
Science in China Series F: Information Sciences

© 2007 Science in China Press

 Springer-Verlag

Received July 15, 2006; accepted January 18, 2007
doi: 10.1007/s11432-008-0036-y
†Corresponding author (email: sunshine_zeng@sina.com)
Supported by the National Natural Science Foundation of China (Grant No. 60503011), the National High-Tech Research and Development Pro-
gram of China (863 Program) (Grant No. 2006AA01Z425) and the National Basic Research Program of China (973 Program) (Grant No.
2007CB807902)

www.scichina.com www.springerlink.com Sci China Ser F-Inf Sci | June 2007 | vol. 50 | no. 3 | 359-372

A trinomial type of σ -LFSR oriented toward
software implementation

ZENG Guang†, HE KaiCheng & HAN WenBao
Department of Applied Mathematics, Information Engineering University, Zhengzhou 450002, China

In this paper, we introduce a new type of feedback shift register based on words,
called σ -linear feedback shift register (σ -LFSR) which can make full use of the in-
structions of modern CPUs so that we can find good σ -LFSR with simple structure
and fast software implementation. After analysis, we find a class of simple σ -LFSR
with maximal period and give an algorithm of searching for those σ -LFSRs. As a
result, we provide a new optional fast component in the design of modern word-
based stream ciphers.

finite field, stream cipher, σ -LFSR, primitive polynomial, fast software implementation

The system of stream cipher is generally composed of several LFSRs and some nonlinear func-
tions. Traditional stream cipher primarily adopted bit-based LFSR, which have profound theory
and wide applications[1,2]. Bit-based LFSR extremely fits for hardware implementation, but many
bit manipulations are required for software and only one bit output per step, while modern CPU
can process 32 or 64 bits operations, even with MMX instructions which provide 4 or 5 32 bit
instructions per a clock. With the application of modern CPU, software implementation efficiency
of traditional LFSR is low.

Since the first “Fast Software Encryption (FSE)” conference in 1993, the design of crypto sys-
tem suitable for software implementation is an important trend in the world of modern cryptology.
In the following research, there appear to be many new ideas and methods of design of stream
cipher for fast software implementation. Modern stream cipher is generally 4－5 times faster than
block cipher in speed but lower in security, so how to design security stream cipher with high
software efficiency attracts much attention. In FSE of 1994, Preneel[3] set forth a challenge to
design LFSRs which exploit the parallelism offered by the word oriented operations of modern
processors.

Considerable following up happened to the study of software implementation oriented stream

360 ZENG Guang et al. Sci China Ser F-Inf Sci | June 2007 | vol. 50 | no. 3 | 359-372

cipher. Europe launched NESSIE project, calling for a broad set of cryptographic primitive algo-
rithm. Finally, all candidates of stream ciphers did not pass. This also proposed a higher challenge
for stream cipher designer: designing stream cipher for fast software implementation with secu-
rity identical with block cipher. Japan and Korea also collected cryptographic algorithm standard
one after another. In 2005, Europe’s ECRYPT NoE eSTREAM project once again called for
stream ciphers. In all 34 collected stream ciphers, 22 take software implementation as one of the
design goals. Thus, it can be seen that designing fast software implementation stream cipher has
become an active research topic at present.

It is clear that modern stream cipher designs, represented by proposals, such as Ssc2[4], Pa-
nama[5], Mugi[6], Seal[7], Scream[8], Rabbit[9], Helix[10], Sober[11,12], Turing[13], Snow[14,15], and
many more, are far from classical designs like traditional nonlinear filter generator and nonlinear
combination generators, etc. One major difference is that classical designs are bit-oriented,
whereas modern designs tend to operate on (e.g., 32 or 64 bits) words to provide efficient soft-
ware implementations. Modern stream ciphers use building blocks very similar to those used in
block cipher. The transition from bit to word leads to introduce different operations in stream ci-
pher design, even taking use of S boxes or other complicated linear transformations which are
commonly used in block ciphers. It should be noticed that most proposals use word-based LFSR
as the pseudorandom source. In 2003, Tsaban and Vishne[16] introduced the concept of linear
transformation shift register (TSR) which is a word-based LFSR. Dewar and Panario[17] further
studied searching algorithm of primitive TSR. In addition, the source part of stream cipher So-
ber[11,12], Turing[13], and Snow[14,15] is primitive word-based LFSR over finite field which has de-
sirable pseudorandom properties and fast software implementation.

Word-based LFSR has already become the important constituent of modern stream cipher. Be-
fore word-based LFSRs wide use, we must research their pseudorandom properties and software
suitability. In this paper, we introduce the concept of σ -linear feedback shift register (σ -LFSR)[18],
which is the generalization of TSR proposed by Tsaban and Vishne. We focus the research on
cryptographic properties, construction with few operations, and fast implementation of σ -LFSR.
We give an overview of general word-based LFSR and analysis of cryptographic properties. As a
result, we obtain an algorithm of searching for primitive trinomial σ -LFSR. Our results indicate
that this kind of σ -LFSR has the good pseudorandom and fast software implementation.

