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A trinomial type of σ -LFSR oriented toward 
software implementation 

ZENG Guang†, HE KaiCheng & HAN WenBao 
Department of Applied Mathematics, Information Engineering University, Zhengzhou 450002, China 

In this paper, we introduce a new type of feedback shift register based on words, 
called σ -linear feedback shift register (σ -LFSR) which can make full use of the in-
structions of modern CPUs so that we can find good σ -LFSR with simple structure 
and fast software implementation. After analysis, we find a class of simple σ -LFSR 
with maximal period and give an algorithm of searching for those σ -LFSRs. As a 
result, we provide a new optional fast component in the design of modern word- 
based stream ciphers. 

finite field, stream cipher, σ -LFSR, primitive polynomial, fast software implementation 

The system of stream cipher is generally composed of several LFSRs and some nonlinear func-
tions. Traditional stream cipher primarily adopted bit-based LFSR, which have profound theory 
and wide applications[1,2]. Bit-based LFSR extremely fits for hardware implementation, but many 
bit manipulations are required for software and only one bit output per step, while modern CPU 
can process 32 or 64 bits operations, even with MMX instructions which provide 4 or 5 32 bit 
instructions per a clock. With the application of modern CPU, software implementation efficiency 
of traditional LFSR is low. 

Since the first “Fast Software Encryption (FSE)” conference in 1993, the design of crypto sys-
tem suitable for software implementation is an important trend in the world of modern cryptology. 
In the following research, there appear to be many new ideas and methods of design of stream 
cipher for fast software implementation. Modern stream cipher is generally 4－5 times faster than 
block cipher in speed but lower in security, so how to design security stream cipher with high 
software efficiency attracts much attention. In FSE of 1994, Preneel[3] set forth a challenge to 
design LFSRs which exploit the parallelism offered by the word oriented operations of modern 
processors. 

Considerable following up happened to the study of software implementation oriented stream 
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cipher. Europe launched NESSIE project, calling for a broad set of cryptographic primitive algo-
rithm. Finally, all candidates of stream ciphers did not pass. This also proposed a higher challenge 
for stream cipher designer: designing stream cipher for fast software implementation with secu-
rity identical with block cipher. Japan and Korea also collected cryptographic algorithm standard 
one after another. In 2005, Europe’s ECRYPT NoE eSTREAM project once again called for 
stream ciphers. In all 34 collected stream ciphers, 22 take software implementation as one of the 
design goals. Thus, it can be seen that designing fast software implementation stream cipher has 
become an active research topic at present. 

It is clear that modern stream cipher designs, represented by proposals, such as Ssc2[4],  Pa-
nama[5], Mugi[6], Seal[7], Scream[8], Rabbit[9], Helix[10], Sober[11,12], Turing[13], Snow[14,15], and 
many more, are far from classical designs like traditional nonlinear filter generator and nonlinear 
combination generators, etc. One major difference is that classical designs are bit-oriented, 
whereas modern designs tend to operate on (e.g., 32 or 64 bits) words to provide efficient soft-
ware implementations. Modern stream ciphers use building blocks very similar to those used in 
block cipher. The transition from bit to word leads to introduce different operations in stream ci-
pher design, even taking use of S boxes or other complicated linear transformations which are 
commonly used in block ciphers. It should be noticed that most proposals use word-based LFSR 
as the pseudorandom source. In 2003, Tsaban and Vishne[16] introduced the concept of linear 
transformation shift register (TSR) which is a word-based LFSR. Dewar and Panario[17] further 
studied searching algorithm of primitive TSR. In addition, the source part of stream cipher So-
ber[11,12], Turing[13], and Snow[14,15] is primitive word-based LFSR over finite field which has de-
sirable pseudorandom properties and fast software implementation. 

Word-based LFSR has already become the important constituent of modern stream cipher. Be-
fore word-based LFSRs wide use, we must research their pseudorandom properties and software 
suitability. In this paper, we introduce the concept of σ -linear feedback shift register (σ -LFSR)[18], 
which is the generalization of TSR proposed by Tsaban and Vishne. We focus the research on 
cryptographic properties, construction with few operations, and fast implementation of σ -LFSR. 
We give an overview of general word-based LFSR and analysis of cryptographic properties. As a 
result, we obtain an algorithm of searching for primitive trinomial σ -LFSR. Our results indicate 
that this kind of σ -LFSR has the good pseudorandom and fast software implementation. 

1  Model of σ -LFSR 

Let q be a prime, m a positive integer, qF  a finite field with q elements, and mqF  an extension 

of qF  with degree m. Let n be a positive integer and a0,a1,…,an be given elements of mqF . A 

sequence 0 1, ,s s s∞ =  such that 

 0 1 1 1 1( )     0,1,k n k k n k ns a s a s a s k+ + − + −= − ⋅ + ⋅ + + =   

is called nth order linear recurrence sequence in mqF . It is obvious that many additions and mul-

tiplications of mqF  are required in traditional LFSR. No matter whether we use polynomial basis 

or normal basis of /m qqF F , addition is easy while multiplication is complicated, so table lookup  

technique is often used to speed up multiplication in software implementation. For modern popu-
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lar 32 bit processor, in order to sufficiently exploit computation resources and avoid mass bit op-
erations, m=32 is generally selected for q=2. In implementation, it is infeasible to have storage 
232×232 size table. Even if we can decrease storage amount, the time of table lookup will greatly 
decline the efficiency. The operations, including AND, OR, NOT, XOR, SHIFT, etc., are funda-
mental instructions of CPU, where circular rotation is not only simple and suitable for software or 
hardware, but also accelerates information diffusion in word. Therefore, we introduce the circular 
rotation to the word-based LFSR named σ -LFSR. Now, we define the circular rotation operation 
in a mathematical way. 

