If

λ = 0, then f(λ) = 0 results in c0 = 0, which
contradicts the fact that c0 is nonzero number. If
βT

m = 0, then (13) leads to βT
1 = · · · = βT

m−1 = 0,
which contradicts [βT

1 · · · βT
m] being a left eigen-

vector of matrix A. As a result, (14) implies that
− λm

cm−1λm−1+···+c1λ+c0
is an eigenvalue of Lf , denoted

by μ, and βT
m is the corresponding left eigenvec-

tor. For now, it follows that for any eigenvalue λ

of matrix Em ⊗ IN − Fm ⊗ Lf with a left eigen-
vector [βT

1 · · · βT
m], μ = − λm

cm−1λm−1+···+c1λ+c0
is an

eigenvalue of Lf with the corresponding left eigen-
vector βT

m. Conversely, for any given eigenvalue
μ of Lf with a corresponding left eigenvector βT,
we can obtain that the roots of the polynomial
sm + μcm−1s

m−1 + · · · + μc0 = 0 with respect to
s are the eigenvalues of Em ⊗ IN − Fm ⊗ Lf and
[βT

1 · · · βT
m−1 βT] is their corresponding eigenvec-

tors with⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β1 = (sm−1 + μcm−1s
m−2 + · · · + μc1)β,

...

βm−2 = (s2 + μcm−1s + μcm−2)β,

βm−1 = (s + μcm−1)β.

Next, we prove the conclusion of the theorem.
By contradiction, if the system (12) is uncon-

trollable, then there exists an eigenvalue λ of
Em ⊗ IN − Fm ⊗ Lf with an associated left eigen-
vector [βT

1 · · · βT
m] and βk ∈ R

N , k ∈ m, such
that −[βT

1 · · · βT
m](Fm ⊗ lfl) = 0. It follows that

μ = − λm

cm−1λm−1+···+c1λ+c0
is an eigenvalue of Lf

with βT
m being the corresponding left eigenvector,

and βT
mlfl = 0. This contradicts that (−Lf , −lfl)

is completely controllable. Conversely, if the sys-
tem (−Lf , −lfl) is uncontrollable, then we can eas-
ily derive a contradiction to the assumption that
the system (12) is completely controllable accord-
ing to the relations between the spectrum of the
two system matrices. Hence the details are omit-
ted.

4.2 Controllability of network II

In the case of network II, we have the following
dynamics of the whole closed-loop system:⎡

⎢⎢⎣
ẋ[1]

...

ẋ[m]

⎤
⎥⎥⎦ = Φ

⎡
⎢⎢⎣

x[1]

...

x[m]

⎤
⎥⎥⎦ +

[
0

z

]
, (15)

where z ∈ R
nl is given in (11),

Φ = Gm ⊗ IN+nl
− Hm ⊗

[
Lf lfl

llf Ll

]
,
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Gm =

[
0 Im−1

0 ϑT

]
, Hm =

[
0 0

1 0

]
,

ϑ = [c1 · · · cm−1]T.

This results in the dynamics of the followers be-
coming the controlled LTI system below:

ξ̇ = (Gm ⊗ IN − Hm ⊗ Lf)ξ − (em ⊗ lfl)ϕ1, (16)

where ξ is given in (12), ϕ1 = [x(1)
N+1 · · · x

(1)
N+nl

]T

and em ∈ R
m is the mth standard basis vector in

R
m. Note that the control input of the controlled

agreement system (16) is the leaders’ information
variables instead of all the states of the leaders.

Analogously, we derive the following necessary
and sufficient condition for the controllability of
network II.

Theorem 3. For a given network II with a
graph G, suppose there are N followers and nl lead-
ers. Then the associated controlled agreement sys-
tem (16) is completely controllable if and only if the
controlled agreement system (4), i.e., (−Lf , −lfl),
is completely controllable.

