
702 Science in China Series F: Information Sciences 2006 Vol.49 No.6 702—730

DOI: 10.1007/s11432-006-2027-1

A software architecture centric
engineering approach for Internetware
MEI Hong, HUANG Gang, ZHAO Haiyan & JIAO Wenpin
School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
Correspondence should be addressed to Mei Hong (email: meih@pku.edu.cn)
Received April 30, 2006; accepted September 4, 2006

Abstract As a new software paradigm evolved by the Internet, Internetware brings
many challenges for the traditional software development methods and techniques.
Though architecture-based component composition (ABC) approach is originated in the
traditional software paradigm, it supports the engineering of Internetware effectively due to
its philosophy, rationales and mechanisms. ABC has three major contributions to the en-
gineering of Internetware in detail. First, the feature oriented domain modeling method can
structure the “disordered” “software entities” to “ordered Internetware” bottom-up in the
problem space. Second, the architecture centric design and analysis method can support
the development of self-adaptive Internetware. Third, the component operating platform is
a reflective and self-adaptive middleware that not only provides Internetware with a pow-
erful and flexible runtime infrastructure but also enables the self-adaptation of the structure
and individual entities of Internetware.

Keywords: internetware, component, software architecture, feature model, reflective middleware,
autonomous component.

The Internet development brings new challenges to the information technology which
requires innovation of the present technologies, meanwhile, it produces multi-hotspot
fields about information technology research and practice. For example, the grid man-
agement discusses the future application and construction model for the network systems
from the perspective of resource sharing and management; from the perspective of hu-
mancomputer interaction, the pervasive computing discusses how future network appli-
cations will be used and operated ubiquitously; the service computing emphasizes the
idea of “software as a service” and proposes a new software paradigm that pays special
attention to the coordination and dynamism of services; the model-driven development is
based on domain-specific code generation and focuses on middleware-based develop-
ment methods and techniques. Almost all of the work can be considered as attempts to
review, rethink and evolve the information technology from some new perspectives.
Similarly, Internetware grounds itself in the open, dynamic and ever-changing Internet

www.scichina.com www.springerlink.com

A software architecture centric engineering approach for Internetware 703

and focuses on such new software paradigm that will be autonomous, evolutionary, co-
operative, polymorphic, and context-aware[1]. Since traditional software engineering
methods and techniques are originated from and more suited for a static and closed envi-
ronment, they are not appropriate for open, dynamic, and ever-changing Internetware,
which requires innovations of the traditional software development methods and tech-
niques.

Technically, Internetware forms a Software Web[1] on Internet, similar with the present
information Web. The software entities constituting Internetware, supported by software
components and other technologies, will be distributed over the Internet openly and
autonomously. And they will be published in an open environment, cooperating with
each other in various manners. Due to the open, dynamic, and ever-changing Internet, as
well as the various user preferences, Internetware keeps evolving after it has been devel-
oped and deployed. When an Internetware is published, it is capable of perceiving the
dynamic changes of its environment and evolves according to its functionality, perform-
ance and trustworthiness, etc. so that it not only satisfies users’ requirements but also im-
proves experiences. Besides, the variation of user preferences and return of investment
usually lead to a long lived and ever-evolving Internetware. The engineering of such In-
ternetware as well as its supporting technologies is quite different from the traditional
ones.