Definition 1.  Let 
1

, , ,
mq qα α α

−

be the normal basis of linear vector space /m qqF F  and 
1

0 1 1
m

m
q q

m qk k kβ α α α
−

−= + + ∈F  where 0 1 1, , , m qk k k − ∈F , then circular rotation operation 

over mqF  is defined as 
1 1

0 1 1 1 0 2( ) ( ) .
m mq q q q

m m mk k k k k kσ β σ α α α α α α
− −

− − −= + + + +  
Remark 1.  In actual implementation, σ  can be realized by circular rotation operation and 

it is a qth power function over mqF . 

It is obvious that σ  is a linear map over /m qqF F . Moreover, any element c of mqF  can in-

duce a linear map C over /m qqF F , where :  ( )m mq qC C cα α→ =F F  for mqα ∈F . We define 

[ ] i
m

k
i iq

i
a bσ σ= ∑F , where , mi i qa b ∈F , ,ik i ∈Z , and denotes by [ ]m mq q σ= FA . 

Definition 2.  If 
1

0 1 1
m

m
q q

m qk k kβ α α α
−

−= + + ∈F  and 
1

0 1 1
m

m
q q

m ql l lγ α α α
−

−= + + ∈F , 

where 0 1 1, , , m qk k k − ∈F  and 0 1 1, , , m ql l l − ∈F , then 

0 0 1 1(( ), , ( )).m mk l k lβ γ − −+ + +  
In fact, this definition is the common addition in finite field, but it should be noticed that if q=2, 

above defined “+” is the XOR operation in computer and can be implemented by computer in-
struction. 

Definition 3.  Let n be a positive integer, and 0 1 1( ), ( ), , ( )nc c cσ σ σ−  are elements in mqA . 

A sequence 0 1, ,s s s∞ =  over mqF  such that 

 0 1 1 1 1( ( ) ( ) ( ) )     0,1,i n i i n i ns c s c s c s iσ σ σ+ + − + −= − ⋅ + ⋅ + + =  (1) 
is called nth order σ -linear recurrence sequence and polynomial 

1
1 1 0( ) ( ) ( ) ( ) [ ]m

n n
n qf x x c x c x c xσ σ σ−

−= + + + + ∈A  

is called σ -polynomial of sequence s∞ . The model of σ -LFSR is as in Figure 1. 
Remark 2.  If we take 0 0 1 1( ) , , ( )n nc a c aσ σ− −= = , where a0,a1,…,an mq∈F in Definition 3, 

eq. (1) gives traditional nth order linear recurrence sequence over finite field. 

2  Properties of σ -LFSR 

It is easy to see that for any mqβ ∈F , we have qσβ β σ= , so mqA is a noncommutative algebra 
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Figure 1  Model of σ -LFSR. 
 

over qF . In order to utilize algebra theory to study σ -LFSR, we have 

Theorem 1.  Let ( )m qM F  be the m×m matrix ring over qF . We have ( ) mm q qM ≅F A . 

Proof.  Let 
1

, , ,
mq qα α α

−

be the normal basis of /m qqF F . Because σ  is a linear map over 

/m qqF F  with order m and qσβ β σ= , we have 

1 1

0 0
|

i

m

m m
q j

ij ij qq
j i

a aα σ
− −

= =

⎧ ⎫⎪ ⎪= ∈⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑A F . 

Notice that elements in mqA  are all linear map over /m qqF F . Let γ  be the natural map from 

mqA  to ( )m qM F , which sends linear map to its associated matrix under the normal basis 
1

, , ,
mq qα α α

−

. Obviously, γ  is an injection and ( ) ( )m m qq Mγ ⊆ FA . In fact, 
2

| ( ) | m
m qM q=F . 

Thus, we only need to prove 
2

| |m
m

q q=A . If there exist 0 1 1, , , mm qθ θ θ − ∈F  such that 
1

0 1 1 0m
mθ θ σ θ σ −

−+ + + = , then for any mqβ ∈F , we have 
1

0 1 1 0
mq q

mθ β θ β θ β
−

−+ + + = . 

That is, the polynomial 
1

0 1 1
mq q

mx x xθ θ θ
−

−+ + +  has qm roots in mqF  at least, so 0 1θ θ=  

1 0mθ −= = = . Hence, 
2

| |m
m

q q=A and the proof is finished. 