Proof. The proof is similar to that of Theorem
2. We only state the relations between the spec-
trum of Gm⊗IN−Hm⊗Lf and that of Lf . Let λ be
an eigenvalue of Gm⊗IN−Hm⊗Lf and [βT

1 · · · βT
m]

with βk ∈ R
N , k ∈ m be the associated left eigen-

vector, then μ = −(λm − cm−1λ
m−1 − · · · − c1λ) is

an eigenvalue of Lf and βT
m is the associated left

eigenvector. Conversely, for a given eigenvalue μ

of Lf with the associated left eigenvector βT, then
the roots of the polynomial sm − cm−1s

m−1 − · · · −
c1s+μ = 0 with respect to s are the eigenvalues of
Gm ⊗ IN − Hm ⊗ Lf and their corresponding left
eigenvectors are [βT

1 · · · βT
m−1 βT], where⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β1 = (sm−1 − cm−1s
m−2 − · · · − c2s − c1)β,

β2 = (sm−2 − cm−1s
m−3 − · · · − c2)β,

...

βm−1 = (s − cm−1)β.

The results above are very interesting as the
controllability of networks of high-order dynamic
agents is equivalent to that of networks of single-
integrator agents under the same topology and the
same prescribed leaders. That is to say, the con-
trollability of network I or II is indifferent of the

dynamics of agents, and only determined by their
topologies. In this sense, for a network I or II with
graph G ∈ S, the criteria for the controllability
of networks of single-integrator agents established
in Proposition 1 and Theorem 1 are suitable for
determining the controllability of the network.

4.3 Controllability of general networks

In this part, we first propose two agreement proto-
cols for networks of agents with dynamics modeled
by a completely controllable LTI system, and then
give some criteria for the controllability of the gen-
eral networks.

For the simplicity of expression, we consider net-
works of agents with dynamics modeled by a single-
input LTI system

ẋi = Axi + bvi, i ∈ N + nl, (17)

where xi ∈ R
m is the state of agent i, vi ∈ R

is the control input to be designed and (A, b) is
completely controllable. Suppose the characteris-
tic polynomial of A is sm−amsm−1−· · ·−a2s−a1,
and let T ∈ Rm be a nonsingular matrix such that
T−1AT = Ac, T

−1b = bc, where (Ac, bc) is the as-
sociated controllable canonical form of (A, b) and
bc = [0 · · · 0 1]T ∈ R

m.
Based on the protocol (8), we can derive the fol-

lowing agreement protocol for the system (17):

vi = gTT−1xi −
∑
j∈Ni

m−1∑
k=0

cke
T
k+1T

−1(xi − xj), (18)

where g = [ −a1 −a2 · · · −am ]T ∈ R
m, c0,

. . . , cm−1 are defined as in (8) and ek+1 ∈ R
m, k =

0, . . . ,m − 1. While based on the protocol (9), we
can establish another agreement protocol for the
system (17) as

vi = fTT−1xi −
∑
j∈Ni

eT
1 T−1(xi − xj), (19)

where f = [−a1 −(c1+a2) · · · −(cm−1+am)]T ∈
R

m, c1, . . . , cm−1 are defined as in (9) and e1 ∈ R
m.

For the network (17) and (18) with a graph G,
assume there are N followers and nl leaders, and
the associated Laplacian matrix is given in (10).
Label the followers 1 through N , and the leaders
N+1 through N+nl. The movement of each leader
is dominated by an exogenous control input zi ∈ R
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besides vi, or say, the dynamics of the leaders is in
the form

ẋi = Axi + b(vi + zi).

Let xf = [xT
1 · · · xT

N ]T and xl = [xT
N+1 · · · xT

N+nl
]T.

Then⎧⎪⎨
⎪⎩

ẋf = (IN ⊗ Jm − Lf ⊗ Km)xf − (lfl ⊗ Km)xl,

ẋl = (Inl
⊗ Jm − Ll ⊗ Km)xl − (llf ⊗ Km)xf

+(Inl
⊗ b)z,

where Jm = A + bgTT−1, Km = b
∑m−1

k=0 cke
T
k+1T

−1

and z = [zN+1 · · · zN+nl
]T. The dynamics of xf

is the controlled agreement system of the network
(17) and (18). Let xf = (IN ⊗ T )x̄f . We have

˙̄xf = (IN ⊗ Em − Lf ⊗ Fm)x̄f − (lfl ⊗ T−1Km)xl,

where Em and Fm are given in (12). Denote
x̄f = [x̄11 · · · x̄1m; · · · ; x̄N1 · · · x̄Nm]T. Let
x̄f = P1 ¯̄xf , where P1 is a permutation matrix and
¯̄xf = [x̄11 · · · x̄N1; · · · ; x̄1m · · · x̄Nm]T. It follows
that

˙̄̄xf = (Em⊗IN −Fm⊗Lf )¯̄xf −P−1
1 (lfl⊗T−1Km)xl.

