
www.scichina.com
info.scichina.com

www.springerlink.com

Perfect forward secure identity-based authenti-

cated key agreement protocol in the escrow mode

WANG ShengBao1,2, CAO ZhenFu1†, CHENG ZhaoHui3 & CHOO Kim-Kwang Raymond4,5‡

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
2 Computing Center, Artillery Academy of PLA, Hefei 230031, China;
3 Independent Consultant, Room 1415 International Chamber of Commerce Building A, Shenzhen 518048, China;
4 Australian Institute of Criminology, GPO Box 2944, Canberra ACT 2601, Australia;
5 ARC Centre of Excellence in Policing and Security, Regulatory Institutions Network, Australian National University, Australia

The majority of existing escrowable identity-based key agreement protocols only provide partial forward
secrecy. Such protocols are, arguably, not suitable for many real-word applications, as the latter tends
to require a stronger sense of forward secrecy—perfect forward secrecy. In this paper, we propose an
efficient perfect forward-secure identity-based key agreement protocol in the escrow mode. We prove
the security of our protocol in the random oracle model, assuming the intractability of the Gap Bilinear
Diffie-Hellman (GBDH) problem.

authenticated key agreement, perfect forward secrecy, bilinear pairing, provable security, modular security proof

1 Introduction

Key agreement protocols are fundamental to es-
tablishing secure communications between two or
more parties over an insecure network. A key
establishment protocol (including key agreement
protocol) allows two or more communicating par-
ties to establish a common secret (session) key
via public communication channels (e.g., Internet).
The established session key can then be used to cre-
ate a confidential or integrity-protected communi-
cation channel between the parties. Authenticated
key agreement (AK) protocols not only allow par-
ties to compute the session key but also ensure the

authenticity of the involved parties[1].
Authenticated key agreement protocols can be

built using secret-key cryptography and/or public-
key cryptography. If secret-key cryptography is
used, then either a symmetric secret key or a
shared password should be distributed before the
key agreement protocol is executed. If traditional
(certificate-based) public-key cryptography is used,
a public key infrastructure (PKI) will typically
be required to be deployed that allows authenti-
cation of registered users’ public keys. In 1984,
Shamir[2] proposed the concept of identity-based
cryptography whereby each party’s public key can

Received July 21, 2008; accepted October 28, 2008

doi: 10.1007/s11432-009-0135-4
†Corresponding author (email: cao-zf@cs.sjtu.edu.cn)
‡The views and opinions expressed in this article are those of the author and should not be taken to represent, in whole or in part, the views of

the Australian Government, the Australian Institute of Criminology, and the Australian National University. Research was undertaken in the

author’s personal capacity.

Supported in part by the National High-Tech Research & Development Program of China (Grant No. 2006AA01Z424), the National Natural

Science Foundation of China (Grant Nos. 60673079, 60773086), and the National Basic Research Program of China (Grant No. 2007CB311201)

Citation: Wang S B, Cao Z F, Cheng Z H, et al. Perfect forward secure identity-based authenticated key agreement protocol in the escrow

mode. Sci China Ser F-Inf Sci, 2009, 52(8): 1358–1370, doi: 10.1007/s11432-009-0135-4

be an arbitrary string (typically an identity string)
and, hence, removes the need for certificates. This
greatly simplifies the management of public keys in
identity-based cryptosystems. Following the work
of Boneh and Franklin[3] on identity-based encryp-
tion, several identity-based two-party key agree-
ment schemes using bilinear pairings on elliptic
curves have been proposed (see ref. [4]). Exam-
ples include:
• In 2002, Smart[5] proposed an ID-based key

agreement protocol based on the ID-based encryp-
tion scheme in ref. [3]. However, Shim[6] and Chen
and Kudla[7] independently showed that Smart’s
protocol only provides half forward secrecy. Chen
and Kudla also proposed several ID-based key
agreement protocols[7] (and the basic Chen–Kudla
protocol is the only protocol in the suite that works
in the escrow mode).
• In 2003, Shim[6] proposed an efficient ID-

based key agreement protocol claiming to provide
perfect forward secrecy, known-key secrecy, key-
compromise impersonation (K-CI) resilience, and
unknown key-share (UK-S) resilience (refer to sec-
tion 2.2 for the definitions of all these terms). Sun
and Hsieh[8], however, pointed out that Shim’s pro-
tocol is vulnerable to a man-in-the-middle attack.
• In 2004, Ryu et al.[9] put forward a pairing-

based protocol which has superb efficiency. A year
later, Boyd and Choo[4] and Wang et al.[10] inde-
pendently demonstrated that the protocol does not
have the property of K-CI resilience. More recently
in 2009, we showed that the protocol is, in fact,
vulnerable to a reflection attack[11]. We then pro-
posed an improved protocol and proved it secure
in a widely accepted security model.
• In 2005, McCullagh and Barreto[12] proposed

an ID-based key agreement protocol but was soon
found out by Xie[13] that their protocol does not
have K-CI resilience. An improved McCullagh–
Barreto protocol presented in ref. [14] success-
fully removes the found security weakness but at
the cost of losing PFS. Xie[15] also proposed an
improved McCullagh–Barreto protocol, but Li et
al.[16] later discovered that Xie’s protocol still does
not have K-CI resilience.
• Both Wang[17] and Yuan et al.[18] proposed a

new ID-based key agreement protocol in 2005. The
former achieves PFS in the escrow model while
the latter (protocol) works only in the escrowless
model.

Motivation 1. Secure key agreement pro-
tocol in the escrow mode
ID-based authenticated key agreement protocols
may either work in the escrowed mode (i.e., the
private key generator (PKG) is able to recover the
session keys established by its users) or escrowless
mode (i.e., the PKG is unable to recover the ses-
sion keys established by its users). A majority of
the ID-based key agreement protocols are designed
to be escrowless due to privacy concerns. How-
ever, as noted in ref. [12], key escrow is desirable
under certain circumstances especially in certain
closed groups applications. For example, escrow
is essential in situations where audit trail is a le-
gal requirement, such as in secure communications
applications in the health care profession.

It is possible to extend an escrowable protocol to
work in the escrowless mode (and achieve PKG for-
ward secrecy) by embedding a raw Diffie–Hellman
protocol (see ref. [7] for further details). Perfect
forward secure ID-based key agreement protocols
are, however, uncommon in the escrow mode. As
far as we are aware, only Wang’s protocol[17] and
Cheng et al.’s protocol[19] provide PFS and are es-
crowable.

Our first motivation is, therefore, to propose a
more efficient protocol that is not only secure in
the escrow mode but also provides perfect forward
secrecy.