Traditional software development processes are more suited for the relatively close,
static and stable platforms. Most of them adopt a common top-down approach, scoping
the system border and using divide-and-conquer principles to make the whole process
under control. However, the platform of Internetware has abundant resources and it is
always open, dynamic, and ever-changing. The development over this platform can be
seen as the composition of various “disordered” resources into “ordered” software sys-
tems. As time elapses, changes of resources and environments may “disorder” the exist-
ing software systems again, which will become “ordered” sooner or later. The iterative
transformation between “ordered” and “disordered” Internetware implies a bottom-up,
inside-out and spiral development process. Besides, the traditional software lifecycle
emphasizes the importance of the whole development process; the software evolution is
only managed by the phase of “software maintenance”. This is appropriate for the devel-
opment under a static and closed environment; however it is not suitable for Internetware,
because 1) the present software composes the new software entities. And all of them are
relatively independent and there is no central control for them, so it is difficult to guaran-
tee that the composed Internetware satisfies the functionalities and qualities as planned
unless it starts to run; 2) the open, dynamic, and ever-changing environment requires the
Internetwares and their cooperation may face many changes. No matter whether these
changes can be predicted or not exactly, the running system has to do the durative ad-
justability regulation. As a result, software maintenance would become a relatively im-
portant phase; 3) Internetware provides service for the worldwide users. Furthermore, an
Internetware is usually composed of software entities which are distributed over the
Internet and then has no chance to be shut down completely after it is deployed and starts
to run. This implies that all maintenance activities, including debugging, optimizing and

704 Science in China Series F: Information Sciences

upgrading have to perform online. All these activities also have the phases of analysis,
design, implementation, testing and deployment, which cannot be controlled well by the
concepts and techniques in the traditional software maintenance.

In the traditional software development methods, less attention is paid to the autonomy,
cooperation, context-awareness, evolution and polymorphism of Internetware. First, the
Internetware’s autonomy means a software entity which is relatively independent. It can
perform operations as it will and adapt itself when necessary. Internetware is autonomous
because it is usually developed and managed as well as runs independently on distributed
nodes. The goal and the services of an Internetware are determined by its owner; there-
fore, the Internetware behaves according to not only the composition or deployment
strategies but also the owner’s goal. Actually, an Internetware may collect information on
environment change and adapt itself according to the preset strategies in order to ac-
commodate the ever-changing environment. The cooperation of an Internetware means
that software entities constituting an Internetware may cooperate with each other in static
or dynamic manners. Comparatively speaking, the traditional software systems usually
adopt a single and static connection mechanism. However, the connection mechanisms
adopted by Internetware may also be changed if necessary. For example, communication
protocols of different Internetware may be switched, the security level can be increased
or decreased at runtime, and the availability of the passing messages may vary according
to the changing environment. The context-awareness means that an Internetware is capa-
ble of perceiving its runtime context, which includes both the underlying operating plat-
form and other Internetware. Consequently, both the Internetware and the operating plat-
form should expose their runtime states and behavior. Evolution refers to that the struc-
ture of an Internetware may change dynamically according to the requirements as well as
its environment. Possible evolutions include the number of its constituents, the adjust-
ment of its topologies, as well as dynamic configurations. This requires that the software
architecture model for an Internetware should be able to change dynamically. Polymor-
phism means that an Internetware may incarnate several compatible goals. Based on
some basic cooperation principles, an Internetware may satisfy different but compatible
goals in a dynamic environment. This requires the modeling of compatible goals. Besides,
an Internetware should be able to determine its goal dynamically when the environment
changes. In short, most characteristics an Internetware should have are related to its
self-adaptability, including the self-adaptability of single software entity as well as the
software topology. A self-adaptable Internetware is capable of adapting itself according
to specific changes at the right time, in the right place, such that it can satisfy the desired
functionalities and qualities. Naturally, the degree of human intervention determines the
degree of self-adaptability. Therefore, a real challenge for the engineering of Internetware
is how to develop a self-adaptable Internetware, such that it can behave properly with as
little human intervention as possible.

Traditional software development tools are usually targeted at one or several phases
before the software is delivered; after delivery, the software is maintained by various
management tools. As shown above, the emphasis of Internetware development is shifted
from pre-delivery to the runtime. The runtime adaptation of Internetware (no matter

A software architecture centric engineering approach for Internetware 705

whether by hand or automatically) usually depends on activities and artifacts produced in
different development phases. Therefore, the software development tools for Internet-
ware should not only cover the whole software lifecycle, but also be integrated with the
runtime platform. Conversely, the above characteristics incarnated in Internetware chal-
lenge the runtime platform in various ways. First, the runtime platform not only is able to
present its states and behavior at runtime, but also facilitates the Internetware to present
its runtime information. Second, the runtime platform should provide mechanisms to
adapt to the constituents of an Internetware as well as its topologies; otherwise, the
Internetware cannot become self-adaptive.