In the following paper, we always denote the associated matrix of ( ) mi qc σ ∈A under the nor-

mal basis 
1

, , ,
mq qα α α

−

 for 0 ≤ i ≤ n − 1 by ( )i m qC M∈ F . Therefore, in σ -LFSR, the 

coefficients can be replaced by m × m matrix over qF , and the recurrence (1) is rewritten as 

 0 1 1 1 1( )     0,1,i n i i n i ns C s C s C s i+ + − + −= − ⋅ + ⋅ + + =  (2) 

Remark 3.  Let ( )m qT M∈ F  be the associated matrix with some linear map over /m qqF F , 

if C0 = C1 = = Cn−1 = T, then the σ -LFSR defined by (2) is the TSR[16,17], which is introduced by 
Tsaban and Vishne, so TSR is a special case of σ -LFSR. 

Remark 4.  Elements of mqF can be regarded as m-tuple vector over binary field when q = 2, 

meanwhile CPU instructions AND operation can be introduced to σ -LFSR over 2mF . Let 
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1 2 2( , , , ) mmV a a a= ∈F  and symbol &V be defined as AND operation with vector V. 

By the definition of σ -LFSR, σ -linear recurrence sequence s∞  is an ultimately periodic se-
quence, i.e., there exists integer r>0 and the least nonnegative integer n0≥0 such that sn+r = sn for 

all n≥n0, r is called the period of the sequence s∞  and n0 is called the preperiod. If n0 = 0, the 

sequence s∞  is called periodic. Similar to linear recurring sequence in finite fields, we can also 
establish a condition for the periodicity of σ -linear recurrence sequences. 

Theorem 2.  Let s∞  satisfy the linear recurrence relation (1), then s∞ is periodic if and 
only if 0 ( )c σ  is invertible of mqA . 

Proof.  If the coefficient 0 ( )c σ  is an invertible in mqA , r is the least period and n0 its 

preperiod of sequence s∞ . Suppose s∞ is not periodic, so we have n0≥1. By definitions of pe-
riod and preperiod, sn+r = sn for all n≥n0. From (1) with i = n0 + r − 1, we obtain 

0 0 0 0

0 0 0

1
1 0 1 1 1 2

1
0 1 1 1 2

( )( ( ) ( ) )

          ( )( ( ) ( ) ).
n r n r n n r n n r n

n n n n n n

s c s c s c s

c s c s c s

σ σ σ

σ σ σ

−
− + − + + + − + + −

−
− + − + −

= − + + +

= − + + +
 

Using (1) with i = n0 − 1, we find the same expression for
0 1n rs − +  and

0 1ns − , so
0 01 1n r ns s− + −= . This 

is a contradiction to the definition of the preperiod, so n0 = 0 and s∞ is periodic. 
On the other hand, suppose 0 ( )c σ  is noninvertible in mqA , r is the least period and n0 its 

preperiod of sequence s∞ . Then, associated matrix of 0 ( )c σ  is a singular in ( )m qM F  so that 

there exists mqa ∈F (a≠0) such that 0 ( )( ) 0c aσ = . Let s0=a, s1=s2=…=sn−1=0, so we can obtain a 

σ -linear recurrence sequence with period r. According to recurrence relation (1), 

1 1(0 0 0 ) 0n ns a s s −= − + + + = . 

We have s1 = s2 = = sn = 0 and si = 0 for all i≥n. In particular, sr=0. As a result s0 = 0 since r is 
the period. This contradicts to a≠0, moreover, 0 ( )c σ  is invertible of mqA . 

Theorem 2 is the extension of traditional LFSR. It is easy to see that the conclusion is identical 
to the result about traditional LFSR when all the coefficients in linear recurrence relation (1) are 
in mqF . In fact, Theorem 2 gives the condition for regularity of σ -LFSR. It is well-known that 

finding pseudorandom sequences with maximal period is of vital significance in research of 
stream cipher. Now, we give the definition of primitive σ -LFSR. 

Definition 4.  Let s∞  be the sequence with the period qmn − 1 such that nth order σ -LFSR (1) 

over mqF , we call s∞  primitive sequence generated by σ -LFSR (1), its σ -polynomial f(x) 

primitive σ -polynomial and σ -LFSR (1) primitive σ -LFSR. 
In fact, there exists primitive σ -LFSR over mqF . Moreover, we have 

Theorem 3.  Let s∞  be the sequence such that nth order σ -LFSR (1) over mqF with  

σ -polynomial f(x)= xn+cn−1(σ )xn−1+…+c1(σ )x+ c0(σ ) [ ]mq x∈A , where c0(σ ) is invertible, 
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F(x)= xn + Cn−1xn−1 +…+C1x +C0 ( )[ ]m qM F x∈  the corresponding matrix polynomial of f(x) un-

der given normal basis. Then, s∞  is primitive ⇔ the determinant |F(x)| is primitive polynomial 
over qF  with degree mn. 