Motivation 2. Simplifying the proof—a
modular approach
It is by now standard practice for protocol design-
ers to provide security proof in widely accepted se-
curity models in order to assure protocol imple-
mentors of their security properties (see ref. [20]).
As pointed out in a recent survey of two-party
ID-based authenticated key agreement protocols[4],
many existing protocols are not proven secure in
the modular approach (e.g., the model of Canetti
and Krawczyk[21]) and their proofs of security are
often complicated and error-prone[20−23].

Kudla and Paterson[23,24] developed a modu-

WANG S B et al. Sci China Ser F-Inf Sci | Aug. 2009 | vol. 52 | no. 8 | 1358-1370 1359

lar technique for constructing security proofs for
a large class of key agreement protocols using a
slightly modified Smart’s protocol as an example.
Informally, their modular technique works in the
following sequence.

1. Prove that a protocol Π has the property of
strong partnering.

2. Prove that a related protocol π is secure in a
highly reduced security model.

3. The security proof for π in the reduced model
is then translated into a security proof for Π in the
full model using a Gap assumption[25].

This proof technique using the modular ap-
proach is easier to use (compared to the conven-
tional approach) and, hence, forms the second mo-
tivation of our paper.

Our contributions
1. We propose an efficient ID-based AK pro-

tocol (with only a single online pairing computa-
tion) that works in the escrow mode. We also
demonstrate that our proposed protocol achieves
perfect forward secrecy without compromising on
efficiency.

2. Using the modular technique of Kudla and
Paterson, we prove that our proposed protocol is
secure (for all the security properties except PFS)
in the random oracle model, provided that the Gap
Bilinear Diffie–Hellman (GBDH) problem is hard.
Moreover, we prove in a conventional way that our
protocol also achieves perfect forward secrecy, as-
suming the hardness of the standard Bilinear Die-
Hellman (BDH) problem.

The remainder of this paper is structured as
follows. In section 2, we briefly describe bilin-
ear pairings, the computational problems and the
corresponding complexity assumptions, the secu-
rity model, and the Kudla–Paterson modular proof
approach[24] required in this paper. We present
our proposed ID-based authenticated key agree-
ment protocol (hereafter referred to as E-IBAK)
in section 3. In section 4, a detailed security proof
in the random oracle model[26] of our proposed E-
IBAK protocol is provided. Section 5 provides a
performance comparison between several related
ID-based protocols. We draw our conclusions in
section 6.

2 Preliminaries

2.1 Bilinear pairings and GBDH
probolem

Let G1 denotes an additive group of prime order q

and G2 a multiplicative group of the same order.
We let P denote a generator of G1. For us, an ad-
missible pairing is a map ê : G1 × G1 → G2 with
the following properties:

1. The map ê is bilinear: given Q,R ∈ G1 and
a, b ∈ Z

∗
q, we have ê(aQ, bR) = ê(Q,R)ab.

2. The map ê is non-degenerate: ê(P,P) �= 1G2 .
3. The map ê is efficiently computable.
Typically, the map ê will be derived from either

the Weil or Tate pairing on an elliptic curve over
a finite field. We refer to refs. [3, 27, 28] for a
more all-around description of how these groups,
pairings and other parameters should be chosen in
practice for efficiency and security.

Definition 1 (Bilinear Diffie-Hellman (BDH)
parameter generator)[3]. We say that a random-
ized algorithm IG is a BDH parameter generator
if IG takes a security parameter l > 0, runs in
time polynomial in l, and outputs the description
of two groups G1 and G2 of the same prime or-
der q and the description of an admissible pairing
ê : G1 × G1 → G2.

The security of the ID-based key agreement pro-
tocols in this paper are based on the difficulty of
the following problems:

Definition 2 (Bilinear Diffie-Hellman (BDH)
problem). Let G1, G2, P and ê be as above. The
BDH problem in 〈G1, G2, ê〉 is as follows: Given
〈P, aP, bP, cP 〉 with uniformly random choices of
a, b, c ∈ Z

∗
q, compute ê(P,P)abc ∈ G2.

We say that a probabilistic polynomial time
(PPT) algorithm B has advantage ε in solving the
BDH problem in 〈G1, G2, ê〉 if

Pr[B(P, aP, bP, cP) = ê(P,P)abc] � ε,

where the probability is measured over the random
choices of a, b, c ∈ Z

∗
q and the random bits of B.

The above BDH problem has a decisional coun-
terpart called the decisional bilinear Diffie-Hellman
(DBDH) problem which is defined as follows.

Definition 3 (Decisional Bilinear Diffie-

1360 WANG S B et al. Sci China Ser F-Inf Sci | Aug. 2009 | vol. 52 | no. 8 | 1358-1370

Hellman (DBDH) problem). Let G1, G2, P and
ê be as above. The DBDH problem in 〈G1, G2, ê〉
is as follows: Given 〈P, aP, bP, cP 〉 with uniformly
random choices of a, b, c ∈ Z

∗
q, as well as W ∈ G2,

determine if ê(P,P)abc = W (if it holds, then the
tuple 〈P, aP, bP, cP,W 〉 is called a BDH tuple).

Based on the BDH and DBDH problems, we can
define a related Gap problem[25] as follows.

Definition 4 (Gap Bilinear Diffie-Hellman
GBDH problem). Let G1, G2, P and ê be as
above. The GBDH problem in 〈G1, G2, ê〉 is as fol-
lows: Given 〈P, aP, bP, cP 〉 with uniformly random
choices of a, b, c ∈ Z

∗
q, as well as an oracle the

solves the DBDH problem in 〈G1, G2, ê〉, compute
ê(P,P)abc.

Informally, the BDH, DBDH and GBDH as-
sumptions are that no PPT adversary has non-
negligible advantage in solving the BDH, DBDH
and GBDH problems, respectively.

2.2 Desirable security attributes

Let Alice (A) and Bob (B) be two honest entities,
i.e., legitimate entities who execute the steps of a
protocol correctly. Here we list up a number of de-
sirable attributes of AK protocols which referred
to refs. [1, 7].
• Known-key secrecy (K-KS). Each run of a key

agreement between A and B should produce a
unique secret session key. The compromise of one
session key should not compromise the keys estab-
lished in other sessions.
• Perfect forward secrecy (PFS). If long-term pri-

vate keys of all entities are compromised, the se-
crecy of previous session keys established by honest
entities is not affected.
• Key-compromise impersonation (K-CI) re-

silience. Suppose A’s private key is disclosed. Ob-
viously, an adversary who knows this key can im-
personate A to other entities (e.g. B). However,
it is desired that this disclosure does not allow the
adversary to impersonate any other entity (e.g. B)
to A.
• Unknown key-share (UK-S) resilience. Entity

A cannot be coerced into sharing a key with en-
tity B without A’s knowledge, i.e., when A believes

that the key is shared with some entity C �= B, and
B (correctly) believes the key is shared with A.
• No key control. Neither entity should be able

to force the session key (or any portion of the ses-
sion key) to a preselected value.