Define x̄l = [x̄(N+1)1 · · · x̄(N+1)m; · · · ; x̄(N+nl)1 · · ·
x̄(N+nl)m]T which satisfies x̄l = (Inl

⊗ T−1)xl; ¯̄xl =
[x̄(N+1)1 · · · x̄(N+nl)1; · · · ; x̄(N+1)m · · · x̄(N+nl)m]T;
P2 is a permutation matrix such that x̄l = P2 ¯̄xl.
Then the system

(Em ⊗ IN − Fm ⊗ Lf , −P−1
1 (lfl ⊗ T−1Km))

= (Em ⊗ IN − Fm ⊗ Lf , −P−1
1 (lfl ⊗ T−1Km)

× (Inl
⊗ T )P2P

−1
2 (Inl

⊗ T−1))

= (Em ⊗ IN − Fm ⊗ Lf , −(Fm ⊗ lfl)

× P−1
2 (Inl

⊗ T−1)).

Let Q1 and Q2 be the controllability matrices of the
systems (Em⊗ IN −Fm⊗Lf , −P−1

1 (lfl⊗T−1Km))
and (Em ⊗ IN − Fm ⊗ Lf , −(Fm ⊗ lfl)), respec-
tively. Then Q1 = Q2P

−1
2 (Inl

⊗ T−1). Hence
rank(Q1) = rank(Q2). This indicates that the con-
trollability of the network (17) and (18) is equiva-
lent to that of the system (12). (The details of the
observation above are just some simple computa-
tions, and hence are omitted.)

Based on the observation and Theorem 2, the
following result holds.

Corollary 1. For a given network Gx with the
dynamics (17)–(18), suppose there are nl leaders
and N followers, then the network is completely
controllable if and only if the system (−Lf , −lfl)
is completely controllable.

This result is valid for the network (17) and
(19) as well. Until now, we can make a conclu-
sion that the controllability of networks of agents
with dynamics modeled as a completely control-
lable single-input LTI system is only determined
by their topologies.

5 Influencing factors of controllability

Throughout this section, a network means the net-
work of single-integrator agents (1), unless other-
wise stated.

5.1 Effect of the selection of leaders on
controllability

One influencing factor of the controllability of net-
works is the selection of the position and the num-
ber of leaders. In ref. [24], a necessary condi-
tion for the controllability of networks with leader-
following structure has been established. We next
extend the result to the case of networks with gen-
eral graph.

Theorem 4. For a given network Gx with the
dynamics (1)–(2) and a graph, suppose there are
N followers and nl leaders. Denote the induced
subgraph on the followers as Gf and the induced
subgraph on the leaders as Gl. If the network is
completely controllable, then for any strong com-
ponent of Gf , there exists at least one leader such
that there is a path from the leader to the followers
of the strong component.

Proof. Let G1
f , . . . ,Gs

f be the strong compo-
nents of the subgraph Gf . Introduce a new graph
denoted by G, where the vertex set consists of the
components of Gf (for convenience of expression,
we also denote the vertices of G by G1

f , . . . ,Gs
f ), and

there exists an arc between a pair of distinct ver-
tices Gi

f and Gj
f in G if there exist arcs between the

agents of the two components. Then there are no
cyclic paths in the graph G due to the definition of
strong component. This also means that if there
exists an arc from vertex Gi

f to Gj
f , there must be

WANG L et al. Sci China Ser F-Inf Sci | Nov. 2009 | vol. 52 | no. 11 | 2074-2088 2083



no arcs from Gj
f to Gi

f . Consequently, by rearrang-
ing the indices of the N agents of Gf , the matrix
Lf is taken in the form

Lf =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lf1 0
. . .

0 Lfk

∗ ∗ Lf(k+1)

. . . . . .

∗ ∗ ∗ Lfs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where “∗” represents zero or nonzero block, the
row indices of Lfi ∈ R

ni×ni is associated with the
indices of agents in the strong component Gi

f , and
for any j = k + 1, . . . , s, there exists nonzero block
among the off-diagonal blocks of the jth row. For
the block matrix (20), if we let the diagonal blocks
and the zero off-diagonal blocks be scalar 0, and
the nonzero off-diagonal blocks be scalar 1, then
the resulting matrix becomes the adjacency ma-
trix of the graph G. From the property of (20), it
follows that for any vertex Gj

f , j = k+1, . . . , s of G,
there must exist a vertex Gi

f , i = 1, . . . , k such that
there is a path from Gi

f to Gj
f (this conclusion can

be proved via induction). Furthermore, this yields
that in the follower subgraph Gf , for any strong
component Gj

f , j = k + 1, . . . , s there must exist a
strong component Gi

f , i = 1, . . . , k such that there
is a path from any vertex of Gi

f to any vertex of Gj
f .