Proof.  Let 1 1=( ,  , )m m m n mS s s s+ + −  be the mth state of σ -LFSR (1), we define state transi-
tion matrix from Sm+1 to Sm as follows: 

0

1

2

1

0 0 0 0
0 0 0

0 0 0 ,
0 0 0
0 0 0

m

m m

m m mn mn

C
E C

T
E C

E C
−

− ×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

where Em is an m×m identity matrix over qF . Thus, σ -LFSR is a primitive if and only if the 

multiplicative order of the mn×mn matrix ( )mn qT GL∈ F  is qmn − 1. It is familiar that the order 

of invertible matrix over finite field equals the order of the last invariant factor of the corre-
sponding characteristic matrix. Let xEmn+T be characteristic matrix of T, so sequence s∞  is 
primitive if and only if the invariant factors of xEmn+T are 1,1, , g(x), where g(x) is an mn de-
gree primitive polynomial over qF . On the other hand, we know g(x) = |xEmn+T | = |F(x)|, so s∞  

is primitive if and only if |F(x)| is a primitive polynomial with degree mn over qF . 

Primitive σ -LFSR is of considerable interest, and Theorem 3 gives the condition to determine 
primitivity. We expect to find such primitive σ -LFSR with simple σ -polynomial so that we can 
achieve both maximal period sequence and fast software implementation. One of the simplest 
σ -polynomial comes from all the coefficients which are circular rotations. Now, we discuss those 
σ -polynomials. 

Theorem 4.  Let 1 011( ) [ ]n
m

k kkn n
qf x x x x xσ σ σ− −= + + + + ∈A  with m>1 where ki is an 

integer, 0≤ ki ≤ m − 1 and 0 ≤ i ≤ n − 1, then f(x) is not a primitive σ -polynomial. 

Proof.  Let 
1

, , ,
mq qα α α

−

be the normal basis of /m qqF F , then the associated matrix of σ 

under the normal basis is 

 

0 0 0 1
1 0 0 0

.0 1 0 0

0 0 1 0

A

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (3) 

Then, the corresponding matrix polynomial of f(x) is 011 1( ) nk kkn nF x x A x A x A− −= + + + + . Af-

ter converting the matrix polynomial to polynomial matrix, we can find F(x) is an m×m circulant 
matrix over qF . Using the properties of determinant, add each row to the first row from second 

row to last and obtain the determinant of F(x) as 
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1
1 1 0| ( ) | ( ) ( ),n n

nF x x k x k x k g x−
−= + + + +  

where ( ) [ ]qg x x∈F . Since deg(F(x)) = mn, deg(g(x)) = (m − 1)n. So |F(x)| is a reducible polyno-

mial over qF . By Theorem 3, f(x) is not primitive. 

If σ -LFSR is constructed by circular rotation, then its σ -polynomial f(x) is not primitive by 
Theorem 4, so this kind of σ -LFSR is not primitive. 

3  σ -LFSR with trinomial over finite fields of characteristic 2 

Traditional LFSRs over binary field have wide applications because of simple hardware imple-
mentation and high efficiency. However, implementation of traditional LFSR over 2mF  should 

take the structure of finite field into account and thus is more complicated. The following result 
shows that the implementation of σ -LFSR over 2mF  only need consider CPU instructions, but 

not the structure of finite field. 
Theorem 5.  Let 2( )mM F  be the m×m matrix ring over 2F . Then 2( )mM F  is  gener-

ated by σ and &K  over 2F , where K= (1,0, ,0), that is 2 2( ) [ ,& ]m KM σ=F F . 

Proof.  Let Ei,j (i=1,2, ,m, j = 1,2, ,m) be the basis of 2( )mM F , where Ei,j is m×m matrix 

over 2F  with 1 at ith row and jth column, others are 0. Under the normal basis 
12 2, , ,

m
α α α

−

of 22 /mF F , the associated matrix of circular rotation σ and AND operation &K 

are 

 

0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 0

,          .0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4) 

Notice that ,1&i
K iEσ = , hence we have 1

, &i m j
i j KE σ σ + −= . Thus, 2 2( ) [ ,& ]m KM σ=F F . 

This theorem shows every σ -LFSR over finite field with characteristic 2 can be implemented 
only by circular operation, AND operation, and XOR operation. However, it should be noticed 
that σ and &K are non-commutative so that the expressions of σ -polynomial with σ and &K are 
probably very complicated. Therefore, it is interesting to construct simple σ -LFSR with maximal 
period. Let us consider the σ -LFSR over 2mF  with trinomial σ -polynomial. For the sake of fast 

software implementation, we discuss the σ -polynomial with coefficients circular rotation or AND 
operation.  

Now, we investigate the σ -polynomials as follows: 
 2( ) & ,  where ,  ,  1 ,  1 ,  0 .n r k m

Vf x x x k r k m r n Vσ += + + ∈ < ≠ ∈≤ ≤ ≤Z F  (5) 

Example 1. Figure 2 shows trinomial σ -LFSR over 22F  with σ -polynomial f(x) = x14 + 

&10x11+σ. 
In Figure 2 &10 is AND operation with vector (1,0). Let F(x) be the corresponding matrix 

polynomial of f(x) under normal basis. Then 
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Figure 2  Example of trinomial σ -LFSR. 

 
14 11

14

1
( )

1

x x
F x

x

⎛ ⎞+
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 and 28 25

2| ( ) | 1 [ ]F x x x x= + + ∈F . 

|F(x)| is precisely a primitive polynomial over 2F . f(x) is primitive σ -polynomial by Theorem 3, 

and the period of s∞  is 228 − 1. From the point of software implementation, this trinomial 
σ -LFSR only required three basic operations: circular rotation, AND operation, and XOR opera-
tion. Because these operations are all fundamental instructions of CPU, the software efficiency of 
this example is extremely high. 