In summary, the engineering of an Internetware is quite different from that of the tra-
ditional software. It follows a specific bottom-up process which incoperates “disordered”
software entities into “ordered” software systems, and it pays special attention to the
self-adaptability of the constituents and the structure of an Internetware. The supporting
tools cover the whole lifecycle and are usually integrated with the operating platform,
which meets the requirements to implement the self-adaptation of an Internetware. In this
paper, we propose a software architecture centric engineering approach for Internetware,
which is a natural extension of the Architecture Based Component Composition (ABC)
approach[2]. ABC uses software architectures as blueprints to develop middleware-based
software systems by assembling reusable components. We think that the philosophy, ra-
tionales and mechanisms of ABC are compliant with the open, dynamic and
ever-changing characteristics of Internetware, in particular, the above-mentioned three
major issues of the engineering of Internetware can be efficiently handled by ABC.

The rest organization of this paper is as follows: Section 1 introduces the core idea,
design rationales as well as the process model of ABC; section 2 discusses how to use
feature models to organize and manage “disordered” Internetware resources; section 3
presents how to design a self-adaptive software architecture for an Internetware; section
4 introduces a reflective middleware that supports self-adaptation of software entities as
well as software structures; section 5 concludes this paper and identifies the work in the
future.

1 Overview of ABC methodology

As originated in 1998 and formally proposed in 2000[2], ABC is a combination of
software architecture (SA) and component-based software development (CBSD) for
supporting software reuse. SA provides a top-down approach to realize component-based
reuse. This approach uses architecture description languages (ADL) to abstract compo-
nents, connectors as well as their interactions, which constitute the whole architecture
model. However, SA does not pay enough attention to the refinement and implementation
of the architectural descriptions, thus not fully able to automate the transformation or
composition which results in an executable system. On the other hand, CBSD provides a
bottom-up way by using the existing middleware infrastructures. It emphasizes how to
reuse pre-fabricated components to build large-scale software systems. However, this
method is mainly restricted to binary components (e.g., COM, CORBA, EJB); besides, it

706 Science in China Series F: Information Sciences

is not able to systematically guide the CBSD process, especially the component composi-
tion at higher abstract levels. In our opinion, SA and CBSD are complementary and able
to be combined to realize effective component-based reuse.

ABC introduces software architectures into each phase of software life cycle, takes SA
as the blueprint of system development, deployment and management, shortens the gap
between high-level design and implementation by supporting tools and mapping mecha-
nisms, and realizes the automated system composition. The process model for ABC
method is shown in Fig. 1, including the following phases:

Fig. 1. Process and artifacts of ABC.

● Requirement Analysis (Requirement View): SA is introduced into the requirement

analysis phase to guide component composition at a high level. In this phase, the problem
space and the requirement specification are structured in the way similar to SA[3]. ABC
uses features to represent software requirements and relationships among features to rep-
resent relationships among requirements. In a word, feature is treated as a first class en-
tity in the problem space. Features and static or dynamic relationships among features are
organized as feature models. In particular, for the purpose of reuse, the feature model in
ABC method uses variability mechanism to capture the commonality and variability of a
set of similar requirements. The relationships among requirements are modeled by four
relations in the feature model, including refinement, constraint, influence and interac-
tion[3,4]. These relations can be used to validate the completeness and consistency of a
feature model[5]. Based on feature models, an initial SA model can be designed by iden-
tifying responsibilities for each component and analyzing dependencies among require-
ments[6]. The initial SA model is the input for the later phase of architecting, composition
and maintenance.