According to (20), the matrix lfl can be rewrit-
ten as lfl = [B1 · · · Bs]T, the block entry Bi, i =
1, . . . , s of which has the same row indices as
Li

f . Then the controllability matrix C of the sys-
tem (−Lf , −lfl) has the form

C =

⎡
⎢⎢⎢⎢⎣

−B1 Lf1B1 · · · (−1)NLN−1
f1 B1

...
...

...

−Bk LfkBk · · · (−1)NLN−1
fk Bk

∗ ∗ · · · ∗

⎤
⎥⎥⎥⎥⎦ .

If the conclusion does not hold, then there must
exist a strong component Gi

f , i = 1, . . . , k such
that there is no path from any leader to the fol-
lowers of the component Gi

f due to the property
of (20). Thus Bi = 0, which results in the ith
block row of C is zero. This causes a contradiction

to the assumption that the network is completely
controllable. The proof is completed.

Remark 5. Theorem 4 provides a necessary
condition for the controllability of the network (1)-
(2) and indicates that the positions of the lead-
ers have important influence on the controllability.
Just as done in the proof of Theorem 4, we intro-
duce another new graph, denoted by G, where the
vertex set consists of the induced subgraph Gl and
the strong components (or subgraphs) G1

f , . . . ,Gs
f

of Gf (similarly, we denote the vertices of G by
Gl, G1

f , . . . ,Gs
f , i.e., the vertex of G corresponds to

a subgraph of G); there exists an arc between any
two distinct vertices of G if there exist arcs between
the agents of their corresponding subgraphs of G.
Then Theorem 4 implies that the network Gx is
completely controllable only if the graph G has a
spanning tree with the root Gl.

In addition, Proposition 1 implies that the num-
ber of the leaders has great influence on the con-
trollability as well. Specifically, for a given network
of N agents with G ∈ S, let Gu be the underlying
undirected graph of G and Lu be the associated
Laplacian matrix of Gu. Take arbitrarily k < N

agents as the leaders of the network. Denote the
principle sub-matrix of Lu as Lf ∈ R

(N−k)×(N−k),
which is obtained by deleting the rows and columns
indicated by the indices of the leaders. If a princi-
ple sub-matrix Lf has no common eigenvalue with
Lu, then the network with k leaders is completely
controllable according to Proposition 1. If any
principle sub-matrix with order N − k of Lu has
common eigenvalue with it, then the network is un-
controllable under any k leaders, i.e., any k agents
of the network are not able to control the remain-
der agents completely.

5.2 Effect of weights on controllability

It is known that the controllability of an LTI sys-
tem depends upon the structures and parame-
ters of its coefficient matrices, and is a structural
property of the system. In sections 3 and 4, we
have discussed the controlled agreement problem
for networks with un-weighted graph. However,
the agreement protocols are given in the forms of
weighted ones in most literature, i.e., there exist
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link weights of the network distinct to 1 (see refs.
[13, 14, 18–20]). Ignoring link weights of the net-
work means ignoring the parameters of the system.

As a matter of fact, for a given un-weighted
graph (or rather, for a given topological structure)
and some prescribed leaders, we can turn an un-
controllable network with the topological structure
into a completely controllable network by selecting
appropriate weights for the communication links.
As a trivial example, consider the un-weighted
complete graph with three vertices (note that it
was proved that an un-weighted complete graph is
uncontrollable in ref. [21]). If we put the following
weighted adjacency matrix on the graph

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1
1
2

1 0
1
3

1
2

1
3

0

⎤
⎥⎥⎥⎥⎥⎦ ,

then by appointing any one agent as leader, the re-
sulting controlled agreement system (−Lf , −lfl) is
completely controllable. This example shows that
the link weights have important effect on the con-
trollability of networks. Notice that the results
in sections 3 and 4 are valid for networks with
weighted graph as well. Therefore, for a given topo-
logical structure and some prescribed leaders, we
wonder how to select appropriate link weights such
that the corresponding weighted network is com-
pletely controllable, and whether or not there are
some relations between the controllability of multi-
agent systems and the structural controllability of
linear control systems (see refs. [32, 34]). In what
follows, we will introduce the concept of the struc-
tural controllability of networks and present a nec-
essary and sufficient condition for this property. To
do this, we recall some definitions and results con-
cerning the structural controllability of linear con-
trol systems.