Next, we discuss the general cases. In order to obtain maximal period sequence, one has to 
compute the determinant of the corresponding matrix polynomial F(x) of σ -polynomial (5). We 
use Cm,k to denote the following matrix over 2F , where A is the matrix of σ  c.f (3). 

1

2
, .k

m k

m

x
x

C A

x

⎛ ⎞
⎜ ⎟
⎜ ⎟= +
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

We compute the determinant |F(x)| by using xi=xn+aixr (1≤i≤m) in Cm,k. For convenience, we 
give following. 

Lemma 1.  If k|m, then ,
1

| | ( 1)
k

m k i
i

C A
=

= +∏  where 
mod

i t
t i k

A x
≡

= ∏ . 

Proof.  Suppose m=lk. We partition Cm,k into k×k submatrixes as follows. 
 

1

1

,
2

1

0 1

0 1
0

0

0 0

0 0

k

k

m k
k

m k

m

x

x
x

C
x

x

x

+

− +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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1

2

3

2

1

0 0 0 0
0 0 0 0

0 0 0 0
,

0 0 0 0 0
0 0 0 0
0 0 0 0

k

k

k

l

k l

k l

X E
E X

E X

X
E X

E X

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

where Xi=diag(x(i−1)k+1, ,xik) is diagonal matrix, and Ek is the k×k identity matrix. To compute 
the determinant of Cm,k, we define the following procedure illustrated by X1. 

Procedure 1. 
I. Multiply X1 with the 2nd submatrix row (Ek, X2, ,0) and add it to the 1st submatrix row  

(X1, 0, , Ek). 
II. Compute determinant according to Ek at the 2nd submatrix row and the 1st submatrix col-

umn using Lapalace theorem and obtain a (m − k) × (m − k) determinant. 
In fact, Procedure 1 is as follows: 

1 1 2 1 2

2 2 3

( ) ( )

0 0 0
0 0 0

(I) (II) .

0 0 0 0 0 0

k k k

k k k

l l lm m m m m k m k

X E X X E X X E
E X E X E X

X X X
× × − × −

 

Repeatedly apply Procedure 1 to the top-left submatrix until Cm,k comes to a diagonal matrix. 

1 2 1 2 3 1

3 4
, 1

1

0 0
0 0

| | | | .

0 0 0 0

k k l
l

i kk k
m k i ki

i
k l

l l

X X E X X X E
X EE X E X

C X E
E X

X X

−

=
=

= = = = = +∏ ∏  

Notice the diagonal elements of 
1

l

i k
i

X E
=

+∏  is Ai+1, where 
mod

i t
t i k

A x
≡

= ∏ , so we finish the 

proof. 

Theorem 6.  If d is the greatest common divisor of m and k, then ,
1 mod

| | ( 1)
d

m k t
i t i d

C x
= ≡

= +∏ ∏ . 

Proof.  If k|m, the conclusion holds by Lemma 1. Now, we consider the cases when m is not 

divided by k and suppose m = ku1 − k1, where 1 1,u k+∈ ∈Z N  and 10 k k<≤ . We partition Cm,k 
into the following form by k×k submatrix 

 

1

1

1

1 ,

2

,

1

,

0

0 0

,
0 0 0

0 0

k k k k

k

m k

u

k k k k

X T Y

E X

C
X

Y R

−

−

−

′

=  (6) 
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where Xi, Rk are k×k and (k − k1)×(k − k1) diagonal square, respectively. Xi = diag(x(i−1)k+1, ,xik), 

1( 1) 1diag( , , )k l k mR x x− += … , Ek is k×k identity matrix, and 
1 1, ,, ,k k k k k k kY Y T− −′  is as follows: 

1 1 1 1
, , ,

1, , 1, , , 1, ,
( )    ( )     ( )

0, . 0, otherwise. 0, otherwise.i j i j i j
i j i k j i k i k k i j k k

y y t
i j

= = + > = − + > −⎧ ⎧ ⎧′= = =⎨ ⎨ ⎨≠⎩ ⎩ ⎩
 

By Lemma 1 and (6), we have 

1 1

1

1 2 1 ,
,

,
.

u k k k k
m k

k k k k

X X X T Y
C

Y R
− −

−

′+
=  

Above equation can be repartitioned as follows, where 1( 2) ,  (1 )i i k i u k is x x x i k+ − += <≤ : 

 

1

1
1 1

1

1

1

1

( 1) 1

0 1

,
1

1

1

k k

k k
k k k k

k k k
k

u k

m

s

s

s
S E Q

E R
s

x

x

−

− +
−

−

− +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (7) 

where 
1 1 1 11diag( , , ),  ( ,0) ,  (0, )T

k k k k k k k k k kS s s S S R R− − − −= = =  and symbol T is the transpose 

of the matrix. 
1kQ  is the following matrix: 

 
11 1

0

0 .

