
Science in China Series F: Information Sciences

© 2008 SCIENCE IN CHINA PRESS

 Springer

Received February 27, 2007; accepted April 12, 2008
doi: 10.1007/s11432-008-0080-7
†Corresponding author (email: xpli@seu.edu.cn)
Supported by the National Natural Science Foundation of China (Grant Nos. 60504029 and 60672092), and the National High Technology Re-
search and Development Program of China (863 Program) (Grant No. 2008AA04Z103)

Sci China Ser F-Inf Sci | Jul. 2008 | vol. 51 | no. 7 | 896-909

www.scichina.com
info.scichina.com

www.springerlink.com

Heuristic for no-wait flow shops with
makespan minimization based on total
idle-time increments

LI XiaoPing1,2† & WU Cheng3
1 School of Computer Science & Engineering, Southeast University, Nanjing 210096, China;
2 Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of

Education, Nanjing 210096, China;
3 Department of Automation, Tsinghua University, Beijing 100084, China

No-wait flow shops with makespan minimization are classified as NP-hard. In this
paper, the optimization objective is equivalently transformed to total idle-time
minimization. The independence relationship between tasks is analyzed, and ob-
jective increment properties are established for the fundamental operators of the
heuristics. The quality of the new schedules generated during a heuristic is judged
only by objective increments and not by the traditional method, which computes
and compares the objective of a whole schedule. Based on objective increments,
the time complexity of the heuristic can be decreased by one order. A seed phase is
presented to generate an initial solution according to the transformed objective.
Construction and improvement phases are introduced by experimental analysis.
The FCH (fast composite heuristic) is proposed and compared with the most effec-
tive algorithms currently available for the considered problem. Experimental results
show that the effectiveness of the FCH is similar to that of the best methods but
requires far less computation time. The FCH can also be efficient in real time
scheduling and rescheduling for no-wait flow shops.

no-wait flow shops, heuristic, makespan, Tabu search

1 Introduction

No-wait flow shops are constrained scheduling problems that exist widely in manufacturing sys-
tems. The operations of each job should be processed without interruption between consecutive
machines; in this way, the start of a job by the first machine must be delayed when necessary so

 LI XiaoPing et al. Sci China Ser F-Inf Sci | Jul. 2008 | vol. 51 | no. 7 | 896-909 897

that the job need not wait for processing by subsequent machines. This kind of problem exists in
industry settings, such as chemical, metal, and food processing. Modern manufacturing systems,
such as just-in-time, flexible manufacturing environments, and robotic cells, can also be modeled
as no-wait flow shops[1].

According to Gray & Johnson[2], no-wait flow shops with makespan minimization (| |Fm nwt

maxC for short) are classified as NP-hard. Although heuristics and meta-heuristics are commonly
adopted to solve scheduling problems, only a few algorithms have thus far been proposed for this
type of problem. The heuristic proposed by Gangadharan and Rajendran[3] (GR for short) and that
described by Rajendran[4] (RAJ for short) seem to be the best existing heuristics, outperforming
those presented by Bonney & Gundry[5] and King & Spachis[6]. Recently, Aldowiasan and Allah-
verdi[7] presented six meta-heuristics, three of which are based on simulated annealing, and the
other three based on a genetic algorithm. Among the six algorithms, SA2 and GEN2 are the best.
They are almost identical in performance and outperform both GR and RAJ. The computation
time for each of the six algorithms is less than 10 s when the number of tasks is fewer than 120.
Grabowski & Pempera[8] introduced three Tabu search algorithms. Among these, TSM is the best
meta-heuristic so far and outperforms even SA2 and GA2. Although meta-heuristics can usually
produce better effectiveness than heuristics, these procedures require too much computation time
to be acceptable for practice. For a 500×20 Tailard instance[9] (500 tasks and 20 machines), it
takes RAJ only 1 s, SA2 less than 5 s, SA2 about 44 s, and TSM more than 10061 s to complete
the task. It is desirable to obtain both good effectiveness and high efficiency.

In this paper, a fast iterative composite heuristic is constructed. The OIM (objective increment
method) is presented. The objective of a generated solution is obtained by computing the objec-
tive increment rather than the whole objective function. The time complexity can thus be de-
creased by order.

This paper is organized as follows. Section 2 describes no-wait flow shop problems and trans-
forms the optimization objective. Objective increment properties are analyzed in section 3. Sec-
tion 4 gives the proposed algorithm, and experimental results follow in section 5. Finally, section
6 is devoted to the conclusions.