Consider a linear time-invariant system

ẋ(t) = A0x(t) + B0v(t)

with x(t) ∈ R
n and v(t) ∈ R

r. Assume that the en-
tries of the matrices are either fixed zeros or inde-
pendent free parameters (such matrices are called
to be structured matrices in some literature).

Definition 3[32,34]. A linear system (A0, B0)
is structurally controllable if there exists a com-
pletely controllable system (A,B), which satisfies
that there is a one-to-one correspondence between
the locations of the fixed zeros and the free entries
in the corresponding matrices of the two systems.

Lemma 2[34]. For a given linear system
(A0, B0), the system is structurally controllable
if and only if the matrix [A0 B0] is irreducible and
the generic rank g-rank([A0 B0]) = n.

Note that the generic rank of a structured ma-
trix A is defined as the maximum rank which A

can attain as a function of the free parameters in
A, denoted by g-rank(A).

We next introduce the definition of the structural
controllability of linear control systems to multi-
agent systems (or networks). Given a network Gx

with the dynamics (1)–(2) and a topological struc-
ture, we can obtain its corresponding controlled
agreement system (4) according to the partition of
leaders and followers given in section 3. If we con-
sider the zero off-diagonal entries of −Lf and the
zero entries of −lfl to be fixed zeros, and the diag-
onal entries and the nonzero off-diagonal entries of
−Lf (or 1 entries) and the nonzero entries of −lfl

(or 1 entries) to be free parameters, then the sys-
tem (−Lf , −lfl) has the structured property given
in the system (A0, B0). Under this scheme, we
give the definition of the structural controllability
of networks as follows.

Definition 4. For a given network Gx with the
dynamics (1)–(2) and some prescribed leaders, the
network is said to be structurally controllable if the
system (−Lf , −lfl) is structurally controllable.

The following theorem states the main result on
the structural controllability of networks.

Theorem 5. For a given network Gx with the
dynamics (1)–(2) and a topological structure, sup-
pose there are N followers and nl leaders. Denote
the induced subgraph on the followers as Gf and
the induced subgraph on the leaders as Gl. Then
the network is structurally controllable if and only
if for any strong component of Gf , there exists at
least one leader such that there is a path from the
leader to the followers of the strong component.

Proof. Let G1
f , . . . ,Gs

f be the strong compo-
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nents of Gf . Through rearranging the indices of
the N agents in Gf , the matrix pair (−Lf , −lfl)
has the form
[−Lf − lfl] =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Lf1 0 −B1

. . .
...

0 −Lfk −Bk

∗ ∗ −Lf(k+1) −Bk+1

. . . . . .
...

∗ ∗ ∗ −Lfs −Bs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (21)

where ∗ and Lfi ∈ R
ni×ni , i = 1, . . . , s are given

in (20), Bi, i = 1, . . . , s are defined as in the proof
of Theorem 4, and for any j = k + 1, . . . , s, there
exists nonzero block among the off-diagonal blocks
in the jth row.

Necessity. Suppose the network is structurally
controllable, then the matrix [−Lf − lfl] is irre-
ducible. If the conclusion does not hold, the proof
of Theorem 4 indicates that there must exist a
strong component Gi

f , i = 1, . . . , k such that there
is no path from any leader to it. This results in
Bi = 0. Therefore, there is a permutation matrix
P such that

P [−Lf − lfl]P−1 =

[
−Lfi 0 0

∗ ∗ B̄

]
,

which contradicts the fact that [−Lf − lfl] is irre-
ducible.