1 Model of σ -LFSR

Let q be a prime, m a positive integer, qF a finite field with q elements, and mqF an extension

of qF with degree m. Let n be a positive integer and a0,a1,…,an be given elements of mqF . A

sequence 0 1, ,s s s∞ = such that

 0 1 1 1 1() 0,1,k n k k n k ns a s a s a s k+ + − + −= − ⋅ + ⋅ + + =

is called nth order linear recurrence sequence in mqF . It is obvious that many additions and mul-

tiplications of mqF are required in traditional LFSR. No matter whether we use polynomial basis

or normal basis of /m qqF F , addition is easy while multiplication is complicated, so table lookup

technique is often used to speed up multiplication in software implementation. For modern popu-

 ZENG Guang et al. Sci China Ser F-Inf Sci | June 2007 | vol. 50 | no. 3 | 359-372 361

lar 32 bit processor, in order to sufficiently exploit computation resources and avoid mass bit op-
erations, m=32 is generally selected for q=2. In implementation, it is infeasible to have storage
232×232 size table. Even if we can decrease storage amount, the time of table lookup will greatly
decline the efficiency. The operations, including AND, OR, NOT, XOR, SHIFT, etc., are funda-
mental instructions of CPU, where circular rotation is not only simple and suitable for software or
hardware, but also accelerates information diffusion in word. Therefore, we introduce the circular
rotation to the word-based LFSR named σ -LFSR. Now, we define the circular rotation operation
in a mathematical way.

Definition 1. Let
1

, , ,
mq qα α α

−

be the normal basis of linear vector space /m qqF F and
1

0 1 1
m

m
q q

m qk k kβ α α α
−

−= + + ∈F where 0 1 1, , , m qk k k − ∈F , then circular rotation operation

over mqF is defined as
1 1

0 1 1 1 0 2() () .
m mq q q q

m m mk k k k k kσ β σ α α α α α α
− −

− − −= + + + +
Remark 1. In actual implementation, σ can be realized by circular rotation operation and

it is a qth power function over mqF .

It is obvious that σ is a linear map over /m qqF F . Moreover, any element c of mqF can in-

duce a linear map C over /m qqF F , where : ()m mq qC C cα α→ =F F for mqα ∈F . We define

[] i
m

k
i iq

i
a bσ σ= ∑F , where , mi i qa b ∈F , ,ik i ∈Z , and denotes by []m mq q σ= FA .

Definition 2. If
1

0 1 1
m

m
q q

m qk k kβ α α α
−

−= + + ∈F and
1

0 1 1
m

m
q q

m ql l lγ α α α
−

−= + + ∈F ,

where 0 1 1, , , m qk k k − ∈F and 0 1 1, , , m ql l l − ∈F , then

0 0 1 1((), , ()).m mk l k lβ γ − −+ + +
In fact, this definition is the common addition in finite field, but it should be noticed that if q=2,

above defined “+” is the XOR operation in computer and can be implemented by computer in-
struction.

Definition 3. Let n be a positive integer, and 0 1 1(), (), , ()nc c cσ σ σ− are elements in mqA .

A sequence 0 1, ,s s s∞ = over mqF such that

 0 1 1 1 1(() () ()) 0,1,i n i i n i ns c s c s c s iσ σ σ+ + − + −= − ⋅ + ⋅ + + = (1)
is called nth order σ -linear recurrence sequence and polynomial

1
1 1 0() () () () []m

n n
n qf x x c x c x c xσ σ σ−

−= + + + + ∈A

is called σ -polynomial of sequence s∞ . The model of σ -LFSR is as in Figure 1.
Remark 2. If we take 0 0 1 1() , , ()n nc a c aσ σ− −= = , where a0,a1,…,an mq∈F in Definition 3,

eq. (1) gives traditional nth order linear recurrence sequence over finite field.

2 Properties of σ -LFSR

It is easy to see that for any mqβ ∈F , we have qσβ β σ= , so mqA is a noncommutative algebra

362 ZENG Guang et al. Sci China Ser F-Inf Sci | June 2007 | vol. 50 | no. 3 | 359-372

Figure 1 Model of σ -LFSR.

over qF . In order to utilize algebra theory to study σ -LFSR, we have

Theorem 1. Let ()m qM F be the m×m matrix ring over qF . We have () mm q qM ≅F A .

Proof. Let
1

, , ,
mq qα α α

−

be the normal basis of /m qqF F . Because σ is a linear map over

/m qqF F with order m and qσβ β σ= , we have

1 1

0 0
|

i

m

m m
q j

ij ij qq
j i

a aα σ
− −

= =

⎧ ⎫⎪ ⎪= ∈⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑A F .

Notice that elements in mqA are all linear map over /m qqF F . Let γ be the natural map from

mqA to ()m qM F , which sends linear map to its associated matrix under the normal basis
1

, , ,
mq qα α α

−

. Obviously, γ is an injection and () ()m m qq Mγ ⊆ FA . In fact,
2

| () | m
m qM q=F .

Thus, we only need to prove
2

| |m
m

q q=A . If there exist 0 1 1, , , mm qθ θ θ − ∈F such that
1

0 1 1 0m
mθ θ σ θ σ −

−+ + + = , then for any mqβ ∈F , we have
1

0 1 1 0
mq q

mθ β θ β θ β
−

−+ + + = .