● Architecting Phase (Design View): A complete SA model comes into being in this
phase. The architect determines the global design decisions based on the requirement
specification. In this phase, components and connectors in the initial SA model would be
refined. New components and connectors are created if necessary; different views (in-

A software architecture centric engineering approach for Internetware 707

cluding type view, instance view and process view) may also be created. The relation-
ships between the requirement specifications and SA models are set up in this phase[2,7].
Since reuse is emphasized in ABC method, the architects should take into account reus-
able components and connectors during the design. It should be noted that ABC method
is not specific to a certain development paradigm. For example, object-oriented design
(OOD) can also be adopted in this phase. The high-level OOD model can also be treated
as an SA model, as long as the modeling elements in OOD model are encapsulated into
those in the SA model (e.g., a set of classes may be encapsulated into a component ac-
cording to their interaction frequency, the whole-part relation, the general-special relation,
etc.).

● Composition Phase (Implementation View): in ABC method, the SA-based compo-
sition implements a software system. In this phase, component implementations are
qualified, selected or adapted according to the SA model. After all necessary component
implementations are integrated, a deliverable software package is produced[2,8]. However,
in practice, there may be some components that have no reusable implementations. In
that case, a detailed design model (e.g., UML model) or some C++ or Java programming
frameworks for those components would be generated in an automated manner[2]. These
newly implemented components can be finally assembled into the target system as well.

● Deployment Phase (Deployment View): component-based software systems are
usually specific to a certain middleware, such as Common Object Request Broker Archi-
tecture/CORBA Component Model (CORBA/CCM), Java 2 Platform Enterprise Edition/
Enterprise JavaBeans (J2EE/EJB), Component Object Model (COM), Web Services, and
so on. These software systems start to run only after they are deployed properly. De-
ployment-related information is usually given by hand, which is tedious and error-prone
because such information is voluminous and trivial. In practice, most deployment-related
information can be deduced from former views, including the design view and the im-
plementation view. Therefore, an explicit deployment view is introduced in ABC. This
view presents most information that is deduced from other views. It also supports intui-
tive operations on deployment-related information. The information on resources and
workloads of the target environment is shown in real time as well. With the support of
this deployment view, a component-based software system can be deployed in an auto-
mated manner[9].

● Maintenance and Evolution Phase (Runtime View): ABC can be seen as iterative
refinement, mapping and transformation between different SA views. Each time the SA
model is refined or transformed, it becomes more precise and integrated. During the
maintenance and evolution phase, the runtime view is used to depict the runtime states
and behavior of the software system. It is the view that has the most precise and complete
information on the target system. Based on the support of reflective middleware, the run-
time software architecture (RSA) embodied in the runtime view reflects the target system
at runtime. The target system can then be maintained or updated at runtime by operations
to the RSA[10, 11].

To facilitate the above process, a set of tools are provided by ABC, including the fea-
ture modeling tool, SA modeling tool and middleware as component operating platform.

708 Science in China Series F: Information Sciences

In particular, the SA modeling tool supports visualized SA design, component composi-
tion, deployment, as well as online maintenance and evolution. To date, ABC has been
applied to the development of several real applications experimentally, including the
modeling of information system for Beijing Olympic 2008 and a loan management sys-
tem in some commercial banks.