2 Problem description and objective transformation

A no-wait flow shop is a constrained flow shop scheduling problem with n jobs 1{ , , }nJ J�
being processed on m machines M1,…, Mm. Each job is processed sequentially on m ma-
chines without delay between adjacent machines. The start of a job must be delayed on the first
machine when necessary so that the job need not wait for processing by the subsequent machines.
Let ,i jO be the operation of job (1,2, ,)j j n� � processed on machine (1,2, ,)i i m� � , ti,j

be the processing time of ,i jO , and ,i jS and ,i jC be the starting time and finish time of ,i jO .

The optimization objective is to find the schedule with the minimum makespan; in other words,
the objective is to find the job sequence [1] [](, ,)n� � �� � , where [] 1{ , , }i nJ J� � � is the ith

job of �, with minimum max .C Figure 1 depicts the Gantt chart for a six-job, six-machine

max| |Fm nwt C problem.

Because a job sequence � is a permutation of the n jobs, there are !n schedules in the whole

898 LI XiaoPing et al. Sci China Ser F-Inf Sci | Jul. 2008 | vol. 51 | no. 7 | 896-909

feasible solution space .� To illustrate the following properties conveniently, two dummy jobs

[0]� and [1]n� � are introduced to denote the start and end of �. The processing times of the two

dummy jobs are zero. The start dummy job is regarded as [0] ,� and the end one is regarded as

[1]n� � in �. Therefore, � can also be adapted to [0] [1] [] [1](, , , ,).n n� � � � �� The makespan of � is

equal to ,[]m nC or ,[1].m nC �

Figure 1 indicates that the size of the rectangle surrounded by axis X, axis Y, line max ,x C�

and line y m� reaches a minimum when maxC is optimized. The size of the rectangle is com-

posed of the sum of the processing time ,1 1
m n

i jj i t
� �� � and total idle time. Because

,1 1
m n

i jj i t
� �� � is constant for any given instance, maxC minimization can be equivalently

transformed to the total idle time minimization; this is represented by the white area in the rec-
tangle of Figure 1.

Figure 1 Objective equivalent transformation.

It can be concluded that the total idle time between two adjacent jobs iJ and jJ in a sched-

ule is dependent only on their processing times as follows. Assume jJ starts its process on the

first machine just as iJ finishes on the last machine (i.e. ,m iC). jJ should be shifted left until

it is adjacent to iJ . In other words, there exists at least one machine kM (1)k m on which

the starting time of ,k jO equals the finish time of ,k iC (shown as in Figure 2). The left shift

length ,i jL can be determined.

Figure 2 Left shift length between adjacent jobs.

 LI XiaoPing et al. Sci China Ser F-Inf Sci | Jul. 2008 | vol. 51 | no. 7 | 896-909 899

The finish time of iJ on kM is , 1, ,1
k

k i i h ihC S t
�

� �� (1, ,)k m� � , and the starting time

of iJ on 1M before shifting is , , , ,1
k

k j m i p j k jpS C t t
�

� � �� . From the above analysis, ,i jL is

actually the minimum among , ,k j k iS C� (1, ,).k m� � Thus,

, 1 , , , 1 ,1, , 1 1 1

, , , ,1, , 1

min

min .

m k k

i j i h i h j k j i h ik m h h h

m k

h i h j k i k jk m h k h

L S t t t S t

t t t t

� � � �

� � �

	
� � � �

� � � � � �� �� � � �

� � � �� �
	

� � � �� �
� �

� � �

� �

�

�

(1)

If ()
,
k

i jI is the idle time between two adjacent jobs iJ and jJ on machine kM and

()
, ,1

m k
i j i jkI I

�
� � is the total idle time between iJ and jJ , then

 ()
, , , , , , , , ,

1
,

m k
k

i j k j k i i j p i p j i j k i k j
p k p

I S C L t t L t t
� �

� � � � � � � �� � (2)

and

1

()
, , , , ,

1 2 1 1
.

m m m m k
k

i j i j p i p j i j
k k p k k p

I I t t mL
�

� � � � �

� � � �� �� �� (3)

From eqs. (1) and (3), the following property is true:
Property 1. The total idle time between two adjacent jobs is dependent only on their proc-

essing times and independent of other jobs in no-wait flow shops.
There are 1n � pairs of adjacent jobs in [0] [1] [] [1](, , , ,),n n� � � � �� and these are independent

of one another. The total idle time for all the pairs can be determined in advance and stored in
matrix I. Because [0]� cannot be a successor of any other job, there is no column for [0]� in I.

For the same reason, there is also no row for [1].n� � Therefore, the size of I is (1) (1).n n� � �

, (1,2, ,)i iI i m� � and [0],[1]nI � are set as � for convenience, and I is

[0] 1 [0] 2 [0]

1 2 1 1 [1]

2,1 2, 2,[1]

,1 ,2 ,[1]

.