That is, the polynomial
1

0 1 1
mq q

mx x xθ θ θ
−

−+ + + has qm roots in mqF at least, so 0 1θ θ=

1 0mθ −= = = . Hence,
2

| |m
m

q q=A and the proof is finished.

In the following paper, we always denote the associated matrix of () mi qc σ ∈A under the nor-

mal basis
1

, , ,
mq qα α α

−

 for 0 ≤ i ≤ n − 1 by ()i m qC M∈ F . Therefore, in σ -LFSR, the

coefficients can be replaced by m × m matrix over qF , and the recurrence (1) is rewritten as

 0 1 1 1 1() 0,1,i n i i n i ns C s C s C s i+ + − + −= − ⋅ + ⋅ + + = (2)

Remark 3. Let ()m qT M∈ F be the associated matrix with some linear map over /m qqF F ,

if C0 = C1 = = Cn−1 = T, then the σ -LFSR defined by (2) is the TSR[16,17], which is introduced by
Tsaban and Vishne, so TSR is a special case of σ -LFSR.

Remark 4. Elements of mqF can be regarded as m-tuple vector over binary field when q = 2,

meanwhile CPU instructions AND operation can be introduced to σ -LFSR over 2mF . Let

 ZENG Guang et al. Sci China Ser F-Inf Sci | June 2007 | vol. 50 | no. 3 | 359-372 363

1 2 2(, , ,) mmV a a a= ∈F and symbol &V be defined as AND operation with vector V.

By the definition of σ -LFSR, σ -linear recurrence sequence s∞ is an ultimately periodic se-
quence, i.e., there exists integer r>0 and the least nonnegative integer n0≥0 such that sn+r = sn for

all n≥n0, r is called the period of the sequence s∞ and n0 is called the preperiod. If n0 = 0, the

sequence s∞ is called periodic. Similar to linear recurring sequence in finite fields, we can also
establish a condition for the periodicity of σ -linear recurrence sequences.

Theorem 2. Let s∞ satisfy the linear recurrence relation (1), then s∞ is periodic if and
only if 0 ()c σ is invertible of mqA .

Proof. If the coefficient 0 ()c σ is an invertible in mqA , r is the least period and n0 its

preperiod of sequence s∞ . Suppose s∞ is not periodic, so we have n0≥1. By definitions of pe-
riod and preperiod, sn+r = sn for all n≥n0. From (1) with i = n0 + r − 1, we obtain

0 0 0 0

0 0 0

1
1 0 1 1 1 2

1
0 1 1 1 2

()(() ())

 ()(() ()).
n r n r n n r n n r n

n n n n n n

s c s c s c s

c s c s c s

σ σ σ

σ σ σ

−
− + − + + + − + + −

−
− + − + −

= − + + +

= − + + +

Using (1) with i = n0 − 1, we find the same expression for
0 1n rs − + and

0 1ns − , so
0 01 1n r ns s− + −= . This

is a contradiction to the definition of the preperiod, so n0 = 0 and s∞ is periodic.
On the other hand, suppose 0 ()c σ is noninvertible in mqA , r is the least period and n0 its

preperiod of sequence s∞ . Then, associated matrix of 0 ()c σ is a singular in ()m qM F so that

there exists mqa ∈F (a≠0) such that 0 ()() 0c aσ = . Let s0=a, s1=s2=…=sn−1=0, so we can obtain a

σ -linear recurrence sequence with period r. According to recurrence relation (1),

1 1(0 0 0) 0n ns a s s −= − + + + = .

We have s1 = s2 = = sn = 0 and si = 0 for all i≥n. In particular, sr=0. As a result s0 = 0 since r is
the period. This contradicts to a≠0, moreover, 0 ()c σ is invertible of mqA .

Theorem 2 is the extension of traditional LFSR. It is easy to see that the conclusion is identical
to the result about traditional LFSR when all the coefficients in linear recurrence relation (1) are
in mqF . In fact, Theorem 2 gives the condition for regularity of σ -LFSR. It is well-known that

finding pseudorandom sequences with maximal period is of vital significance in research of
stream cipher. Now, we give the definition of primitive σ -LFSR.

Definition 4. Let s∞ be the sequence with the period qmn − 1 such that nth order σ -LFSR (1)

over mqF , we call s∞ primitive sequence generated by σ -LFSR (1), its σ -polynomial f(x)

primitive σ -polynomial and σ -LFSR (1) primitive σ -LFSR.
In fact, there exists primitive σ -LFSR over mqF . Moreover, we have

Theorem 3. Let s∞ be the sequence such that nth order σ -LFSR (1) over mqF with

σ -polynomial f(x)= xn+cn−1(σ)xn−1+…+c1(σ)x+ c0(σ) []mq x∈A , where c0(σ) is invertible,

364 ZENG Guang et al. Sci China Ser F-Inf Sci | June 2007 | vol. 50 | no. 3 | 359-372

F(x)= xn + Cn−1xn−1 +…+C1x +C0 ()[]m qM F x∈ the corresponding matrix polynomial of f(x) un-

der given normal basis. Then, s∞ is primitive ⇔ the determinant |F(x)| is primitive polynomial
over qF with degree mn.