In addition to these security attributes, it would
be desirable for a protocol to have low computa-
tional cost (the computing operations needed for
A and B to finish a run of the protocol) and low
communication overhead (which means that only a
small amount of data is exchanged) for its practical
use.

2.3 Security model for ID-based AK
protocols—ID-mBJM

In this subsection, we present our refined for-
mal security model for ID-based authenticated key
agreement protocols. Kudla[23] proposed the so
called ID-BJM model, which is an extension of the
model of Blake-Wilson et al.[29] (known as the BJM
model). In this paper, we extend a modified version
of the BJM model to the ID-based setting which we
call the ID-mBJM model. Following the approach
of Choo et al.[30], we use the notion of session iden-
tifier SID (instead of matching conversation used
in the BJM model and Kudla’s ID-BJM model) in
our partnership definition.

The model includes a set U of participants mod-
eled by a collection of oracles (e.g., oracle Πn

I,J rep-
resents the nth instance of participant I carrying
out a protocol session in the belief that it is com-
municating with another participant J). Each par-
ticipant has a long-term ID-based public/private
key pair, in which the public key is generated us-
ing her identity information and the private one
is computed and issued secretly by a private key
generator.

There is an active adversary (denoted by E)
in the model modeled by a PPT Turing Machine
which has access to all the participants’ oracles1).
Participant oracles only respond to queries by the
adversary and do not communicate directly among
themselves, i.e., there exists at least a benign ad-
versary who simply passes messages between par-
ticipants faithfully.

Definition of security in the model depends on
1) If the proof is given in the random oracle model (ROM), then the adversary also has access to all the existing random oracles.

WANG S B et al. Sci China Ser F-Inf Sci | Aug. 2009 | vol. 52 | no. 8 | 1358-1370 1361

the notion of the partner oracles to any oracle
being tested. We define partners by having the
same session identifier (SID). Concretely, we de-
fine SID(Πn

I,J) as the concatenation of all messages
that oracle Πn

I,J has sent and received.

Definition 5 (Partner). Two oracles Πn
I,J and

Πn′
J,I are said to be partner oracles if they have ac-

cepted with the same SID.
The security of a protocol is defined via a two-

phase adaptive game (called the ID-mBJM game)
between a challenger C that simulates a set of par-
ticipant oracles running the protocol and the ad-
versary E. C also simulates the PKG in this en-
vironment, and therefore generates the public pa-
rameters of the PKG and gives these to E. C also
generates a master secret s from which it can gen-
erate a private key dI from any given identity I.

In the first phase, the adversary E is allowed to
issue the following queries in any order.

Send(I, J, n,M): E can send message M to or-
acle Πn

I,J . The oracle executes the protocol and re-
sponds with an outgoing message m or a decision
to indicate accepting or rejecting the session. Any
incoming and outgoing message is recorded on its
transcript. If M = λ (denotes the null message),
then the oracle initiates a protocol run.

Reveal(Πn
I,J): To respond to the query, oracle

Πn
I,J returns the accepted session key (if any). Oth-

erwise, returns a symbol ⊥. Oracle Πn
I,J is then

considered opened.
Corrupt(I): To respond to the query, C returns

the private key dI of the participant I. The par-
ticipant is then considered corrupted.

Test(Πn
I,J): At some point, E can make a Test

query to some fresh oracle Πn
I,J (see Definition 6

below). To answer the query C flips a fair coin
b ∈ {0, 1}; if the answer is 0, then C outputs the
agreed session key of the test oracle, otherwise out-
puts a randomly chosen value from the session key
space.

During the second phase, E can continue issuing
Send, Reveal and Corrupt queries to the oracles,
except for revealing the target test oracle or its
partner oracle (if any). Moreover, E is not allowed
to corrupt participant J (assuming Πn

I,J is the test
oracle).

Output: Finally, E outputs a prediction (b′) on
b. E wins the game if b′ = b, and we define E’s
advantage (l is the security parameter) in winning
the game as

AdvE(l) = |Pr[b′ = b] − 1/2|.
Definition 6 (Fresh oracle). An oracle Πn

I,J

(I �= J) is called fresh if it has accepted (and there-
fore holds a session key ski), it is not opened, J has
not been corrupted, and there is no opened oracle
Πn′

J,I which is a partner oracle of Πn
I,J .

Remark 1. The above definition of fresh ora-
cle is particularly defined to cover the security at-
tribute of key-compromise impersonation resilience
since it implies that the participant I could have
been issued a Corrupt query[31].

Definition 7 (ID-mBJM secure protocol). A
protocol is a secure AK protocol in the ID-mBJM
model if:

1. In the presence of the benign adversary (who
faithfully relays messages between parties) on Πn

I,J

and Πn′
J,I , both oracles always accept holding the

same session key, and this key is distributed uni-
formly on session key space.

2. AdvE(l) is negligible.
In the following, we briefly discuss the security

properties (described in section 2.2) captured by
the above security model.
• Known-key secrecy (K-KS). The property of

known-key secrecy is implied by the definition of
AK security (see Definition 7). Since E is allowed
to make Reveal queries to any oracles except for
the target Test oracle Πn

I,J and its partner oracle
Πn′

I,J to obtain any session keys. Even with the
knowledge of many other session keys, E’s ability
to distinguish between the session key held by Πn

I,J

and a random number is still negligible. That is to
say, the knowledge of any other session keys does
not help E to deduce any information about the
tested session key.
• Perfect forward secrecy (PFS). Definition 7

does not imply the property of perfect forward se-
crecy. This is because the model does not allow the
Test query to be issued on an oracle with both par-
ticipants corrupted and therefore does not model
this type of attack.

1362 WANG S B et al. Sci China Ser F-Inf Sci | Aug. 2009 | vol. 52 | no. 8 | 1358-1370

• Key-compromise impersonation (K-CI) re-
silience. As mentioned above, the definition
of fresh oracle implies the property of key-
compromise impersonation resilience.
• Unknown key-share (UK-S) resilience. Defi-

nition 7 implies the unknown key-share resilience
property. If IDI establishes a session key with IDJ

believes he is talking to IDK , then there is an or-
acle Πn

I,K that holds this session key skIK. At the
same time, there is an oracle Πn′

J,I that holds this
session key skIK , for some n′ (normally n′ = n).
Since Πn

I,K and Πn′
J,I are not partner oracles, the

adversary can make a Reveal query to Πn′
J,I to learn

this session key before asking a Test query to Πn
I,K.