Though ABC is originated from traditional software systems, it can support the engi-
neering of Internetware effectively because Internetware is an evolution of the traditional
software and ABC takes into account the support for the main characteristics brought by
Internetware since 2002. Details are as follows: 1) Internetware shapes up from “disor-
dered” resources to “ordered” software systems. This process embodies a typical (and
even ideal) paradigm for reuse. However, it still requires support for related technologies,
which are also keys to ABC and have been already well supported by ABC. Definitely,
there are some significant differences between Internetware and the traditional software.
For example, reusable assets are distributed and decentralized, software entities are
autonomous. 2) Though the autonomy of software entities is very typical in Internetware,
it is under control in a certain degree. Otherwise, it is hard to form an “ordered” Inter-
netware. Therefore, an explicit SA is still necessary to perform the global and loose con-
trol over Internetware. Compared to the traditional software, some entities, as well as
their connections, in the SA model for Internetware may be undetermined before runtime
or changed continuously at runtime. 3) Different from the traditional software, Internet-
ware emphasizes the ever-evolution after delivery. As a result, it is difficult to split the
development of Internetware from its execution. The development tools should then be
integrated with the runtime platform. In ABC, SA model plays a central role in integrat-
ing tools for design, implementation, deployment, maintenance and evolution. In a word,
the idea and process of ABC method are well suited to Internetware, and ABC mecha-
nisms can support the engineering of Internetware. In particular, ABC pays special atten-
tion to the following issues brought by the unique characteristics of Internetware. As to
the engineering process, ABC cares about how to use feature-oriented requirement mod-
eling to support the bottom-up development process as well as the organization and
management of “disordered” resources; after that, how SA models can be used to inte-
grate the design, implementation, deployment, maintenance and evolution of Internet-
ware. As to the engineering method, ABC cares about how to design a self-adaptive SA
model for Internetware, especially when various qualities are taken into account. As to
the supporting techniques, ABC cares about how to strengthen the existing platforms that
support EJB, Web Services and other main stream component models. The enhanced
platform provides a reflective framework to support the monitoring and controlling on
Internetware as well as the platform itself. It also provides mechanisms for rule-based
autonomous components.

2 Feature-oriented requirement modeling for Internetware

Based on a platform with rich sets of software assets, the engineering of Internetware
is usually in a bottom-up fashion since new applications can be built by selecting and

A software architecture centric engineering approach for Internetware 709

composing these existing assets according to users’ requirements. However, the platform
is an open, dynamic and ever-changing framework and most of the existing assets in it
are distributed, decentralized and heterogeneous. In that sense, the platform manifests
itself “disordered” from a global perspective. Therefore, one challenge for the engineer-
ing of Internetware is how to conform these disordered assets to ordered and controllable
ones, so as to allow the developers to employ mature software development methods,
such as the traditional top-down, stepwise refinement method in their construction of an
Internetware.

As a systematic way to produce the reusable artifacts in a particular problem domain,
domain engineering addresses the creation of domain models and architectures that ab-
stract and represent a set of reusable assets within a domain through domain scoping,
commonality and variability analysis and adaptable design construction based upon the
study of the existing systems, knowledge from domain experts, and emerging technology
within a domain, taking the possible requirement changes, technology evolution, eco-
nomic benefits and some limitation into consideration. Here, domain analysis refers to
the process of identifying, collecting, organizing and representing the relevant informa-
tion in a domain. In a sense, the domain analysis is a process in the bottom-up fashion
coincided with the engineering of Internetware.

Therefore, ABC adopts the methods and techniques of domain engineering to coordi-
nate the underlying resources, on which the engineering of Internetware is based, making
the resources at the bottom sites into a set of ordered components, building the Interner-
ware that fulfills some specific business goals.

As shown in Fig. 2, we first structure or organize the disordered resources distributed
over the Internet into a domain model with variability representation mechanism, which
embodies high-level business goals for a bundle of Internetware, by domain scoping and
analysis; and then we build a new application by tailoring and extending the domain
model according to the application-specific requirements. When time elapses, the new
application may be scattered somewhere on the Internet as a service and then becomes a
new disorder resource. In turn, these new disordered resources can be added into the do-
main model by further analysis, and therefore form the iterative process of disordered
resources to ordered ones. The feature-oriented domain modeling method (abbr. to
FODM[3―6]) in ABC provides an effective means to conform the building-block resources
for Internetware.