Proof. Let 1 1=(, ,)m m m n mS s s s+ + − be the mth state of σ -LFSR (1), we define state transi-
tion matrix from Sm+1 to Sm as follows:

0

1

2

1

0 0 0 0
0 0 0

0 0 0 ,
0 0 0
0 0 0

m

m m

m m mn mn

C
E C

T
E C

E C
−

− ×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

where Em is an m×m identity matrix over qF . Thus, σ -LFSR is a primitive if and only if the

multiplicative order of the mn×mn matrix ()mn qT GL∈ F is qmn − 1. It is familiar that the order

of invertible matrix over finite field equals the order of the last invariant factor of the corre-
sponding characteristic matrix. Let xEmn+T be characteristic matrix of T, so sequence s∞ is
primitive if and only if the invariant factors of xEmn+T are 1,1, , g(x), where g(x) is an mn de-
gree primitive polynomial over qF . On the other hand, we know g(x) = |xEmn+T | = |F(x)|, so s∞

is primitive if and only if |F(x)| is a primitive polynomial with degree mn over qF .

Primitive σ -LFSR is of considerable interest, and Theorem 3 gives the condition to determine
primitivity. We expect to find such primitive σ -LFSR with simple σ -polynomial so that we can
achieve both maximal period sequence and fast software implementation. One of the simplest
σ -polynomial comes from all the coefficients which are circular rotations. Now, we discuss those
σ -polynomials.

Theorem 4. Let 1 011() []n
m

k kkn n
qf x x x x xσ σ σ− −= + + + + ∈A with m>1 where ki is an

integer, 0≤ ki ≤ m − 1 and 0 ≤ i ≤ n − 1, then f(x) is not a primitive σ -polynomial.

Proof. Let
1

, , ,
mq qα α α

−

be the normal basis of /m qqF F , then the associated matrix of σ

under the normal basis is

0 0 0 1
1 0 0 0

.0 1 0 0

0 0 1 0

A

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (3)

Then, the corresponding matrix polynomial of f(x) is 011 1() nk kkn nF x x A x A x A− −= + + + + . Af-

ter converting the matrix polynomial to polynomial matrix, we can find F(x) is an m×m circulant
matrix over qF . Using the properties of determinant, add each row to the first row from second

row to last and obtain the determinant of F(x) as

 ZENG Guang et al. Sci China Ser F-Inf Sci | June 2007 | vol. 50 | no. 3 | 359-372 365

1
1 1 0| () | () (),n n

nF x x k x k x k g x−
−= + + + +

where () []qg x x∈F . Since deg(F(x)) = mn, deg(g(x)) = (m − 1)n. So |F(x)| is a reducible polyno-

mial over qF . By Theorem 3, f(x) is not primitive.

If σ -LFSR is constructed by circular rotation, then its σ -polynomial f(x) is not primitive by
Theorem 4, so this kind of σ -LFSR is not primitive.

3 σ -LFSR with trinomial over finite fields of characteristic 2

Traditional LFSRs over binary field have wide applications because of simple hardware imple-
mentation and high efficiency. However, implementation of traditional LFSR over 2mF should

take the structure of finite field into account and thus is more complicated. The following result
shows that the implementation of σ -LFSR over 2mF only need consider CPU instructions, but

not the structure of finite field.
Theorem 5. Let 2()mM F be the m×m matrix ring over 2F . Then 2()mM F is gener-

ated by σ and &K over 2F , where K= (1,0, ,0), that is 2 2() [,&]m KM σ=F F .

Proof. Let Ei,j (i=1,2, ,m, j = 1,2, ,m) be the basis of 2()mM F , where Ei,j is m×m matrix

over 2F with 1 at ith row and jth column, others are 0. Under the normal basis
12 2, , ,

m
α α α

−

of 22 /mF F , the associated matrix of circular rotation σ and AND operation &K

are

0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 0

, .0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4)

Notice that ,1&i
K iEσ = , hence we have 1

, &i m j
i j KE σ σ + −= . Thus, 2 2() [,&]m KM σ=F F .

This theorem shows every σ -LFSR over finite field with characteristic 2 can be implemented
only by circular operation, AND operation, and XOR operation. However, it should be noticed
that σ and &K are non-commutative so that the expressions of σ -polynomial with σ and &K are
probably very complicated. Therefore, it is interesting to construct simple σ -LFSR with maximal
period. Let us consider the σ -LFSR over 2mF with trinomial σ -polynomial. For the sake of fast

software implementation, we discuss the σ -polynomial with coefficients circular rotation or AND
operation.

Now, we investigate the σ -polynomials as follows:
 2() & , where , , 1 , 1 , 0 .n r k m

Vf x x x k r k m r n Vσ += + + ∈ < ≠ ∈≤ ≤ ≤Z F (5)

Example 1. Figure 2 shows trinomial σ -LFSR over 22F with σ -polynomial f(x) = x14 +

&10x11+σ.
In Figure 2 &10 is AND operation with vector (1,0). Let F(x) be the corresponding matrix

polynomial of f(x) under normal basis. Then

366 ZENG Guang et al. Sci China Ser F-Inf Sci | June 2007 | vol. 50 | no. 3 | 359-372

Figure 2 Example of trinomial σ -LFSR.