Thus the adversary will succeed for this Test query
challenge (i.e., the protocol is not secure) if the un-
known key share attack is possible. By contradic-
tion, a secure protocol in the model is resistant to
the unknown key share attack.
• No key control. Definition 7 does not imply

resilience to key control attacks that are launched
by one of the protocol participants. However, key
control attacks launched by an outside adversary
are captured by the model. Otherwise, if manipu-
lating message can control the session key bits, the
outsider adversary E must have a non-negligible
ability to distinguish between the session key held
by Πn

I,J and a random number.
To model PFS, the definition of fresh oracle (re-

fer to Definition 6) should be modified so that the
the participants associated with the Test (fresh)
oracle can also be corrupted. We define PFS as
follows.

Definition 8 (perfect forward secrecy (PFS)).
A protocol is said to have perfect forward secrecy
(PFS) if any PPT adversary wins the ID-mBJM
game with negligible advantage when it chooses an
unopened oracle Πn

I,J which has an unopened part-
ner oracle Πn′

J,I as the test oracle, and both oracles
Πn

J,I and Πn′
J,I accepted and both participants I and

J can be corrupted.
Note that as in ref. [32], here we refer to the

practical notion of perfect forward secrecy that in-
volves a benign adversary eavesdropping on a ses-
sion of the protocol and then attempting to expose
the key.

2.4 Modular proof technique for ID-
based AK protocols

We borrow from refs. [11, 23] the review of the
modular proof technique. For a more detailed de-
scription, we refer the reader to ref. [23]. Note that
here we mainly focus on ID-based protocols.

As noted in refs. [23, 24], the modular proof
technique only works on key agreement protocols
that produce hashed session keys on completion
of the protocol. In fact, this reliance on hash-
ing is reasonable since it is quite common to use
a key derivation function (KDF) to output a ses-
sion key from a secret value established during a
key agreement protocol, and the KDF is usually
implemented via a hash function.

Definition 9 (session string). Suppose Π is a
protocol that produces a hashed session key using
the cryptographic hash function H. Then the ses-
sion string for a particular oracle Πi

I,J is denoted
ssΠi

I,J
, and is defined to be the string which is

hashed to produce the session key skΠi
I,J

. So we
have that skΠi

I,J
= H(ssΠi

I,J
).

Strong partnering. Suppose Π is a key
agreement protocol. If there exists an adversary
E, which when attacking Π in an ID-mBJM game
defined in section 2.3 and with non-negligible prob-
ability in the security parameter l, can make some
two oracles Πi

I,J and Πn
J,I accept holding the same

session key when they are not partners, then we say
that Π has weak partnering. If Π does not have
weak partnering, then we say that it has strong
partnering.

As shown in ref. [23], for a protocol Π to be
ID-mBJM secure, it must have strong partnering.
Since H is modeled as a random oracle, strong
partnering can be ensured by including appropri-
ate “partnering information” in the session string
ssΠi

I,J
, where partnering information is used to de-

cide whether the two oracles are partners or not. In
section 3, we will use the session identifier SID and
the identities of the two parties as the partnering
information of our new protocol.

Reduced games. A highly reduced game
(called the cNR-ID-mBJM game) is used in the
modular security proof. The reduced game is iden-
tical as the full ID-mBJM game defined in section

WANG S B et al. Sci China Ser F-Inf Sci | Aug. 2009 | vol. 52 | no. 8 | 1358-1370 1363

2.3 except that the adversary E is not allowed to
make Reveal queries and to win the game, E must
select an accepted fresh oracle on which to make
a modified Test query at the end of its attack and
output the session key held by this oracle. We de-
fine E’s advantage, denoted AdvE(l), in the cNR-
ID-mBJM game to be the probability that E out-
puts a session key sk such that sk = skΠi

I,J
where

Πi
I,J is the oracle selected by the adversary for the

modified Test query. We define security in the re-
duced game as follows:

Definition 10 (cNR-ID-mBJM secure
protocol[23]). A protocol Π is a secure key agree-
ment protocol in the cNR-ID-mBJM model if:

1. In the presence of the benign adversary, two
oracles running the protocol both accept holding
the same session key, and the session key is dis-
tributed uniformly at random on session key space.

2. For any adversary E, AdvE(l) in the reduced
game is negligible.

As part of the the proof technique, it will be nec-
essary to prove that a related protocol π of protocol
Π is secure in the above reduced game.

Related protocol π. The related protocol π

of protocol Π is defied in the same way as Π except
that the session key generated by π is defined to
be the session string of Π rather than the hash of
this string (i.e., skπn

I,J
= ssΠn

I,J
). It is usually quite

easy to establish a related protocol’s security in the
reduced game.

Definition 11 (session string decisional prob-
lem). Given the public parameters, the transcript
TΠn

I,J
of oracle Πn

I,J , as well as the public keys of I

and J and a string s, decide whether s = ssΠn
I,J

,
where ssΠn

I,J
is the session string of oracle Πn

I,J .
The following result is at the heart of the modu-

lar proof technique that translates the weak secu-
rity of a related weaker protocol into the security
of the protocol in the full model.

Theorem 1 (Theorem 8.2 in ref. [23]). Suppose
that key agreement protocol Π produces a hashed
session key on completion of the protocol (via hash
function H) and that Π has strong partnering. If
the security of the related protocol π in the reduced
game is probabilistic polynomial time reducible to

the hardness of the computational problem of some
relation f , and the session string decisional prob-
lem for Π is polynomial time reducible to the de-
cisional problem of f , then the security of Π in
the full model is probabilistic polynomial time re-
ducible to the hardness of the Gap problem of f ,
assuming that H is a random oracle.

3 Proposed identity-based AK protocol

We now describe our proposed escrowable identity-
based authenticated key agreement protocol with
perfect forward secrecy (see Figure 1, hereafter re-
ferred to as E-IBAK). Our scheme employs the ID-
based non-interactive key sharing protocol due to
Sakai et al.[33] (hereafter referred to as the SOK
protocol).