, , ,n

, ,n , n

n n

n n n n

I I I
I I I

I I II

I I I

�

�

�

�� �
� ��� �
� ���
� �
� �
� ��� �

�
�
�

� � � � �
�

 (4)

The time complexities of computing ,i jL and ,i jI are ().O m Therefore, the time complex-

ity of I is 2().O mn

For a schedule [0] [1] [] [1](, , , ,)n n� � � � �� with total idle time [],[1]0
,n

k kk I ��� the makespan

maxC is

 max [],[1] ,
0 1 1

.
n m n

k k i j
k j i

C I t m�
� � �

� �
� �� �� �
� �
� �� (5)

900 LI XiaoPing et al. Sci China Ser F-Inf Sci | Jul. 2008 | vol. 51 | no. 7 | 896-909

This means that max| |Fm nwt C can be equivalently transformed to find the schedule with

� �[],[1]0min n
k kk I

� ����
� for no-wait flow shops.

3 Objective increment properties

Heuristics are efficient for scheduling problems[10], in which job insertion and exchange are usu-
ally adopted to generate new schedules.

NEH[11] and RZ[12] are fundamental insertions. NEH utilizes incremental job insertion. The
first job of the seed sequence, generated by some rule or algorithm, is set as the current solution.
The procedure then tries to insert the second job of the seed both before and after the current so-
lution (two possible slots). The better outcome is set as the current solution. The remaining jobs
in the seed are sequentially inserted in the same way, such that each job is inserted into every
possible slot of the current solution (a schedule/partial schedule) and the best possible new solu-
tion generated is selected as the new current solution. After all of the jobs of the seed have been
inserted, the current solution is the final solution of NEH. RZ inserts jobs in a different way. The
seed is initially assigned as the current solution. Each job of the seed is treated as follows. It is
picked out from the current solution and then inserted to all n possible slots. If the best of the
possible n newly generated sequences is better than the current solution, it is set as the current
solution. This procedure is repeated until all jobs in the seed have been tried. Figure 3 illustrates
the NEH and RZ insertion procedures.

Figure 3 Two insertion methods. (a) NEH-insertion; (b) RZ-insertion.

There are eight exchanges[13], which are all combinations of operation direction (forward or

backward), operation manner (swap or insertion), and the next operation position (continue or
restart). Forward exchange starts from the first job of a sequence, and backward exchange starts
from the last job of a sequence. The job on a position is exchanged with jobs after that position
(or inserting it to each of the positions after that position). The operation is successful if the ob-
jective can be optimized. The next trial continues from the next position or restarts from the first
position of the current solution. Figure 4 depicts the process of forward exchange.

Figure 4 Forward exchange.

 LI XiaoPing et al. Sci China Ser F-Inf Sci | Jul. 2008 | vol. 51 | no. 7 | 896-909 901

According to Property 1, the total idle time between two adjacent jobs is dependent only on
their processing times and independent of other jobs. In other words, only the total idle times of
the adjacent jobs in the changed positions are different after insertion or exchange within a sched-
ule. The total idle times of the other pairs of adjacent jobs maintain the same value before and
after such operations. Therefore, the quality of a new schedule can be evaluated merely by
computing objective increments on the operating slots instead of by computing the whole objec-
tive value.

Theorem 1. For a k-job schedule other than the two dummy jobs, the total idle time incre-
ment ()

[],
N
j i is [], ,[1] [],[1]j i i j j jI I I� �� � when an unscheduled job iJ is inserted after []j�

(0, ,).j k� �

Proof. For a k-job schedule � other than the two dummy ones, [1]j� � is no longer the direct

successor of []j� once iJ is inserted after []j� (0, ,).j k� � The adjacent pair [] [1](,)j j� � �

is destroyed. Two new pairs [](,)j iJ� and [1](,)i jJ � � are created. Therefore, the total idle time

increment ()
[],

N
j i is [], ,[1] [],[1].j i i j j jI I I� �� � QED

Similarly, the following theorems are true.
Theorem 2. For an n-job schedule � other than the two dummy ones, the total idle time in-

crement ()
[],[]

R
j i is [],[] [],[1] [1],[1] [],[1] [1],[] [],[1]()j i i j i i j j i i i iI I I I I I� � � � � �� � � � � when []i� (I = 1, ,

n) is removed and inserted after []j� (0, , ; 1).j n j i� ! ��

Theorem 3. After exchanging []i� and []j� (,i j! , 1, ,i j k� �) of a k-job schedule �

other than the two dummy ones, the total idle time increment ()
[],[]

S
i j is: 1)