14 11

14

1
()

1

x x
F x

x

⎛ ⎞+
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 and 28 25

2| () | 1 []F x x x x= + + ∈F .

|F(x)| is precisely a primitive polynomial over 2F . f(x) is primitive σ -polynomial by Theorem 3,

and the period of s∞ is 228 − 1. From the point of software implementation, this trinomial
σ -LFSR only required three basic operations: circular rotation, AND operation, and XOR opera-
tion. Because these operations are all fundamental instructions of CPU, the software efficiency of
this example is extremely high.

Next, we discuss the general cases. In order to obtain maximal period sequence, one has to
compute the determinant of the corresponding matrix polynomial F(x) of σ -polynomial (5). We
use Cm,k to denote the following matrix over 2F , where A is the matrix of σ c.f (3).

1

2
, .k

m k

m

x
x

C A

x

⎛ ⎞
⎜ ⎟
⎜ ⎟= +
⎜ ⎟
⎜ ⎟
⎝ ⎠

We compute the determinant |F(x)| by using xi=xn+aixr (1≤i≤m) in Cm,k. For convenience, we
give following.

Lemma 1. If k|m, then ,
1

| | (1)
k

m k i
i

C A
=

= +∏ where
mod

i t
t i k

A x
≡

= ∏ .

Proof. Suppose m=lk. We partition Cm,k into k×k submatrixes as follows.

1

1

,
2

1

0 1

0 1
0

0

0 0

0 0

k

k

m k
k

m k

m

x

x
x

C
x

x

x

+

− +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 ZENG Guang et al. Sci China Ser F-Inf Sci | June 2007 | vol. 50 | no. 3 | 359-372 367

1

2

3

2

1

0 0 0 0
0 0 0 0

0 0 0 0
,

0 0 0 0 0
0 0 0 0
0 0 0 0

k

k

k

l

k l

k l

X E
E X

E X

X
E X

E X

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

where Xi=diag(x(i−1)k+1, ,xik) is diagonal matrix, and Ek is the k×k identity matrix. To compute
the determinant of Cm,k, we define the following procedure illustrated by X1.

Procedure 1.
I. Multiply X1 with the 2nd submatrix row (Ek, X2, ,0) and add it to the 1st submatrix row

(X1, 0, , Ek).
II. Compute determinant according to Ek at the 2nd submatrix row and the 1st submatrix col-

umn using Lapalace theorem and obtain a (m − k) × (m − k) determinant.
In fact, Procedure 1 is as follows:

1 1 2 1 2

2 2 3

() ()

0 0 0
0 0 0

(I) (II) .

0 0 0 0 0 0

k k k

k k k

l l lm m m m m k m k

X E X X E X X E
E X E X E X

X X X
× × − × −

Repeatedly apply Procedure 1 to the top-left submatrix until Cm,k comes to a diagonal matrix.

1 2 1 2 3 1

3 4
, 1

1

0 0
0 0

| | | | .

0 0 0 0

k k l
l

i kk k
m k i ki

i
k l

l l

X X E X X X E
X EE X E X

C X E
E X

X X

−

=
=

= = = = = +∏ ∏

Notice the diagonal elements of
1

l

i k
i

X E
=

+∏ is Ai+1, where
mod

i t
t i k

A x
≡

= ∏ , so we finish the

proof.

Theorem 6. If d is the greatest common divisor of m and k, then ,
1 mod

| | (1)
d

m k t
i t i d

C x
= ≡

= +∏ ∏ .

Proof. If k|m, the conclusion holds by Lemma 1. Now, we consider the cases when m is not

divided by k and suppose m = ku1 − k1, where 1 1,u k+∈ ∈Z N and 10 k k<≤ . We partition Cm,k
into the following form by k×k submatrix

1

1

1

1 ,

2

,

1

,

0

0 0

,
0 0 0

0 0

k k k k

k

m k

u

k k k k

X T Y

E X

C
X

Y R

−

−

−

′

= (6)

368 ZENG Guang et al. Sci China Ser F-Inf Sci | June 2007 | vol. 50 | no. 3 | 359-372

where Xi, Rk are k×k and (k − k1)×(k − k1) diagonal square, respectively. Xi = diag(x(i−1)k+1, ,xik),

1(1) 1diag(, ,)k l k mR x x− += … , Ek is k×k identity matrix, and
1 1, ,, ,k k k k k k kY Y T− −′ is as follows:

1 1 1 1
, , ,

1, , 1, , , 1, ,
() () ()

0, . 0, otherwise. 0, otherwise.i j i j i j
i j i k j i k i k k i j k k

y y t
i j

= = + > = − + > −⎧ ⎧ ⎧′= = =⎨ ⎨ ⎨≠⎩ ⎩ ⎩

By Lemma 1 and (6), we have

1 1

1

1 2 1 ,
,

,
.

u k k k k
m k

k k k k

X X X T Y
C

Y R
− −

−

′+
=

Above equation can be repartitioned as follows, where 1(2) , (1)i i k i u k is x x x i k+ − += <≤ :

1

1
1 1

1

1

1

1

(1) 1

0 1

,
1

1

1

k k

k k
k k k k

k k k
k

u k

m

s

s

s
S E Q

E R
s

x

x

−

− +
−

−

− +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (7)

where
1 1 1 11diag(, ,), (,0) , (0,)T

k k k k k k k k k kS s s S S R R− − − −= = = and symbol T is the transpose

of the matrix.
1kQ is the following matrix:

11 1

0

0 .