0 0

k kk

k

sQ

s

− +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (8) 

To compute determinant of (7), we give the following procedure illustrated by
1k kS − . 

Procedure 2. 
I. Multiply the submatrix composed of the last k − k1 rows in (7) with 

1k kS − and add it to the 

submatrix composed of the rows in (7), where 
1k kS −  stands. 

II. Compute the resulted (7) by step I according to left-bottom block 
1k kE − , using Lapalace 

theorem. 
III. Adjust the column sequence of determinant by moving the first k1 columns to the end. 
The details of Procedure 2 are as follows. 
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1 1

1 1

1 1(I)

( 1) 1 ( 1) 1

1 0 1

0

1 1
1 1

1 1

l l

l l

k k

u k u k

m m

s M

s M
s s

s s
x x

x x

+ +

− + − +

=  

 1

1

1
1

(II) (III)

1
1

1
1

1
,

1

1
1

k
l l

k

k
k

M
M

M
s M

M

s
M

+
+

= =  (9) 

where 
11

1 mod
,  i tt i k

l k k M x
≡

= − = ∏ . We observe that the right equality in (9) is a k×k matrix 

similar to 
1,k kC  except the diagonal elements (M1,M2,…,Mk). 

After u1 − 2 times Procedure 1 and one Procedure 2, Cm,k is converted to (9) whose form is 
similar to 

1,k kC , and we call this procedure a recursive transformation. Suppose d = g.c.d(m,k), ui 

is positive integer, and 1 01 ,  (1 1),  .i ik k i n k k−< − =≤ ≤ ≤  Thus, we have 

 

1 1

2 1 2

2 1

1 1

,
,

       
,

.
n n n

n n

m u k k
k u k k

k u k d
k u d

− −

− +

= −⎧
⎪ = −⎪⎪
⎨
⎪ = −⎪
⎪ =⎩

 (10) 

After one recursive transformation, Cm,k is converted to 
1,k kC  with diagonal elements 

11 modi tt i k
M x

≡
= ∏ ; after two recursive transformation, the matrix is similar to 

1 2,k kC  with di-

agonal elements 
12 1 1 2mod mod

( )i tt i k t t k
D x

≡ ≡
= ∏ ∏ , where 11 i k≤ ≤ . Repeatedly applying recur-

sive transformation for n time, we can obtain a matrix similar to 
1,nk dC

−
 with diagonal elements 

1

1 1 2mod modn n

i t
t i k t t k

K x
−≡ ≡

= ∏ ∏ , where 11 ni k −≤ ≤ . With the fact that d|kn−1 and Lemma 1, we have 

 ,
1 mod

( 1).
d

m k t
i t i d

C K
= ≡

= +∏ ∏  (11) 

For d = g.c.d(m,k), we see that d|kn−1, d|kn−2, ,d|k by eq. (10). Hence, 
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1

1 1 2mod mod mod mod mod
( ) .

n n

t t t
t i d t i d t t k t t k t i d

K x x
−≡ ≡ ≡ ≡ ≡

= =∏ ∏ ∏ ∏ ∏  (12) 

Combining eqs. (11) and (12), we prove ,
1 mod

| | ( 1)
d

m k t
i t i d

C x
= ≡

= +∏ ∏ . 

Corollary 1.  Let d = g.c.d(m,k), ( ) &n r k
Vf x x x σ= + +  be a σ -polynomial, where k,m are 

integers and 0 1k m −≤ ≤ , 1 2 2( , , , ) mmV a a a= ∈F . Let s be Hamming weight of vector V . 

Then 
A. If d≠1, f(x) is not a primitive. 
B. If d=1, n and r are both even, f(x) is not a primitive. 
C. If d=1, n and r are not both even, but s and m are both even, f(x) is not primitive. 
Proof.  A. If d≠1, then d≥2. By Theorem 6, it is obvious that f(x) is reducible, so f(x) is not 

primitive. 

B. If d=1, by Theorem 6, 
1

( ) ( ) 1 ( ) ( ) 1
m

n r n m s n r s
i

i
F x x a x x x x−

=

= + + = + +∏ . If 2n n′= and 

2r r′= , then ( ) 2( ) ( ( ) 1)n m s n r sF x x x x′ ′ ′−= + + is a square, so f(x) is not primitive. 

C. If 2s s′= and 2m m′= , then ( ) 2( ) ( ( ) 1)n m s n r sF x x x x′ ′ ′−= + + is also a square, so f(x) is not 
primitive. 

4  Searching for primitive trinomial σ -LFSR 

According to the analysis of trinomial σ -LFSR, here we describe an algorithm to summarize the 
above conclusions. 

Algorithm 1 (Searching for Primitive Trinomial σ -LFSR over 2mF ). 