[1],[] [],[] [],[1] [1],[] [],[] [],[1]()i j j i i j i i i j j jI I I I I I� � � �� � � � � if []i� and []j� were adjacent before the

exchange; and 2) [1],[] [],[1] [1],[] [],[1] [1],[] [],[1] [1],[] [],[1]()i j j i j i i j i i i i j j j jI I I I I I I I� � � � � � � �� � � � � � �

otherwise.
The following corollary can be inferred from Theorem 3.
Corollary 1. ()

[],[] 0S
i j is true for any []i� and []j� (1)i j n" in the optimum

schedule *.�

Proof. Assume that there exist two jobs []i� and []j� (1)i j n" with ()
[],[] 0.S
i j "

The total idle time of *� can be reduced by exchanging []i� and []j� according to Theorem

3. Thus there exists another schedule that is better than *,� which contradicts the fact that *�
is the optimum schedule. QED

Heuristics generate new solutions via fundamental operations, such as insertion or exchange,
and evaluate the quality of the solutions by calculating their objective values. For the above three
theorems, the total idle time increment can be obtained by calculating just a few values. The time
complexity of an operator is reduced by one order from ()O n to (1).O

902 LI XiaoPing et al. Sci China Ser F-Inf Sci | Jul. 2008 | vol. 51 | no. 7 | 896-909

4 FCH algorithm

In this section, a composite heuristic called the FCH (fast composite heuristic) is presented fol-
lowing the three phases given by Framinan, Leisten, and Ruiz-Usano[14]. These three phases in-
clude the index development phase, solution construction phase, and solution improvement phase.
The FCH is composed of an initial schedule generating procedure, iterative construction proce-
dure, and improvement procedure.

4.1 Initial schedule generating procedure

An initial solution generating algorithm is constructed by integrating properties of no-wait flow
shops with NEH, the most efficient heuristic for flow shops with makespan minimization[15]. A
schedule # is produced by the non-increasing job order of the sums of processing time. Figure
1 implies that the first and last jobs play important roles in the optimized objective of a schedule,
and thus the total idle time of a schedule is closely dependent on [0],[1]I and [],[1].n nI � Therefore,

the first and last jobs are chosen to form schedule $ %(2) (2) (2) (2)
[0] [1] [2] [3], , , ,& & & & in which (2)

[0]& and (2)
[3]&

are dummy jobs. The job with the minimum value in the first row of I is selected as (2)
[1] ;& if

there is more than one job with the same value, the first one in # is selected and removed from

. The job different from (2)
[1]& with the minimum value in the last column of I is selected as

(2)
[2] ;& if there is more than one job with the same value, the first one in # is selected and re-

moved from # . k is initialized as 2. The job iJ in the first position of # is removed. The best

insertion slot is found by computing � �()
[],0, ,

min ,N
j ij k

� �

 and (1)k& � is constructed by inserting iJ

into that slot. 1.k k' � The process is repeated until k n� and ()n& is the initial schedule.
The initial schedule generating procedure is formally described as follows:

1. Generate # by ordering the sums of job processing time in a non-increasing manner.

2. Select the job with � �[0],1
min jj n

I as (2)
[1]& (if more than one job has the same value, select

the first one in # to break the tie). � �(2)
[1] .# # &' � 1.k '

3. Select the job with � �,[1]1
min j nj n

I � different from (2)
[1]& as (2)

[2]& (if more than one job has

the same value, select the first one in # to break the tie). � �(2)
[2] .# # &' � 1.k k' �

4. $ %(2) (2) (2) (2) (2)
[0] [1] [2] [3], , , ,& & & & &� in which (2)

[0]& and (2)
[3]& are dummy jobs.

5. While # ! ({

 Remove job iJ in the first position from .#

 Compute the total idle time increment ()
[],

N
j i (0,1, ,)j k� � by matrix I.

 Determine the optimum position p by � �()
[],0, ,

min .N
j ij k

� �

 Generate (1)k& � by inserting iJ after ()
[] .

k
p&

 LI XiaoPing et al. Sci China Ser F-Inf Sci | Jul. 2008 | vol. 51 | no. 7 | 896-909 903

 1;k k' �
}

6. Halt.
The time complexity is (log)O n n for step 1, ()O n for steps 2 and 3, and 2()O n for step 5.

Hence, the time complexity of the initial schedule generating procedure is 2()O n .