0 0

k kk

k

sQ

s

− +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (8)

To compute determinant of (7), we give the following procedure illustrated by
1k kS − .

Procedure 2.
I. Multiply the submatrix composed of the last k − k1 rows in (7) with

1k kS − and add it to the

submatrix composed of the rows in (7), where
1k kS − stands.

II. Compute the resulted (7) by step I according to left-bottom block
1k kE − , using Lapalace

theorem.
III. Adjust the column sequence of determinant by moving the first k1 columns to the end.
The details of Procedure 2 are as follows.

 ZENG Guang et al. Sci China Ser F-Inf Sci | June 2007 | vol. 50 | no. 3 | 359-372 369

1 1

1 1

1 1(I)

(1) 1 (1) 1

1 0 1

0

1 1
1 1

1 1

l l

l l

k k

u k u k

m m

s M

s M
s s

s s
x x

x x

+ +

− + − +

=

 1

1

1
1

(II) (III)

1
1

1
1

1
,

1

1
1

k
l l

k

k
k

M
M

M
s M

M

s
M

+
+

= = (9)

where
11

1 mod
, i tt i k

l k k M x
≡

= − = ∏ . We observe that the right equality in (9) is a k×k matrix

similar to
1,k kC except the diagonal elements (M1,M2,…,Mk).

After u1 − 2 times Procedure 1 and one Procedure 2, Cm,k is converted to (9) whose form is
similar to

1,k kC , and we call this procedure a recursive transformation. Suppose d = g.c.d(m,k), ui

is positive integer, and 1 01 , (1 1), .i ik k i n k k−< − =≤ ≤ ≤ Thus, we have

1 1

2 1 2

2 1

1 1

,
,

,

.
n n n

n n

m u k k
k u k k

k u k d
k u d

− −

− +

= −⎧
⎪ = −⎪⎪
⎨
⎪ = −⎪
⎪ =⎩

 (10)

After one recursive transformation, Cm,k is converted to
1,k kC with diagonal elements

11 modi tt i k
M x

≡
= ∏ ; after two recursive transformation, the matrix is similar to

1 2,k kC with di-

agonal elements
12 1 1 2mod mod

()i tt i k t t k
D x

≡ ≡
= ∏ ∏ , where 11 i k≤ ≤ . Repeatedly applying recur-

sive transformation for n time, we can obtain a matrix similar to
1,nk dC

−
 with diagonal elements

1

1 1 2mod modn n

i t
t i k t t k

K x
−≡ ≡

= ∏ ∏ , where 11 ni k −≤ ≤ . With the fact that d|kn−1 and Lemma 1, we have

 ,
1 mod

(1).
d

m k t
i t i d

C K
= ≡

= +∏ ∏ (11)

For d = g.c.d(m,k), we see that d|kn−1, d|kn−2, ,d|k by eq. (10). Hence,

370 ZENG Guang et al. Sci China Ser F-Inf Sci | June 2007 | vol. 50 | no. 3 | 359-372

1

1 1 2mod mod mod mod mod
() .

n n

t t t
t i d t i d t t k t t k t i d

K x x
−≡ ≡ ≡ ≡ ≡

= =∏ ∏ ∏ ∏ ∏ (12)

Combining eqs. (11) and (12), we prove ,
1 mod

| | (1)
d

m k t
i t i d

C x
= ≡

= +∏ ∏ .

Corollary 1. Let d = g.c.d(m,k), () &n r k
Vf x x x σ= + + be a σ -polynomial, where k,m are

integers and 0 1k m −≤ ≤ , 1 2 2(, , ,) mmV a a a= ∈F . Let s be Hamming weight of vector V .

Then
A. If d≠1, f(x) is not a primitive.
B. If d=1, n and r are both even, f(x) is not a primitive.
C. If d=1, n and r are not both even, but s and m are both even, f(x) is not primitive.
Proof. A. If d≠1, then d≥2. By Theorem 6, it is obvious that f(x) is reducible, so f(x) is not

primitive.

B. If d=1, by Theorem 6,
1

() () 1 () () 1
m

n r n m s n r s
i

i
F x x a x x x x−

=

= + + = + +∏ . If 2n n′= and

2r r′= , then () 2() (() 1)n m s n r sF x x x x′ ′ ′−= + + is a square, so f(x) is not primitive.

C. If 2s s′= and 2m m′= , then () 2() (() 1)n m s n r sF x x x x′ ′ ′−= + + is also a square, so f(x) is not
primitive.

4 Searching for primitive trinomial σ -LFSR

According to the analysis of trinomial σ -LFSR, here we describe an algorithm to summarize the
above conclusions.

Algorithm 1 (Searching for Primitive Trinomial σ -LFSR over 2mF).