As with all other identity-based cryptosystems
we assume the existence of a trusted PKG that is
responsible for the generation and secure distribu-
tion of users’ private keys. Our proposed key agree-
ment protocol can be implemented using either the
modified Weil or Tate pairing[3,12]. The proposed
protocol comprises the following two stages:

Setup: Suppose we have an admissible pairing,
ê : G1 × G1 → G2 as described in section 2 where
G1 and G2 are two groups with the same prime
order q. The PKG follows the following steps:
• picks an arbitrary generator, P ∈ G1, a secret

master key s ∈ Z
∗ and computes the master public

key sP ;
• chooses a cryptographic hash function,

H1{0, 1}∗ → G1;
• publishes the system parameters params

〈G1, G2, ê, q, P, sP,H1〉;
• computes the private key dID = sQID for a

user with the identity information ID, in which
the user’s public key is QID = H1(ID);
• distributes the private key dID to the user with

the identity information ID via a secure channel.
Individual user’s public/private key pair is, thus,

defined as (QID, dID) where QID, dID ∈ G1.

Key agreement: We denote user Alice and
Bob’s public/private key pairs as (QA, dA) and
(QB, dB), respectively. We assume that Alice and
Bob both pre-compute and store the following SOK

1364 WANG S B et al. Sci China Ser F-Inf Sci | Aug. 2009 | vol. 52 | no. 8 | 1358-1370

Figure 1 Proposed protocol E-IBAK.

(non-interactively shared) secret[32]:

F = ê(dA, QB) = ê(dB , QA) = ê(QA, QB)s.

To establish a shared session key, Alice and Bob
each firstly generate an ephemeral private key (say
a and b ∈ Z

∗
q), and compute the corresponding

ephemeral public keys TA = aQA and TB = bQB,
respectively. They then exchange TA, TB and com-
pute the session key as described in Figure 1, where
H : {0, 1}∗ × {0, 1}∗ × G1 × G1 × G2 × G2 × G2 →
{0, 1}k is a key derivation function (in which k =
|sk|).

Correctness. By the bilinearity of the pair-
ing, we can easily get the following equations:

KAB1 = ê(dA, TB) = ê(dA, bQB) = F b,

KBA1 = ê(dB , TA) = ê(dB , aQA) = F a,

and KAB2 = KBA2 = F ab.
Thus, the two session keys computed by Alice

and Bob are

skAB = skBA = H(A,B, TA, TB, F a, F b, F ab).

Escrow. The protocol E-IBAK has the escrow
function, namely the PKG can recover all the ses-
sion keys using the master secret key s and other
public data such as TA and TB. We prove this as
follows.

F a = ê(QA, QB)sa = ê(TA, QB)s,

F b = ê(QA, QB)sb = ê(QA, TB)s,

F ab = ê(QA, QB)sab = ê(TA, TB)s.

The protocol is message independent and role
symmetric, which means that each party perform-
ing the same operations and thus incurring the
same computational cost. In the next section we
will prove that our protocol E-IBAK achieves the
ID-mBJM security (see Definition 10) as well as
perfect forward secrecy.

4 Security proof

We prove the security (i.e. ID-mBJM security
plus PFS) of our new protocol E-IBAK in stages.
We first give a basic identity-based protocol, E-
IBAK’, which does not provide perfect forward se-
crecy, and prove that it is ID-mBJM secure using
the Kudla–Paterson modular technique. We then
prove that the protocol E-IBAK is also secure in
the ID-mBJM model and provides perfect forward
secrecy. The only reason for describing the proto-
col E-IBAK’ is to make the presentation easier to
follow.

Protocol E-IBAK’ is almost identical to protocol
E-IBAK except that the final session key is com-
puted as

skAB = H ′(A,B, TA, TB , F a, F b),

where H ′ : {0, 1}∗ ×{0, 1}∗ ×G1×G1×G2×G2 →
{0, 1}k is a key derivation function. In other words,

WANG S B et al. Sci China Ser F-Inf Sci | Aug. 2009 | vol. 52 | no. 8 | 1358-1370 1365

without the value F ab being part of the session
string. With the description of the ID-mBJM
model in section 2.3, we now state:

Theorem 2 (ID-mBJM security of E-IBAK’).
If H ′ and H1 are random oracles and the GBDH
problem (for the pair of groups G1 and G2) is hard,
then E-IBAK’ is a secure key agreement protocol.

We now prove Theorem 2 in three steps. We first
show that protocol E-IBAK’ has strong partnering.
Secondly, we prove that the related protocol π of E-
IBAK’ is secure in the cNR-ID-mBJM model (see
Definition 10). Lastly, we show that the session
string decisional problem (see Definition 11) of E-
IBAK’ is reducible to the DBDH problem.

Lemma 1 (Strong Partnering of E-IBAK’).
Protocol E-IBAK’ has strong partnering in the ran-
dom oracle model.

Proof. The partnering information, namely
the protocol transcript as well as the IDs of the
two participants are included in the session string.
Recall that we model H ′ as a random oracle, thus if
two oracles accept the same session key, then they
are partners except for negligible probability.

Lemma 2 (cNR-ID-mBJM security of π).
The related protocol π is secure in the cNR-ID-
mBJM model, assuming the BDH problem is hard
(for the pair of groups G1 and G2) and provided
that H1 is a random oracle.

Proof. Condition 1 follows from the correct-
ness of the protocol π. Since H ′ is a random oracle,
sk is distributed uniformly at random on {0, 1}k .
In the following, we show that Condition 2 is also
satisfied.

For a contradiction, assume that the adversary E

has non-negligible advantage ε in winning the cNR-
ID-mBJM game, making at most q1 queries to H1.
Let qS be the total number of the oracles that E

creates, i.e., for any oracle Πn
AB, n ∈ {1, . . . , qS}.

We shall slightly abuse the notation Πn
AB to refer

to the nth one among all the qS participant in-
stances in the game, instead of the nth instance of
participant A.

We show how to construct a simulator S that
uses E as a sub-routine to solve the BDH problem
with non-negligible probability. Given input of the

two groups G1, G2, the bilinear map ê, a generator
P of G1, and a triple of elements xP , yP , zP ∈ G1

with x, y, z ∈ Z
∗
q where q is the prime order of G1

and G2, S’s task is to compute and output the
value ê(P,P)xyz.

The algorithm S selects a random integer v

from {1, . . . , q1} and a random integer w from
{1, . . . , qS} and works by interacting with E as fol-
lows:

Setup: S sets the PKG’s master public key
to be xP . S will also simulate all oracles required
during the game. S controls the H1 random oracle.
S starts E, and answers all E′s queries as follows.