4.2 Iterative construction procedure

The NEH-insertion[11] and RZ-insertion[12] are commonly used to construct solutions, but they
exhibit distinct performance for different scheduling problems. For example, NEH is based on
NEH-insertion. Although it is the most efficient heuristic for flow shops with makespan minimi-
zation[15], it is inefficient for max| | .Fm nwt C RZ[12], FL[13], and WY[16] are efficient for con-
structive heuristics for permutation flow shops with total flowtime minimization; RZ is based on
RZ-insertion, whereas FL and WY are based on NEH-insertion. In fact, NEH-insertion and
RZ-insertion are generally used in most composite heuristics. Iterative insertion has been dem-
onstrated to improve effectiveness considerably[10].

Various insertion methods exert different influences on computation time and effectiveness
within the same problem. Based on Theorems 1 3 and the iterative construction manner pro-
posed in ref. [10], four constructive heuristics (FRZ, FNEH, FWY, and FFL) are presented by
modifying NEH, RZ, WY, and FL. In this paper, only FRZ is formally described; its main idea is
as follows. S� is obtained by calling the initial schedule generating procedure. C� is initial-

ized as .S� For each job [] ,
S
i� let its position in C� be p. The best inserted slot q in C� and

the total idle time increment) can be determined by Theorem 2. If 0,) " []
S
i� is removed

from C� and inserted after []
C
q� (0, , ; 1).q n q p� ! �� The new schedule is set as ,C� and

.flag True' If flag True� after all jobs are sequentially inserted by the above RZ-insertion,

this implies that the objective becomes smaller by at least one job RZ-insertion. .S C� �' The
above process is repeated until .flag False� Experimental results show that the iteration num-
ber k seldom exceeds 10 and the improvement is little even if 10.k * Therefore, the termination
condition of FRZ is set as flag False� or 10.k * FRZ can be formally described as follows:

1. 0,k ' .C S� �'
2. Repeat {

.flag False'
For 1i � to n {

 0.)'
 For 0j � to 1n � {
 If 1i j� ! then {

Find the position p of []
S
i� in .C�

Determine the best inserted slot q of []
S
i� in C� and the total idle time incre-

ment) by Theorem 2.

904 LI XiaoPing et al. Sci China Ser F-Inf Sci | Jul. 2008 | vol. 51 | no. 7 | 896-909

 }
}
If 0) " then

Remove []
C
p� and insert it after [].

C
q� The new schedule is set as .C�

.flag True'
}

 1k k' � .
}Until (flag False� or 10k *).

3. Halt.
Obviously, the main computation time of FRZ is spent on step 2, which has time complexity

2()O n . The time complexity of FRZ is thus 2(),O n one order less than that of the traditional

RZ with 3().O n
To demonstrate the effectiveness of the algorithms, the average relative percent deviation

(ARPD) is defined as follows:

 $ %
1

() 1 / 100,
N

i i
i

ARPD M H B N
�

� � �� (6)

where N is the number of instances for the same problem size (the same number of jobs and ma-
chines), ()iM H is the makespan of instance i obtained by algorithm H, and iB is the best
makespan so far. FNEH, FRZ, FWY, and FL are performed on the 120 Tailard benchmark in-
stances [9], which are classified into 12 groups. ARPD of the four heuristics is depicted in Figure 5.

10N � and iB provide the minimum makespan among the four for the instance i.

Figure 5 ARPD comparisons for different fast heuristics.

Figure 5 shows that the ARPD of FRZ, with a maximum less than 0.5 and an average of only
0.154, is the lowest of the four heuristics for all the groups. The ARPD of FNEH, with a mini-
mum greater than 1.3 and an average of 1.705, is the largest. Hence, FRZ is the most effective
method for the considered problem. It is also indicates that RZ-insertion is more effective than
NEH-insertion for max| | .Fm nwt C This finding verifies the idea that NEH is the most efficient
method for permutation flow shops with makespan minimization, whereas it is inefficient for
no-wait flow shops with makespan minimization.

 LI XiaoPing et al. Sci China Ser F-Inf Sci | Jul. 2008 | vol. 51 | no. 7 | 896-909 905

4.3 Improvement procedure

The exchange operation is effective for improving the current schedule. There are eight combina-
tions of the operation direction (forward or backward), operation manner (swap or insertion), and
next operation position (continue or restart), which are called FIR, FIC, FSR, FSC, BIR, BIC,
BSR, and BSC. According to Framinan, Leisten, and Ruiz-Usano[14], solution improvement by
the eight exchange operations depends highly on the current solution. Experimentation with the
eight operations on the 120 Tailard benchmark instance reveals that: 1) when the eight operations
are applied to improve the solution of initial schedule generating procedure, BSC produces the
best improvement whereas BIC produces the worst; and 2) when the eight operations are used to
improve the solution of FRZ, the ARPD results are given in Table 1.