Sufficiency. Suppose for any strong component
of Gf , there exists at least one leader such that
there is a path from the leader to it. Then for
any Bi, i = 1, . . . , k in (21), Bi �= 0. Denote
the Laplacian matrix of the component Gj

f , j =
1, . . . , s as L(j). Then L(j) has zero row sum and
Lfj = L(j) + Dj, where Dj is a diagonal matrix
with rows and columns indexed by the vertices of
Gj

f , and each diagonal entry of Dj is the number
of the neighbors, which come from Gl and other
strong components, of the corresponding vertex.
For j = 1, . . . , k, Bj �= 0 implies that Dj �= 0. Fol-
lowing the similar line of reasoning as the proof of
Lemma 4 in ref. [35], we have Lfj, j ∈ {1, . . . , k}
are invertible. Moreover, for j = k + 1, . . . , s,
we also have Dj �= 0 because there exists nonzero
block among the off-diagonal blocks of the jth row

in (21). Hence, for j = k + 1, . . . , s, Lfj is invert-
ible as well. In a word, we have rank(−Lf ) = N ,
which results in rank([−Lf − lfl]) = N . This
proves that g-rank([−Lf − lfl]) = N . Next, if
[−Lf − lfl] is reducible, then there exists a permu-
tation matrix P such that

−PLfP
−1 =

[
A11 0

A21 A22

]

and

−Plfl =

[
0

B2

]
.

This means there is no path from any leader to the
followers corresponding to the indices of A11, which
contradicts the assumption. Hence [−Lf − lfl]
is irreducible. It follows from Lemma 2 that the
controlled agreement system (−Lf , −lfl) is struc-
turally controllable.

In summary, for a network with a given topolog-
ical structure, the link weights, the position and
the number of leaders have important influence on
the controllability of the network. The research
on the controllability of multi-agent systems based
on agreement protocols needs more exploration of
properties of graphs. In addition, there are some
prospectives for further research, for example, se-
lecting appropriate link weights such that the net-
work is completely controllable; choosing proper
positions and suitable number of leaders to make
the network completely controllable.

6 Numerical examples

In this section, we give some simple numerical ex-
amples to illustrate the previous theoretical results.
Consider the underlying undirected graph depicted
in Figure 1. In the case of un-weighted graph, if
we take any single agent as the leader of the net-
work, then each resulting controlled agreement sys-
tem is uncontrollable. This can be verified through
Proposition 1. However, we have two methods to
make the network completely controllable based on
one selected leader.

One method is adding an agent to the leader
group. As a simple example, add agent 4 to the
leader group composed of agent 5. Then the re-
sulting controlled agreement system is completely
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controllable according to Proposition 1. In this sce-
nario, Figure 2 shows the motion trajectories of the
followers 1, 2 and 3 when the dynamics of agents is
described by single integrator. The three followers
start from the initial positions in the plane repre-
sented by “◦”, and are steered to the positions in
the plane represented by “∗” (forming a straight
line) in finite time. This indicates that the selec-
tion of leaders has great influence on the control-
lability of networks. Moreover, this example shows
that if the network is completely controllable, the
followers over the network can be steered to form
any particular configuration in finite time by the
leaders.

Figure 2 Motion trajectories of three followers 1, 2 and 3 with

single-integrator dynamics.

Another method of improving the controllability
of the network in Figure 1 is adding weights to the
interaction links. For example, take the weighted
adjacent matrix to be

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 1 0

2 0 3 0 0

0 3 0 0 1

1 0 0 0 1

0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Proposition 1 shows that the resulting controlled
agreement system is completely controllable if any
one agent is appointed the leader. Figure 3 displays

the motion trajectories of the followers for the net-
work of double-integrator (i.e., m = 2 in the system
(7)) agents with the protocol (9) and agent 5 being
the leader. This method implies that the weights
of interaction links affect greatly the controllability
of networks as well.

Figure 3 Motion trajectories of four followers 1, 2, 3 and 4 with

double-integrator dynamics.

7 Conclusions

The necessary/sufficient conditions have been es-
tablished for the controllability of networks of
single-integrator agents. For networks with leader-
following structure and networks with undirected
graph, we have given an equivalence of the con-
trollability based on model transformation from
the agreement systems to their corresponding con-
trolled agreement systems. For networks of high-
order dynamic agents, we have proved that, un-
der the same topology and the same prescribed
leaders, its controllability is equivalent to that of
networks with single-integrator agents, namely, the
controllability of networks of high-order agents is
independent of the dynamics of agents and is only
determined by their topologies. Two important
influencing factors of the controllability, that is,
the selection of leaders and the coupling weights
of graphs, have been analyzed from the viewpoint
of graphical characterization.
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