1. Choose degree of circular rotation k such that g.c.d(m,k)=1. 
2. Choose n and r such that not both are even. 
3. Choose s such that not both m and s are even. 
4. Check whether g(x) = (xn)m−s(xn+xr)+1 is a primitive polynomial over binary field, if false go 

to step 1. 
By Algorithm 1, we made a largely exhaustive search to find primitive trinomial, and Table 1 

lists some primitive σ -trinomial with nm≤100. Although k has a different value, as long as k and 
m are coprime, the primitivity of σ -trinomial is the same, so k is omitted in Table 1. The 10th row 
of 22F in Table 1, 14 1 11 is Example 1. It can be seen from the table, for every positive m, there 

not always exists a primitive σ -trinomial of any degree. In particular, the number of primitive 
σ -trinomial in cases m = 4 or 6 are apparently fewer than other cases. Further explanation for this 
phenomenon would be of interest. For σ -pentanomial 31 2

1 2 3( ) jj jn kf x x a x a x a x σ= + + + + , 

where n > j1 > j2 > j3 > 0, and the coefficient ai is either &V ( 2mV ∈F ) or a power of σ. We also 

simulate in the computer and list the results in Table 2. Similar to the open problem on primitive 
pentanomial of any degree over finite fields, it is interesting to ask for the solution about primi-
tive σ -pentanomial. 
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Table 1  Primitive σ -trinomial ( ) &n r k
Vf x x x σ= + +  over 

2mF a) 

   n s r  n s r  n s r  n s r n s r  n s   r 

 22
F    34 1 1  13 1 5  28 1 15 4 1 1  14 1 1 

2 1 1  34 1 25  13 2 6  29 1 16 5 1 2   72
F   

3 1 2  42 1 29  13 1 9  31 1 29 5 3 4  3 1 1 
5 1 2  47 1 26  13 2 9  31 2 30 7 1 5  3 2 2 

9 1 2  49 1 22  13 2 11  42
F  7 2 6  4 1 1 

10 1 7  49 1 38  19 2 8  5 1 2 11 3 3  5 1 3 

11 1 10   32
F   19 1 12  7 1 4 11 4 5  5 2 4 

14 1 1  2 1 1  20 1 9  13 1 10 12 1 1  7 2 1 
14 1 5  3 2 1  20 1 19  15 1 4 12 1 11  7 3 2 
14 1 11  5 1 1  21 2 5  15 1 14 13 3 2  7 3 3 
18 1 7  5 2 1  21 1 16  17 1 8 13 2 4  7 3 4 
26 1 5  5 2 3  21 1 20  21 1 8 13 4 5  7 4 4 

26 1 7  5 1 4  27 2 4  52
F  13 3 7  7 5 4 

26 1 23  7 1 5  27 1 11  3 2 1 19 1 2  7 6 5 
29 1 10  7 2 6  27 2 19  3 4 1 19 1 8  9 4 1 

30 1 19  11 2 1  27 1 23  3 1 2 62
F   9 1 4 

30 1 29  12 1 1  27 2 25  3 4 2 10 1 9  9 1 8 

  a) 2≤m≤7, k and m are coprime satisfying nm≤100, 1≤r<n, 1≤s≤m. 
 

Table 2  Primitive σ -pentanomial 31 2
1 2 3( ) jj jn kf x x a x a x a x σ= + + + +  over 

2mF a) 

 n a1 j1 a2 j2 a3 j3 k n a1 j1 a2 j2 a3 j3 k 
 4 3 3 1 2 3 1 (1) 4 3 3 (2) 2 1 1 (1)
 5 3 3 3 2 1 1 (1) 5 1 4 (1) 3 1 2 (1)

22
F  6 1 3 1 2 3 1 (1) 6 1 5 (1) 3 1 2 (2)

 7 1 3 1 2 3 1 (1) 7 1 5 (2) 3 3 2 (1)
 8 1 3 1 2 3 1 (1) 8 1 7 (1) 5 1 4 (2)
 4 3 3 1 2 7 1 (1) 4 1 3 (3) 2 7 1 (2)
 5 7 3 3 2 7 1 (2) 5 1 4 (1) 2 7 1 (2)

32
F  6 7 3 1 2 1 1 (1) 6 1 5 (1) 2 7 1 (3)

 7 3 4 7 2 1 1 (2) 7 7 4 (3) 3 1 1 (1)
 8 1 6 3 5 1 2 (1) 8 1 5 (3) 2 1 1 (2)
 4 1 3 3 2 f 1 (3) 4 f 3 (1) 2 7 1 (4)
 5 7 4 1 3 7 1 (3) 5 7 4 (4) 2 3 1 (3)

42
F  6 7 4 3 3 7 1 (1) 6 1 4 (1) 3 f 1 (2)

 7 3 4 1 2 1 1 (3) 7 1 4 (4) 3 1 2 (3)
 8 7 6 f 5 f 2 (1) 8 7 5 (1) 4 f 3 (4)
 4 1 3 7 2 3 1 (1) 4 3 3 (3) 2 1 1 (4)
 5 1 3 f 2 3 1 (2) 5 3 3 (5) 2 f 1 (2)

52
F  6 1 3 3 2 3 1 (4) 6 1 4 (2) 2 7 1 (4)

 7 1 3 1 2 7 1 (3) 7 7 4 (2) 2 3 1 (1)
 8 1f 3 7 2 1 1 (1) 8 7 4 (1) 2 1f 1 (3)
 4 1 3 3 2 1f 1 (1) 4 1 3 (1) 2 3f 1 (2)
 5 1 3 7 2 3f 1 (5) 5 3f 3 (3) 2 1f 1 (4)