Table 1 Improvement by eight exchange operations on solutions of FRZ (ARPD: %)

Group FRZ FIR FIC FSR FSC BIR BIC BSR BSC
Ta01 0.160 0.160 0.160 0.000 0.000 0.160 0.160 0.000 0.000
Ta02 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ta03 0.104 0.104 0.104 0.000 0.000 0.104 0.104 0.000 0.000
Ta04 0.668 0.668 0.668 0.117 0.003 0.668 0.668 0.117 0.003
Ta05 0.027 0.027 0.027 0.002 0.000 0.027 0.027 0.002 0.000
Ta06 0.063 0.063 0.063 0.000 0.000 0.063 0.063 0.000 0.000
Ta07 0.763 0.763 0.763 0.076 0.044 0.763 0.763 0.076 0.020
Ta08 0.142 0.142 0.142 0.035 0.000 0.142 0.142 0.035 0.000
Ta09 0.058 0.058 0.058 0.000 0.000 0.058 0.058 0.000 0.000
Ta10 0.196 0.196 0.196 0.022 0.000 0.196 0.196 0.022 0.000
Ta11 0.084 0.084 0.084 0.000 0.000 0.084 0.084 0.000 0.000
Ta12 0.043 0.043 0.043 0.004 0.000 0.043 0.043 0.004 0.000
Aver. 0.192 0.192 0.192 0.021 0.004 0.192 0.192 0.021 0.002

Table 1 shows that the ARPD of BSC is the lowest, with a value of 0.002. FSC, which has a

value of 0.004, is inferior to BSC. Makespans of all the instances except Ta068 are the same as
those of BSC. For the other six operations, improvements for both forward and backward are
identical, and so the operating direction exerts little influence on the improvement of solutions for
FRZ. In this paper, BSC is chosen to improve the final solution � of FRZ. For each of the

(1) / 2n n � possible new solutions generated by BSC, the total idle times are computed by Theo-

rem 3. The minimum total idle time) and the corresponding job pair ([] ,p� []q�) are recorded.

[]p� and []q� are successfully exchanged if 0.) " � is replaced with the new schedule, and

.flag True' The above process is repeated until 0) or .flag False� Additionally, the
number of iterations k is less than 20. Therefore, the termination conditions of BSC can be set as

0,) ,flag False� or 20.k * BSC is formally described as follows:
1. 0.k '
2. Repeat {

 0,)' .flag False'
 For i n� to 2 {
 For 1j i� � to 1 {

 Compute ()
[],[]

S
i j by Theorem 3.

906 LI XiaoPing et al. Sci China Ser F-Inf Sci | Jul. 2008 | vol. 51 | no. 7 | 896-909

 If ()
[],[]

S
i j) * then ,p i' ,q j' ()

[],[].
S
i j)'

 }}
 If 0) " then exchange []p� and [].q� The new schedule is set as .�

.flag True'
1.k k' �

} Until flag False� or 20.k *
3. Halt.
Obviously, time complexity of BSC is 2().O n

4.4 Fast composite heuristic

According to the above analysis, the FCH (fast composite heuristic) is proposed for | |Fm nwt

max .C This is performed as follows:
1. Compute the idle time matrix I.
2. Generate the initial schedule via the initial schedule generating procedure.
3. Construct schedule � by FRZ based on the initial schedule.
4. Improve � via BSC.
5. Calculate the makespan by eq. (5).
6. Stop.
The time complexity of step 1 is 2().O mn It is 2()O n for steps 2, 3, and 4, and ()O mn for

step 5. Therefore, the time complexity for the FCH is 2().O mn
To illustrate the execution procedure for the FCH, a 7-job and 5-machine no-wait flow shop

with the processing times given in Table 2 is considered.

Table 2 A no-wait flow shop instance

 J1 J2 J3 J4 J5 J6 J7
M1 64 56 79 36 27 37 54
M2 80 15 46 40 11 87 54
M3 50 89 44 30 21 17 67
M4 73 74 35 7 97 3 68
M5 73 20 90 74 75 79 45

The execution steps for the FCH are as follows:
1) Compute the idle time matrix I by eqs. (3) and (4).

669 521 577 331 280 446 580
127 248 457 311 417 56 691

174 127 261 380 221 100 495
193 140 365 134 325 104 599
331 183 239 102 143 242 417
293 145 201 410 370 204 644
300 202 133 212 126 261 446
71 173 129 338 332 298 572

I

�� �
� ��� �
� ��
� �

�� �� � ��
� �

�� �
� ���

��� �

.