Regarding features as basic elements in the problem space, ABC uses features and re-
lationships (i.e. refinements and constraints) between features (called domain feature
models) to structure the problem space, i.e., use features to group and organize the re-
quirements which support modeling of domain requirements systematically. The rela-
tionship between features includes the refinement, constraint, influence and interaction.
The former two are the static dependencies between features which are significant to the
commonality and variability modeling, while the latter two are dynamic ones which are
important for the domain design based on feature models. Speaking concretely, 1) re-
finements are a kind of binary relationships between features. They integrate features at
different levels of abstraction into hierarchical structures which provide an effective way

710 Science in China Series F: Information Sciences

to describe complex systems. 2) Constraints are a kind of static dependencies among
features which provide a way to verify the results of requirement customization and re-
lease planning. 3) An influence between two features means one feature imposes addi-
tional responsibilities on the other, which depicts the dependencies between feature in the
specification level. 4) Interactions reflect how features interact with each other at runtime.
Fig. 3 illustrates a concrete form of a feature model in ABC. Besides recording all the
service features, function features, behavior characteristics features and use case features
a system has, this model records the system’s quality features and the constraint and in-
teraction relationships between features explicitly. Features with different abstract levels
and granularities (service, function and behavior characteristics) form a hierarchical
structure via refinement relationships between them. The features in Use-Case Section
are related to the service, function and behavior characteristics features through the de-
pendencies between the features; while the quality features record the service, function
and behavior characteristics features they may affect.

Fig. 2. Conforming the bottom resources by domain engineering.

Fig. 3. A concrete form for a feature model.

ABC’s feature model is in nature a way to partition and organize the requirements

since the features and their relationships depict the essential elements of the problem
space. In the view of requirement’s intension, a feature embodies a kind of capabilities or
characteristics the system possesses, which reflect the requirement-enticer’s understand-
ing of the system; in the view of requirement types, a feature can be a functional re-
quirement, a quality requirement, or some kind of environment constraints to the system.

During the process of conforming and structuring the bottom resources on which to
coordinate the Internetware, ABC uses features to represent and organize these resources,

A software architecture centric engineering approach for Internetware 711

and relationships between features to depict the combination relationships between these
resources. Consequently, to a set of Internetware with common requirements and certain
variable requirements, ABC’s feature model can depict their functions and services to be
revealed, the system goals they need to achieve, and their adaptable requirements to en-
vironment. Furthermore, by identifying the responsibilities that features possess and ana-
lyzing the mutual dependencies between features, developers can get a high-level ab-
stract architecture for this set of Internetware, which can be used as the basis for dis-
criminating and filtering the bottom resources, and the guidelines for the later phases of
design, composition and maintenance. If a set of Internetware with common and certain
variable requirements is regarded as an application domain, the disordered bottom re-
sources they depend on can be coordinated into ordered and controllable ones at a high
level through the feature-oriented domain modeling method.

Fig. 4. The modeling process of a feature model.

Fig. 4 presents the feature modeling process of ABC, in which the activity of Service

Analysis identifies the service features that consist of Internertware to define their capa-
bilities revealed to users or customers. The activity of Function Analysis identifies the
functional features that a service possesses, which can derive what functions should be
included to fulfill a specific service. The activity of Behavior Analysis is to identify the
behavior characteristics of a function, such as the pre and post-conditions of a function to
be executed, and the control flow after executing a function. Crossing the activities of
service-function-behavior analysis, the activities of Domain Terminology analysis, com-
monality/variability analysis and Interaction analysis, Quality attribute analysis can be
conducted simultaneously. That is, through analyzing the domain terminology, we can
find the services it implies through analyzing the domain terminology; through analyzing
the commonality and variability at the service level, we can find the constraints between
services; for each service, function and behavior, we can analyze their relevant use cases
and the commonalities and variabilities in use cases; and we can also find the quality at-
tributes a service may have. The main task of the Use Case Analysis is to discover the
features existing in the interaction between users and the Internetware systems, and by
identifying the business process related with services, we can extract the commonalities
and use cases that reflect the domain characteristics. The activity of Quality Attribute

712 Science in China Series F: Information Sciences

Analysis focuses on identifying the requirement for the quality attributes that should sat-
isfy this set of Internetware, and further make clear the system goals to achieve.