H1(IDi): S simulates the random oracle H1

by keeping a list of tuples 〈ri, IDi, Qi〉 which is
called the H1-list. When the H1 oracle is queried
with an input IDi ∈ {0, 1}∗, S responds as follows.
• If IDi is already on the H1-list in the tuple

〈ri, IDi, Qi〉, then S outputs Qi.
• Otherwise, if IDi is the vth distinct H1 query,

then the oracle outputs Qi = yP and adds the tu-
ple 〈⊥, IDi, Qi〉 to the H1-list.
• Otherwise S selects a random ri ∈ Z

∗
q and

outputs Qi = riP , and then adds the tuple
〈ri, IDi, Qi〉 to the H1-list.

We assume that J is the vth distinct participant
created in the game.

Corrupt(IDi): Upon receiving the Corrupt
query on input IDi, S simulates as follows.
• If IDi �= J , S returns the long-term private

key di.
• Otherwise, S aborts the game (Event 1).
Send(A,B, t,M): S answers the queries as fol-

lows.
• If t �= w, S randomly samples ξt ∈ Z

∗
q and

responds with ξtQA where QA = H1(A).
• Otherwise,
– If B �= J , aborts the game (Event 2).
– Otherwise answer zP .
Test(Πt

A,B): At some point in the game, E will
issue a unique Test query. If E does not choose
the guessed oracle Πw

A,B to issue the query, then S

aborts the game (Event 3).
Output: At the end of the game, the algorithm

E outputs a session key of the form (U, V, a, b, c, d)
where U, V ∈ {0, 1}∗, a, b ∈ G1 and c, d ∈ G2.

1366 WANG S B et al. Sci China Ser F-Inf Sci | Aug. 2009 | vol. 52 | no. 8 | 1358-1370

Solving the BDH problem: If Πw
A,B was an

initiator oracle, then S outputs c as its guess for
the value ê(P,P)xyz, otherwise S outputs d as its
guess.

Now we calculate the probability that the game
does not abort. If the wth oracle was chosen as the
test oracle and it supposes to establish a session key
with party J , then by the rules of the model Events
1, 2 and 3 would not happen. We have

Pr[S does not abort] � 1
qSq1

.

Note that participant J has the public key QJ =
yP and private key dJ(= xyP). Given a message
zP , part of the agreed secret is ê(xyP, zP). So
if the adversary computes the correct session key
with non-negligible probability ε, then S answers
the BDH problem correctly with probability with
ε/(qSq1) (which is non-negligible in the security pa-
rameter l), contradicting to the hardness of the
BDH problem.

Lemma 3 (Session string decisional problem of
E-IBAK’). The session string decisional prob-
lem of protocol E-IBAK’ is reducible to the DBDH
problem.

Proof. Recall the session string of protocol
E-IBAK’ is of the form (A,B, TA, TB , F a, F b) with
TA = aQA, F a = ê(dB , TA) = ê(sQB, TA), s being
the master secret key and P , sP being the public
parameters, then we see 〈P, sP,QB, TA, F a〉 (simi-
larly, 〈P, sP,QA, TB, F b〉) is a BDH tuple. This im-
plies that the session string decisional problem of
protocol E-IBAK’ is reducible to the DBDH prob-
lem.

Proof of Theorem 2. The theorem follows
directly from Lemmas 1, 2, 3 and Theorem 1.

Now we are ready to prove our main result—the
security of our newly proposed protocol E-IBAK.

Theorem 3 (security of protocol E-IBAK).
Protocol E-IBAK

i) is secure in the ID-mBJM model, assuming the
GBDH problem (for the pair of groups G1 and G2)
is hard and provided that H and H1 are random
oracles, and

ii) has the property of perfect forward secrecy
(PFS), assuming the BDH problem (for the pair of

groups G1 and G2) is hard and provided that H

and H1 are random oracles.

Proof. i) This follows directly from Theorem
2, since it is easy to see that any successful attack
on protocol E-IBAK can be immediately converted
to a successful attack on protocol E-IBAK’.

ii) According to our definition of perfect forward
secrecy (see Definition 8), we require that when E

chooses an oracle Πn
I,J as the test oracle, this oracle

must indeed have a partner oracle Πn′
J,I .

The proof follows along similar lines to the proof
of Lemma 2. For a contradiction, we assume
that the adversary E can win the game with non-
negligible advantage ε by creating at most qS ora-
cles and making qH queries to the H random ora-
cle. We show how to construct a simulator S that
uses E as the sub-routine to solve the BDH prob-
lem with non-negligible probability. Identical to
the proof of Lemma 2, the input of S are the two
groups G1, G2, the bilinear map ê, a generator P

of G1, and a triple of elements xP , yP , zP ∈ G1

with x, y, z ∈ Z
∗
q where q is the prime order of G1

and G2, its task is to compute and output the value
ê(P,P)xyz.

The algorithm S selects two random integers u, v

from {1, . . . , qS} (assuming u < v) and works by
interacting with E as follows:

Setup: S sets the PKG’s master public key
to be xP . S will also simulate all oracles required
during the game. S controls two random oracles
H1 and H. S starts E, and answers all E′s queries
as follows.

H1(IDi): S simulates the oracle H1 by keep-
ing a list of tuples 〈ri, IDi, Qi〉 which is called the
H1-list. When the H1 oracle is queried with an
input IDi ∈ {0, 1}∗, S responds as follows.

– If IDi is already on the H1-list in the tuple
〈ri, IDi, Qi〉, then S outputs Qi.

– Otherwise S selects a random ri ∈ Z
∗
q and

outputs Qi = riP , and then adds the tuple
〈ri, IDi, Qi〉 to the H1-list.

H(IDi, IDj, Ti, Tj, Ai, Bi, Ci): S simulates the
random oracle H by keeping an H-list with tu-
ples of the form 〈IDi, IDj , Ti, Tj , Ai, Bi, Ci, ki〉. If
the requested input is already on the list, then the
corresponding ki is returned, otherwise a random

WANG S B et al. Sci China Ser F-Inf Sci | Aug. 2009 | vol. 52 | no. 8 | 1358-1370 1367

ki ∈ {0, 1}k is responded and a new entry is in-
serted into the list.

Corrupt(IDi): Upon receiving the Corrupt
query on input IDi, S outputs the corresponding
long-term private key di = rixP .

Send(A,B, t,M): S answers all Send queries as
follows;
• When t = u, if oracle M �= λ, then abort

(Event 1), otherwise return yP .
• When t = v, if M �= yP , then abort (Event 2),

otherwise return zP .
• When t �= u, v, randomly sample ξt ∈ Z∗

q, re-
turn ξtH1(A).

Reveal(Πt
A,B): S outputs the appropriate ses-

sion key to answer the query. However, if E re-
veals oracle Πu

A,B or Πv
A,B, then S aborts (Event

3). Note that given ξt, the input message and the
private key dA, S is able to compute the session
secret.