1. Choose degree of circular rotation k such that g.c.d(m,k)=1.
2. Choose n and r such that not both are even.
3. Choose s such that not both m and s are even.
4. Check whether g(x) = (xn)m−s(xn+xr)+1 is a primitive polynomial over binary field, if false go

to step 1.
By Algorithm 1, we made a largely exhaustive search to find primitive trinomial, and Table 1

lists some primitive σ -trinomial with nm≤100. Although k has a different value, as long as k and
m are coprime, the primitivity of σ -trinomial is the same, so k is omitted in Table 1. The 10th row
of 22F in Table 1, 14 1 11 is Example 1. It can be seen from the table, for every positive m, there

not always exists a primitive σ -trinomial of any degree. In particular, the number of primitive
σ -trinomial in cases m = 4 or 6 are apparently fewer than other cases. Further explanation for this
phenomenon would be of interest. For σ -pentanomial 31 2

1 2 3() jj jn kf x x a x a x a x σ= + + + + ,

where n > j1 > j2 > j3 > 0, and the coefficient ai is either &V (2mV ∈F) or a power of σ. We also

simulate in the computer and list the results in Table 2. Similar to the open problem on primitive
pentanomial of any degree over finite fields, it is interesting to ask for the solution about primi-
tive σ -pentanomial.

 ZENG Guang et al. Sci China Ser F-Inf Sci | June 2007 | vol. 50 | no. 3 | 359-372 371

Table 1 Primitive σ -trinomial () &n r k
Vf x x x σ= + + over

2mF a)

 n s r n s r n s r n s r n s r n s r

 22
F 34 1 1 13 1 5 28 1 15 4 1 1 14 1 1

2 1 1 34 1 25 13 2 6 29 1 16 5 1 2 72
F

3 1 2 42 1 29 13 1 9 31 1 29 5 3 4 3 1 1
5 1 2 47 1 26 13 2 9 31 2 30 7 1 5 3 2 2

9 1 2 49 1 22 13 2 11 42
F 7 2 6 4 1 1

10 1 7 49 1 38 19 2 8 5 1 2 11 3 3 5 1 3

11 1 10 32
F 19 1 12 7 1 4 11 4 5 5 2 4

14 1 1 2 1 1 20 1 9 13 1 10 12 1 1 7 2 1
14 1 5 3 2 1 20 1 19 15 1 4 12 1 11 7 3 2
14 1 11 5 1 1 21 2 5 15 1 14 13 3 2 7 3 3
18 1 7 5 2 1 21 1 16 17 1 8 13 2 4 7 3 4
26 1 5 5 2 3 21 1 20 21 1 8 13 4 5 7 4 4

26 1 7 5 1 4 27 2 4 52
F 13 3 7 7 5 4

26 1 23 7 1 5 27 1 11 3 2 1 19 1 2 7 6 5
29 1 10 7 2 6 27 2 19 3 4 1 19 1 8 9 4 1

30 1 19 11 2 1 27 1 23 3 1 2 62
F 9 1 4

30 1 29 12 1 1 27 2 25 3 4 2 10 1 9 9 1 8

 a) 2≤m≤7, k and m are coprime satisfying nm≤100, 1≤r<n, 1≤s≤m.

Table 2 Primitive σ -pentanomial 31 2
1 2 3() jj jn kf x x a x a x a x σ= + + + + over

2mF a)

 n a1 j1 a2 j2 a3 j3 k n a1 j1 a2 j2 a3 j3 k
 4 3 3 1 2 3 1 (1) 4 3 3 (2) 2 1 1 (1)
 5 3 3 3 2 1 1 (1) 5 1 4 (1) 3 1 2 (1)

22
F 6 1 3 1 2 3 1 (1) 6 1 5 (1) 3 1 2 (2)

 7 1 3 1 2 3 1 (1) 7 1 5 (2) 3 3 2 (1)
 8 1 3 1 2 3 1 (1) 8 1 7 (1) 5 1 4 (2)
 4 3 3 1 2 7 1 (1) 4 1 3 (3) 2 7 1 (2)
 5 7 3 3 2 7 1 (2) 5 1 4 (1) 2 7 1 (2)

32
F 6 7 3 1 2 1 1 (1) 6 1 5 (1) 2 7 1 (3)

 7 3 4 7 2 1 1 (2) 7 7 4 (3) 3 1 1 (1)
 8 1 6 3 5 1 2 (1) 8 1 5 (3) 2 1 1 (2)
 4 1 3 3 2 f 1 (3) 4 f 3 (1) 2 7 1 (4)
 5 7 4 1 3 7 1 (3) 5 7 4 (4) 2 3 1 (3)

42
F 6 7 4 3 3 7 1 (1) 6 1 4 (1) 3 f 1 (2)

 7 3 4 1 2 1 1 (3) 7 1 4 (4) 3 1 2 (3)
 8 7 6 f 5 f 2 (1) 8 7 5 (1) 4 f 3 (4)
 4 1 3 7 2 3 1 (1) 4 3 3 (3) 2 1 1 (4)
 5 1 3 f 2 3 1 (2) 5 3 3 (5) 2 f 1 (2)

52
F 6 1 3 3 2 3 1 (4) 6 1 4 (2) 2 7 1 (4)

 7 1 3 1 2 7 1 (3) 7 7 4 (2) 2 3 1 (1)
 8 1f 3 7 2 1 1 (1) 8 7 4 (1) 2 1f 1 (3)
 4 1 3 3 2 1f 1 (1) 4 1 3 (1) 2 3f 1 (2)
 5 1 3 7 2 3f 1 (5) 5 3f 3 (3) 2 1f 1 (4)

62
F 6 3 3 7 2 3f 1 (5) 6 f 3 (6) 2 1 1 (1)

 7 1 3 7 2 7 1 (1) 7 1 4 (3) 2 1f 1 (5)
 8 7 6 1f 5 1f 3 (1) 8 7 7 (4) 3 3f 2 (1)

 a) n > j1 > j2 > j3 > 0, () denotes power of σ, other coefficient is AND item in hexadecimal representation.