�
�

 LI XiaoPing et al. Sci China Ser F-Inf Sci | Jul. 2008 | vol. 51 | no. 7 | 896-909 907

2) The initial schedule (0,5,2,3,1,7,6,4,8) is generated by calling the initial schedule generating
procedure (0 and 8 are dummy jobs) with a total idle time of 1728. The corresponding makespan

maxC is 709.
3) The construction and improvement procedures via FRZ and BSC are shown in Table 3.
4) The makespan of 683 by eq. (5) is obtained, and then the process is stopped.

Table 3 Solution construction and improvement procedures

Operations S� k flag C�
FRZ (0,5,2,3,1,7,6,4,8) 1 true (0,4,5,2,3,1,7,6,8)

 2 true (0,4,6,5,2,3,1,7,8)
 3 true (0,4,6,3,5,2, 1,7,8)
 4 false (0,4,6,3,5,2, 1,7,8)

BSC (0,4,6,3,5,2, 1,7,8) 1 true (0,4,6,3,5,7, 1,2,8)
 2 true (0,4,6,5,3,7, 1,2,8)
 3 false (0,4,6,5,3,7, 1,2,8)

5 Experimental results

To compare the proposed FCH with 1) the best existing heuristics GR[3] and RAJ[4], 2) the An-
nealing Simulation algorithm SA2[7], and 3) the Tabu Search algorithm TSM[8] for

max| | ,Fm nwt C we tested the 120 Tailard benchmark instances. The algorithms are compared in
terms of effectiveness and efficiency via the ARPD and computation time (in seconds), respec-
tively. All algorithms are implemented in Visual Basic 6.0 and performed on a PC with 2.5 GHz
and 512 M RAM. Our experimental results are shown in Tables 4 and 5.

Table 4 indicates that TSM produces the best in effectiveness. The FCH is similar to TSM. The
average ARPD for the FCH (0.642%) is close to that of TSM (0.148%); the difference between
these two values is less than 0.5%. The maximum ARPD difference between the FCH and TSM
is also no greater than 1%. Overall, the ARPD for the FCH decreases as problem size increases.
The average ARPD for RAJ (6.621%) is better than that for GR (7.756%). The ARPD changing
tendency of RAJ is similar to that of SA2. GR performs worst in terms of effectiveness, and its
ARPD increases with problem size. The ARPD of GR exceeds 10% for instances with sizes
greater than 200×10.

Table 4 ARPD (%) comparisons for the algorithms
Group n×m RAJ GR SA2 TSM FCH
Ta01 20×5 5.738 3.614 1.735 0.288 1.094
Ta02 20×10 9.072 6.554 1.178 0.398 1.113
Ta03 20×20 6.037 5.251 1.242 0.266 0.665
Ta04 50×5 8.282 6.752 2.178 0.077 0.819
Ta05 50×10 6.225 7.305 1.768 0.011 0.765
Ta06 50×20 5.891 6.953 1.536 0.294 0.685
Ta07 100×5 7.956 7.259 2.020 0.129 0.484
Ta08 100×10 7.306 8.383 2.025 0.142 0.614
Ta09 100×20 6.026 9.272 1.572 0.000 0.534
Ta10 200×10 6.175 8.962 1.863 0.009 0.457
Ta11 200×20 5.525 10.102 1.453 0.106 0.175
Ta12 500×20 5.216 12.662 1.471 0.049 0.297
Aver. 6.621 7.756 1.670 0.148 0.642

908 LI XiaoPing et al. Sci China Ser F-Inf Sci | Jul. 2008 | vol. 51 | no. 7 | 896-909

Table 5 indicates that the FCH provides the best and TSM the worst efficiency. RAJ is inferior
to the FCH. For example, it takes the FCH only 0.430 s on average to compute a 500×20 (Ta12
group) instance. RAJ, GR, and SA2 need 1, 4.408, and 44 s, respectively, to perform the same
computation. TSM spends roughly 10062 s (nearly 3 h). The computation time for TSM increases
rapidly with problem size, because this method finds better solutions by enlarging the searching
scope. The objective increment method has not been adopted for makespan computing.

Table 5 Computation time (in seconds) comparisons for the algorithms

Group n×m RAJ GR SA2 TSM FCH
Ta01 20×5 0.000 0.000 0.009 0.569 0.002
Ta02 20×10 0.000 0.002 0.006 0.572 0.002
Ta03 20×20 0.000 0.000 0.010 0.555 0.000
Ta04 50×5 0.002 0.003 0.052 7.567 0.002
Ta05 50×10 0.002 0.008 0.056 7.580 0.000
Ta06 50×20 0.002 0.008 0.055 7.559 0.003
Ta07 100×5 0.009 0.028 0.341 60.064 0.009
Ta08 100×10 0.011 0.030 0.360 60.186 0.011
Ta09 100×20 0.016 0.035 0.348 59.994 0.012
Ta10 200×10 0.061 0.226 2.638 498.816 0.050
Ta11 200×20 0.075 0.236 2.608 504.198 0.056
Ta12 500×20 0.966 4.408 43.905 10061.65 0.430

The proposed FCH is similar to TSM in effectiveness and thus far represents the fastest algo-

rithm for solving the considered problem. The time complexity of the FCH is only 2().O mn The
computation time is very short, even for large scale no-wait flow shops with makespan minimiza-
tion. Therefore, the FCH is desirable for real-time scheduling and rescheduling no-wait flow
shops in practice.