One practical approach to requirement reuse is the domain-specific and customiza-
tion-based reuse, that is, when the feature model in a specific domain has been con-
structed, the following activity is how to reuse this feature model. One effective way to
reuse the model is to accommodate different applications in this domain by customiza-
tion. That is, we can get a set of features that interest the current application by tailoring
the domain feature model. Since there are many dependencies between features, how to
ensure the tailoring result to be consistent and integrated becomes very important. ABC
proposes a tailoring process for feature models based on the concept of atomic set, and
the verification criteria to check the rationality of the tailoring result depend on the con-
straint relationship between features.

To make the designer easily discriminate and filter the suitable components from the
bottom resources to build the new Internetware application, it is necessary to establish
the corresponding mechanism between the features and their relationships identified in
the phase of requirement analysis with the bottom resources and their relationships.
Through the identification and assignment to the system responsibilities, ABC gives an
approach to transforming a feature model to a high-level abstract software architecture
(just acts as a draft model for architects).

There are two fundamental problems to be addressed for the model transformation.
One is the traceability between the source model and the target model, which is the
foundation of model transformation. The other is construction of the target model, which
is the core of model transformation. The embodiment of these two problems in ABC is as
follows: the traceability between features and components; the software architecture con-
struction based on feature model.

There exist n-n relations between features and components in nature. To trace this kind
of complex relations, ABC introduces the concept of responsibility as the connector be-
tween features and components. A responsibility is a cohesive set of program specifica-
tions, and can be used as a basic unit for task assignment to software developers. Via the
connection of responsibility, the complex n-n relation between features and components
can be decoupled into two 1-n relations, that is, a feature can be operationalized into a set
of responsibilities, and one component can implement multiple responsibilities. On this
basis, the traceability between features and components can be established in two steps:
operationalizing features to responsibilities, and assigning responsibilities to components.

An overview of the transformation from feature models to software architectures is
depicted in Fig. 5. The concepts involved in the transformation can be divided into two
levels. One is the Requirement Level of Internetware, at which the requirements can be
structured as feature models. The other is the Specification Level. At this level, program
specifications are first organized as a set of responsibilities, a set of resource containers,
and interactions between them; and then responsibilities and resource containers are clus-
tered into conceptual components, and the interactions between responsibilities or
resource containers form the interactions between components by filtering and clustering.

A software architecture centric engineering approach for Internetware 713

In fact, components can be considered as a kind of responsibility containers, so it can be
constructed by responsibility clustering. The identification of interactions between com-
ponents is guided by the following assumption: if two responsibilities are assigned to two
different components, then any interaction between these two responsibilities will be de-
veloped into an interaction between components.

Fig. 5. An overview of transformation from a feature model to software architecture.

Using the forementioned ABC feature modeling method, we can model the Internet-

ware’s system goals and constituent capabilities and responsibilities naturally and clearly,
so as to guide the discrimination of the bottom resources.

To better support the feature-oriented requirement modeling, ABC has developed a
corresponding graphical supporting tool called FMTool, which provides means to model
and edit the feature model easily. In addition to serving the traditional domain engineer-
ing and software product line, it is applicable to modeling complex software applications
like Internetware.

To demonstrate this point we use the Internet shops as the case study. There exist a lot
of E-shopping sites today, and their portal software systems are generally disordered as
“each does things in its own way”. Here, by analyzing the requirements of this kind of
software using feature modeling method, we can abstract their requirements as eight
types of service, in which the customer registration service, customer logging service,
commodity information searching and browsing service, commodity ordering service are
provided to the customers; while the order form manual processing service, commodity
information management service, and automatic order form processing configuration
service are provided to the shop assistants; the automatic order form processing service is
provided as an extra intelligent service. Fig. 6 presents the refinement view of the feature
model for a class of Internet shop software systems.

The above feature model can be reused to get the feature model for a specific E-shop.
For example, the feature model for an Internet Pet Shop1) shown in Fig. 7 is a tailoring

re.