62
F  6 3 3 7 2 3f 1 (5) 6 f 3 (6) 2 1 1 (1)

 7 1 3 7 2 7 1 (1) 7 1 4 (3) 2 1f 1 (5)
 8 7 6 1f 5 1f 3 (1) 8 7 7 (4) 3 3f 2 (1)

  a) n > j1 > j2 > j3 > 0, ( ) denotes power of σ, other coefficient is AND item in hexadecimal representation. 
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5  Conclusions 

In this paper, we introduce the concept of σ -LFSR composed of CPU instructions, such as circu-
lar rotation, AND, XOR, etc. Some basic cryptographic properties are presented, and in particular, 
a type of trinomial σ -LFSR is found which can be implemented only by a few computer basic 
instructions circular rotation and AND operation. Moreover, this type of trinomial σ -LFSR not 
only has desirable cryptographic properties, but also has high software efficiency. We believe that 
as we move from 32 to 64 bit processor, word-based σ -LFSR, which can be implemented with 
few instructions and high efficiency, will become an attractive alternative to stream cipher design. 

 
1 Golomb S W. Shift Register Sequences. San Francisco: Holden-Day, 1967 
2 Lidi R, Niederreiter H. Finite Fields. In: Encyclopedia of Mathematics and its Applications 20. Cambridge: Cambridge 

University Press, 1983 
3 Preneel B. Introduction to the Proceedings of the Fast Software Encryption 1994 Workshop. In: LNCS, Vol. 1008. Berlin, 

Heiderberg: Springer-Verlag, 1995. 1－5 
4 Zhang M, Carroll C, Chan A. The Software-Oriented Stream Cipher SSC2. Fast Software Encryption 2000 Workshop. In: 

LNCS, Vol. 1978. Berlin, Heiderberg: Springer-Verlag, 2001. 31－48 
5 Daemen J, Craig S, Clapp K. Fast Hashing and Stream Encryption with PANAMA. Fast Software Encryption 1998 Work-

shop. In: LNCS, Vol. 1372. Berlin, Heiderberg: Springer-Verlag, 1999. 60－74 
6 Watanabe D, Furuya S, Yoshida H, et al. A New Keystream Generator MUGI. Fast Software Encryption 2002 Workshop. In: 

LNCS, Vol. 2365. Berlin, Heiderberg: Springer-Verlag, 2003. 179－194 
7 Rogaway P, Coppersmith D. A software-optimized encryption algorithm. Fast Software Encryption 1993 Workshop. In: 

LNCS, Vol. 809. Berlin, Heiderberg: Springer-Verlag, 1994. 53－63 
8 Halevi S, Coppersmith D, Charanjit S. Jutla. Scream: A Software-Efficient Stream Cipher. Fast Software Encryption 2002 

Workshop. In: LNCS, Vol 2365. Berlin, Heiderberg: Springer-Verlag, 2003. 195－209 
9 Boesgaard M, Vesterager M, Pedersen T, et al. Rabbit: A New High-Performance Stream Cipher. Fast Software Encryption 

2003 Workshop. In: LNCS, Vol. 2887. Berlin, Heiderberg: Springer-Verlag, 2004. 307－329 
10 Ferguson N, Whiting D, Schneier B, et al. Helix: Fast Encryption and Authentication in a Single Cryptographic Primitive. 

Fast Software Encryption 2003 Workshop. In: LNCS, Vol. 2887. Berlin, Heiderberg: Springer-Verlag, 2004. 330－346 
11 Hawkes P, Rose G. Primitive Specification and Supporting Documentation for SOBER-t16 Submission to NESSIE, Pro-

ceedings of the first NESSIE Workshop, Heverlee, Belgium, 2000 
12 Hawkes P, Rose G. Primitive Specification and Supporting Documentation for SOBER-t32 Submission to NESSIE, Pro-

ceedings of the first NESSIE Workshop, Heverlee, Belgium, 2000 
13 Hawkes P, Rose G. Turing: A Fast Stream Cipher. Fast Software Encryption 2003 Workshop. In: Johansson T, ed. LNCS, Vol. 

2887. Berlin, Heiderberg: Springer-Verlag, 2003. 290－306 
14 Ekdahl P, Johansson T. SNOW——a new stream cipher. In: Proceedings of the first NESSIE Workshop, Heverlee, Belgium, 

2000 
15 Ekdahl P, Johansson T. A New Version of the Stream Cipher SNOW. Selected Areas in Cryptography 2002 Workshop. In: 

Nyberg K, Heys H, eds. LNCS, Vol. 2595. Berlin, Heidelberg: Springer-Verlag, 2003. 47－61 
16 Tsaban B, Vishne U. Efficient linear feedback shift registers with maximal period. Finite Fields Their Appl, 2002, 8: 256－

267 
17 Dewar M, Panario D. Linear transformation shift registers. IEEE Trans Infor Theory, 2003, 49: 2047－2052 
18 Zeng G, Han W B, He K C. High efficiency feedback shift register: σ-LFSR. Cryptology ePrint Archive, Report 2007/114. 

2007. http://eprint.iacr.org/ 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