6 Conclusions

No-wait flow shops with makespan minimization were considered in this paper. Makespan mini-
mization is equivalently transformed to the total idle time minimization by analyzing the inde-
pendence between jobs. An objective increment method was presented for two fundamental heu-
ristic operators, insertion and exchange. Whether newly generated schedules are better than older
schedules is judged only by corresponding objective increments rather than via the traditional
method of computing whole objectives; this change reduced the time complexity by one order.
NEH was adopted as an Initial schedule generating procedure to generate the initial schedule.
From simulations, FRZ (a fast iterative heuristic) and BSC were determined as the iterative con-
struction and improvement procedures responsible for constructing and improving the current
solution. The FCH (fast composite heuristic) is proposed by integrating the initial schedule gen-
erating, iterative construction, and improvement procedures. The time complexity of the FCH is
only 2().O mn The FCH was compared with the efficient or effective existing algorithms RAJ,
GR, SA2, and TSM for the considered problem. Our experimental results showed that the FCH
performs similar to TSM. It is the best method so far in terms of effectiveness, and it requires
little computation time. The ARPD difference between the FCH and TSM is only 0.248% for a
500×20 instance. However, the computation time for the FCH (0.430 s) is far less than that of

 LI XiaoPing et al. Sci China Ser F-Inf Sci | Jul. 2008 | vol. 51 | no. 7 | 896-909 909

TSM (10061.65 s). Therefore, the FCH is desirable for real-time scheduling and rescheduling
no-wait flow shops in practice.

The authors are grateful to the anonymous referees for their valuable suggestions and com-
ments.

1 Hall N G, Sriskndarajah C. A survey of machine scheduling problems with blocking and no-wait in process. Oper Res, 1996,

44 (3): 510 525
2 Gray M R, Johnson D S, Sethi R. The complexity of flowshop and jobshop scheduling. Math Oper Res, 1976, 1(2):

117 129
3 Gangadharan R, Rajendran C. Heuristic algorithms for scheduling in the no-wait flowshop. Int J Prod Econ, 1993, 32(3):

285 290
4 Rajendran C. A no-wait flowshop scheduling heuristic to minimize makespan. J Oper Res Soc, 1994, 45(4): 472 478
5 Bonney M C, Gundry S W. Solutions to the constrained flow-shop sequencing problem. Oper Res Q, 1976, 24(4): 869 883
6 King J R, Spachis A S. Heuristics for flow-shop scheduling. Int J Pro Res, 1980, 18(3): 343 357
7 Aldowiasan T, Allahverdi A. New heuristics for no-wait flowshops to minimize makespan. Comp Oper Res, 2003, 30(8):

1219 1231
8 Grabowski J, Pempera J. Some local search algorithms for no-wait flow-shop problem with makespam criterion. Comp Oper

Res, 2005, 32(8): 2197 2213
9 Tailard E. Benchmarks for basic scheduling problems. Eur J Oper Res, 1993, 64(2): 278 285

10 Li X P, Wang Q, Wu C. Efficient Composite Heuristics for Total Flowtime Minimization in Permutation Flow Shops.
Omega. Accepted. (In press, online)

11 Nawaz M, Enscore E E, Ham I. A heuristic algorithm for the m-machine n-job flow-shop sequencing problem. Omega , 1983,
11(1): 91 95

12 Rajendran C, Ziegler H. An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs. Eur
J Oper Res, 1997, 103(1): 129 138

13 Framinan J M, Leisten R. An efficient constructive heuristic for flowtime minimisation in permutation flow shops. Omega,
2003, 31(4): 311 317

14 Framinan J M, Leisten R, Ruiz-Usano R. Comparison of heuristics for flowtime minimisation in permutation flowshops.
Comp Oper Res, 2005, 32(5): 1237 1254

15 Kalczynski P J, Kamburowski J. On the NEH heuristic for minimizing the makespan in permutation flow shops. Omega,
2007, 35(1): 53 60

16 Woo D S, Yim H S. A heuristic algorithm for mean flowtime objective in flowshop scheduling. Comp Oper Res, 1998, 25(3):
175 182

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