Test(Πt
A,B): S aborts (Event 4) if the guessed

oracle Πu
A,B or Πv

A,B is not chosen. Otherwise, S

randomly picks a value β from the session key space
and responds to E with β.

Output: At the end of the game, E returns its
guess.

Solving the BDH problem: S randomly picks
a tuple of the form 〈I, J, TI , TJ , Ah, Bh, Ch〉 (for
some h) from the H-list and returns Ch as the re-
sponse to the BDH challenge.

Now we calculate the probability that S does not
abort, namely Events 1, 2, 3 and 4 do not happen.
By the rule of the game, if the test session is be-
tween the uth and vth oracles, then the simulation
goes through. The probability that the simulator
has chosen the right session is 1/q2

S , because a ran-
domly chosen oracle is the initiator of the test ses-
sion is 1/qS and similarly another randomly chosen
oracle is the responder of the test session is also
1/qS . We have

Pr[S does not abort] � 1/q2
S .

According to the simulation of the Send query,
the test oracle Πu

I,J must have obtained the
value TJ = zP from its partner oracle Πv

J,I .
The oracle should hold a session key of the
form H(I, J, TI , TJ , Ah, Bh, ê(dI , TJ)y/rI), in which
ê(dI , TJ)y/rI = ê(xrIP, zP)y/rI = ê(P,P)xyz.

Let Q be the event that the session string of the
test oracle has been queried to H. Because of the
construction of the session string and the use of
session identifier to define partner oracles, we can
easily prove that if Q happens with non-negligible
probability in the random oracle model, it must be
caused by a query issued by the adversary (see the
detailed argument in ref. [34]). Because H is a
random oracle, we have Pr[E wins|Q̄] = 1/2. Then

Pr[E wins] = Pr[E wins|Q̄]Pr[Q̄]

+ Pr[E wins|Q]Pr[Q]

� Pr[E wins|Q̄]Pr[Q̄] + Pr[Q]

=
1
2
Pr[Q̄] + Pr[Q]

=
1
2

+
1
2
Pr[Q].

Pr[E wins] = Pr[E wins|Q̄]Pr[Q̄]

+ Pr[E wins|Q]Pr[Q]

� Pr[E wins|Q̄]Pr[Q̄]

=
1
2
Pr[Q̄]

=
1
2
− 1

2
Pr[Q].

It follows that Pr[Q] � 2|Pr[E wins]−1/2| = 2ε.
Combining all the above results, we have that S

solves the BDH problem with probability at least
2ε/(q2

SqH) (which is non-negligible in the security
parameter l), contradicting to the hardness of the
BDH problem.

5 Comparison with existing escrowable
protocols

Here we summarize the security properties and
performances of our E-IBAK protocol and several
other previously published escrowable protocols in
Table 1. Note that:
• Since all listed protocols offer the basic security

properties (i.e., known-key secrecy, unknown key-
share resilience, key-compromise impersonation re-
silience and no key control), we will restrict our
comparison to only the forward secrecy property.
• In practice, pre-computation is often carried

out prior to the execution of the protocol for bet-
ter performance. We, therefore, compare only the
on-line computation complexity of these protocols.

1368 WANG S B et al. Sci China Ser F-Inf Sci | Aug. 2009 | vol. 52 | no. 8 | 1358-1370

Table 1 Comparisons of escrowable key agreement protocols

(with pre-computation)

Protocols P M E A Bandwidth PFS Extensiblea)

Chen–Kudla[7] 1 0 0 1 1 point × �
Smart’s[5] 1 0 0 0 1 point × �
MB-2[14] 1 0 0 0 1 point × �

Wang’s[17] 1 1 0 2 1 point � �
Cheng et al.’s[19] 1 1 1 1 1 point � �

E-IBAK 1 0 1 0 1 point � �
a) This indicates that if the protocol is extensible to work in

the escrowless mode.

In Table 1, � and × denote that the property
holds and does not hold in the protocol respec-
tively. We also use the following symbols to explain
the computation complexity of each protocol. For
simplicity, we only count these computationally ex-
pensive operations:

– P: pairing.
– M: scalar point multiplication in G1.
– E: exponentiation in G2.
– A: point addition in in G1.
From Table 1, we observe that only Wang’s

protocol[17], Cheng et al.’s protocol[19] and our pro-
posed protocol E-IBAK achieve perfect forward se-
crecy (PFS) in the escrow mode. Our protocol is,
however, more efficient than the other two proto-
cols especially when we take into consideration that

certain computations can be performed off-line.

Finally, it is worth noting that the escrowable
protocols listed in Table 1 can be extended to
work in the escrowless mode, using the simple idea
due to Chen and Kudla[7] by embedding a raw
Diffie–Hellman protocol[35] (interested readers are
referred to ref. [7] for the details). This reflects the
flexibility of these key agreement protocols.

6 Conclusions

Perfect forward secrecy (PFS) is an important se-
curity property for authenticated key agreement
protocols (in both escrow and escrowless modes).
We presented an identity-based authenticated key
agreement protocol and proved it secure in the es-
crow mode. We demonstrated that our proposed
protocol provides perfect forward secrecy without
compromising on computational efficiency. We also
proved the security of our proposed protocol in a
widely accepted model yet with a simpler modular
proof using the modular technique due to Kudla
and Paterson[24].

The authors would like to thank Liqun Chen and the anonymous

reviewers for their invaluable comments and suggestions.

1 Blake-Wilson S, Menezes A. Authenticated Diffie-Hellman key

agreement protocols. In: Proc of SAC 1998, LNCS vol. 1556.

New York: Springer-Verlag, 1999. 339–361

2 Shamir A. Identity-based cryptosystems and signature

schemes. In: Proc of CRYPTO 1984, LNCS vol. 196. New

York: Springer-Verlag, 1984. 47–53

3 Boneh D, Franklin M. Identity-based encryption from the Weil

pairing. In: Proc of CRTPTO 2001, LNCS vol. 2139. New

York: Springer-Verlag, 2001. 213–229

4 Boyd C, Choo K -K R. Security of two-party identity-based

key agreement. In: Proc of MYCRYPT 2005, LNCS vol. 3715.

New York: Springer-Verlag, 2005. 229–243

5 Smart N P. An identity based authenticated key agreement

protocol based on the Weil pairing. Electron Lett, 2002,

38(13): 630–632

6 Shim K. Efficient ID-based authenticated key agreement pro-

tocol based on the Weil pairing. Electron Lett, 2003, 39(8):

653–654

7 Chen L, Kudla C. Identity based key agreement protocols

from pairings. In: Proc of the 16th IEEE Computer Security

Foundations Workshop. New York: IEEE Computer Society,

2002. 219–213 (See also Cryptology ePrint Archive, Report

2002/184.)