372 ZENG Guang et al. Sci China Ser F-Inf Sci | June 2007 | vol. 50 | no. 3 | 359-372

5 Conclusions

In this paper, we introduce the concept of σ -LFSR composed of CPU instructions, such as circu-
lar rotation, AND, XOR, etc. Some basic cryptographic properties are presented, and in particular,
a type of trinomial σ -LFSR is found which can be implemented only by a few computer basic
instructions circular rotation and AND operation. Moreover, this type of trinomial σ -LFSR not
only has desirable cryptographic properties, but also has high software efficiency. We believe that
as we move from 32 to 64 bit processor, word-based σ -LFSR, which can be implemented with
few instructions and high efficiency, will become an attractive alternative to stream cipher design.

1 Golomb S W. Shift Register Sequences. San Francisco: Holden-Day, 1967
2 Lidi R, Niederreiter H. Finite Fields. In: Encyclopedia of Mathematics and its Applications 20. Cambridge: Cambridge

University Press, 1983
3 Preneel B. Introduction to the Proceedings of the Fast Software Encryption 1994 Workshop. In: LNCS, Vol. 1008. Berlin,

Heiderberg: Springer-Verlag, 1995. 1－5
4 Zhang M, Carroll C, Chan A. The Software-Oriented Stream Cipher SSC2. Fast Software Encryption 2000 Workshop. In:

LNCS, Vol. 1978. Berlin, Heiderberg: Springer-Verlag, 2001. 31－48
5 Daemen J, Craig S, Clapp K. Fast Hashing and Stream Encryption with PANAMA. Fast Software Encryption 1998 Work-

shop. In: LNCS, Vol. 1372. Berlin, Heiderberg: Springer-Verlag, 1999. 60－74
6 Watanabe D, Furuya S, Yoshida H, et al. A New Keystream Generator MUGI. Fast Software Encryption 2002 Workshop. In:

LNCS, Vol. 2365. Berlin, Heiderberg: Springer-Verlag, 2003. 179－194
7 Rogaway P, Coppersmith D. A software-optimized encryption algorithm. Fast Software Encryption 1993 Workshop. In:

LNCS, Vol. 809. Berlin, Heiderberg: Springer-Verlag, 1994. 53－63
8 Halevi S, Coppersmith D, Charanjit S. Jutla. Scream: A Software-Efficient Stream Cipher. Fast Software Encryption 2002

Workshop. In: LNCS, Vol 2365. Berlin, Heiderberg: Springer-Verlag, 2003. 195－209
9 Boesgaard M, Vesterager M, Pedersen T, et al. Rabbit: A New High-Performance Stream Cipher. Fast Software Encryption

2003 Workshop. In: LNCS, Vol. 2887. Berlin, Heiderberg: Springer-Verlag, 2004. 307－329
10 Ferguson N, Whiting D, Schneier B, et al. Helix: Fast Encryption and Authentication in a Single Cryptographic Primitive.

Fast Software Encryption 2003 Workshop. In: LNCS, Vol. 2887. Berlin, Heiderberg: Springer-Verlag, 2004. 330－346
11 Hawkes P, Rose G. Primitive Specification and Supporting Documentation for SOBER-t16 Submission to NESSIE, Pro-

ceedings of the first NESSIE Workshop, Heverlee, Belgium, 2000
12 Hawkes P, Rose G. Primitive Specification and Supporting Documentation for SOBER-t32 Submission to NESSIE, Pro-

ceedings of the first NESSIE Workshop, Heverlee, Belgium, 2000
13 Hawkes P, Rose G. Turing: A Fast Stream Cipher. Fast Software Encryption 2003 Workshop. In: Johansson T, ed. LNCS, Vol.

2887. Berlin, Heiderberg: Springer-Verlag, 2003. 290－306
14 Ekdahl P, Johansson T. SNOW——a new stream cipher. In: Proceedings of the first NESSIE Workshop, Heverlee, Belgium,

2000
15 Ekdahl P, Johansson T. A New Version of the Stream Cipher SNOW. Selected Areas in Cryptography 2002 Workshop. In:

Nyberg K, Heys H, eds. LNCS, Vol. 2595. Berlin, Heidelberg: Springer-Verlag, 2003. 47－61
16 Tsaban B, Vishne U. Efficient linear feedback shift registers with maximal period. Finite Fields Their Appl, 2002, 8: 256－

267
17 Dewar M, Panario D. Linear transformation shift registers. IEEE Trans Infor Theory, 2003, 49: 2047－2052
18 Zeng G, Han W B, He K C. High efficiency feedback shift register: σ-LFSR. Cryptology ePrint Archive, Report 2007/114.

2007. http://eprint.iacr.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