8 Sun H, Hsieh B. Security analysis of Shim’s authenti-

cated key agreement protocols from pairings. Cryptol-

ogy ePrint Archive, Report 2003/113, 2003. Available at

http://eprint.iacr.org/2003/113.

9 Ryu E K, Yoon E J, Yoo Y Y. An efficient ID-based authen-

ticated key agreement protocol from pairings. In: Proc of

NETWORKING 2004, LNCS vol. 3042. New York: Springer-

Verlag, 2004. 1458–1463

10 Wang S, Cao Z, Bao H. Security of an efficient ID-based au-

thenticated key agreement protocol from pairings. In: Proc of

ISPA’05 Workshops, LNCS vol. 3759. New York: Springer-

Verlag, 2005. 342–349

11 Wang S, Cao Z, Choo K -K R, et al. An improved identity-

based key agreement protocol and its security proof. Inf Sci,

2009, 179(3): 307–318

12 McCullagh N, Barreto P S L M. A new two-party identity-

based authenticated key agreement. In: Proc of CT-RSA 2005,

LNCS vol. 3376. New York: Springer-Verlag, 2005. 262–274

13 Xie G. Cryptanalysis of Noel McCullagh and Paulo S. L.

M.Barreto’s two-party identity-based key agreement. Cryp-

tology ePrint Archive, Report 2004/308, 2004. Available at

WANG S B et al. Sci China Ser F-Inf Sci | Aug. 2009 | vol. 52 | no. 8 | 1358-1370 1369

http://eprint.iacr.org/2004/308.

14 McCullagh N, Barreto P S L M. A new two-party

identity-based authenticated key agreement. Cryptology

ePrint Archive, Report 2004/122, 2004. Available at

http://eprint.iacr.org/2004/122. (Updated paper of [11].)

15 Xie G. An ID-based key agreement scheme from pairing. Cryp-

tology ePrint Archive, Report 2005/093, 2005. Available at

http://eprint.iacr.org/2005/093

16 Li S, Yuan Q, Li J. Towards security two-part authenticated

key agreement protocols. Cryptology ePrint Archive, Report

2005/300, 2005. Available at http://eprint.iacr.org/2005/300

17 Wang Y. Efficient identity-based and authenticated key agree-

ment protocol. Cryptology ePrint Archive, Report 2005/108,

2005. Available at http://eprint.iacr.org/2005/108

18 Yuan Q, Li S. A new efficient ID-based authenticated key

agreement protocol. Cryptology ePrint Archive, Report

2005/309, 2005. Available at http://eprint.iacr.org/2005/309

19 Cheng Z, Chen L, Comley R, Tang Q. Identity-based key

agreement with unilateral identity privacy using pairings. In:

Proc of ISPEC 2006, LNCS vol. 3903. New York: Springer-

Verlag, 2006. 202–213

20 Choo K -K R, Boyd C, Hitchcock Y. Errors in computational

complexity proofs for protocols. In: Proc of ASIACRYPT

2005, LNCS vol. 3788. New York: Springer-Verlag, 2005.

624–643

21 Canetti R, Krawczyk H. Analysis of key-exchange protocols

and their use for building secure channels. In: Proc of EU-

ROCRYPT’01, LNCS vol. 2045. New York: Springer-Verlag,

2001. 453–474

22 Choo K-K R. Key Establishment: proofs and refuta-

tions. Ph.D. Thesis. Brisbane: Queensland University of

Technology. (Available at http://adt.library.qut.edu.au/adt-

qut/public/adt-QUT20060928.114022.)

23 Kudla C. Special signature schemes and key agreement proto-

cols. PhD Thesis, Royal Holloway University of London, 2006

24 Kudla C, Paterson K G. Modular security proofs for key agree-

ment protocols. In: Proc of ASIACRYPT’05, LNCS vol. 3788.

New York: Springer-Verlag, 2005. 549–565

25 Okamoto T, Pointcheval D. The Gap-problems: a new class of

problems for the security of cryptographic schemes. In: Proc

of PKC 2001, LNCS vol. 1992. New York: Springer-Verlag,

2002. 104–118

26 Bellare M, Rogaway P. Entity authentication and key distribu-

tion. In: Proc of CRYPTO 1993, LNCS vol. 773. New York:

Springer-Verlag, 1993. 110–125

27 Barreto P S L M, Kim K Y, Lynn B. Efficient algorithms for

pairing-based cryptosystems. In: Proc CRYPTO 2002, LNCS

vol. 2442. New York: Springer-Verlag, 2002. 354–368

28 Galbraith S D, Harrison K, Soldera D. Implementing the Tate

pairing. In: Proc of ANTS-V, LNCS vol. 2369. New York:

Springer-Verlag, 2002. 324–337

29 Blake-Wilson S, Johnson C, Menezes A. Key agreement pro-

tocols and their security analysis. In: Proc of the sixth IMA

International Conference on Cryptography and Coding, LNCS

vol. 1355. New York: Springer-Verlag, 1997. 30–45

30 Choo K -K R, Boyd C, Hitchcock Y, et al. On session identi-

fiers in provably secure protocols: The Bellare-Rogaway three-

party key distribution protocol revisited. In: Proc of SCN

2004, LNCS vol. 3352. New York: Springer-Verlag, 2005.

351–366

31 Cheng Z, Nistazakis M, Comley R, et al. On the

indistinguishability-based security model of key agreement

protocols—simple cases. In: Proc of ACNS 2004 (technical

track). (The full paper available on Cryptology ePrint Archive,

Report 2005/129)

32 Krawczyk H. HMQV: A high performance secure Diffie-

Hellman protocol. In: Proc of Crypto 2005, LNCS vol. 3621.

New York: Springer-Verlag, 2005. 546–566

33 Sakai R, Ohgishi K, Kasahara M. Cryptosystems based on

pairing. In: Proc of the 2000 Symposium on Cryptography

and Information Security. Okinawa, Japan, 2000

34 Cheng Z, Chen L. On security proof of McCullagh-Barreto’s

key agreement protocol and its variants. Int J Secur Netw,

2007, 2(3/4): 251–259

35 Diffie W, Hellman M E. New directions in cryptography. IEEE

Trans Inf Theory, 1976, 22(6): 644–654

1370 WANG S B et al. Sci China Ser F-Inf Sci | Aug. 2009 | vol. 52 | no. 8 | 1358-1370

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ZapfDingbatsITCbyBT-Regular
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