1) Standard JPS is a traditional Web application. To illustrate ABC for the engineering of Internetware, we modify
JPS a certain degree, such as making it to satisfy some additional variable requirements. However, the source codes
almost remain unchanged, because the additional requirements are mainly satisfied by the self-adaptation of
Internetware supported by middlewa

714 Science in China Series F: Information Sciences

Fi
g.

 6
.

 D
om

ai
n

fe
at

ur
e

m
od

el
 fo

r E
-s

ho
ps

.

A software architecture centric engineering approach for Internetware 715

Fi
g.

 7
.

 A
 fe

at
ur

e
m

od
el

 fo
r J

PS
.

716 Science in China Series F: Information Sciences

o achieve the desired qualities.

Fig. 8. High-level architecture for JPS.

A software architecture centric engineering approach for Internetware 717

result of the model given in Fig. 6. In the process of customization, according to the
JPS’s specific requirements, some variation points in Fig. 6 can be bound or removed,
such as removing the feature of “short message” refined from the feature “notify mode”.

On this basis, the responsibilities for each feature in the model can be further identi-
fied and assigned to the corresponding components so as to establish the traceability be-
tween the features in the problem space with the components in the solution space. At the
same time, the interactions between components can be found and established by ana-
lyzing the interactions between features and the interactions between responsibilities.
Finally, the high-level abstract architecture of JPS, shown in Fig. 8, has been constructed.

3 Architecture modeling of self-adaptive internetware

Early research on self-adaptation concentrates on enabling the self-adaptability of a
software system “physically”. Most of these research leverages technologies that support
self-adaptability, such as agents, design patterns and middleware. Recently, it has been
well recognized that the key to self-adaptation is to enable the self-adaptability of a soft-
ware system “logically”, that is, how to position the part that should be self-adaptive,
how to determine the self-adaptation policies, and how to evaluate the self-adaptation.
Considering that most self-adaptation is dedicated to the qualities of a software system,
we argue that software qualities should play a central role in analyzing, designing and
evaluating the self-adaptability. Meanwhile, SA is not only a blueprint for a software
system, but also a carrier of system qualities. Most qualities are evaluated according to
SA. The design decisions embodied in SA are almost restricted by quality constraints.
Usually, a single design decision may influence several qualities; and in that sense, the
design of SA can be seen as tradeoffs between different qualities. Furthermore, SA is also
an important artifact for the management of runtime system changes, e.g., dynamic SA
(DSA) records allowable system changes explicitly to guide the self-adaptation of a
software system at runtime.

Although the existing research provides direct support to the self-adaptability of soft-
ware systems, there is still much room for improvement. For example, most SA design
and evaluation methods remain at a high level, not taking other development phases into
account; therefore, the qualities can only be simulated or analyzed in a static way. For
such qualities that are related to runtime (e.g., performance, availability), it is difficult to
ensure the correctness and precision of their evaluation results. Some adaptation strate-
gies for desired qualities may not be optimal or even wrong. Research on DSA introduces
mechanisms to model allowable changes, such that the SA model can be used to guide
the system maintenance and evolution at runtime. However, most DSA research concen-
trates on system evolution. It cares about how to add, delete or modify the system’s func-
tions, paying little attention to the system’s qualities. Therefore, maintainers are required
to adjust the qualities by hand and the system is not self-adaptive. Some techniques that
support self-adaptation (e.g., reflective middleware) can be applied to implement
self-adaptation policies; however, they have no clue for “why”, “when” and “what” to do
to achieve the desired qualities.

718 Science in China Series F: Information Sciences

As discussed before, self-adaptability is one of the most important capabilities of In-
ternetware. And for enabling Internetware self-adaptable, ABC leverages existing efforts
on self-adaptation in a systematic manner. First, SA models are used to analyze expected
qualities and the part of SA models that should be self-adapted is located. Second, DSA
records what should be done at runtime to achieve the desired qualities. Finally, proper
self-adaptation mechanisms, like reflective middleware, will implement or execute the
designed adaptation at runtime. ABC has no special restriction on the design of SA model
according to requirement specifications. For example, a possible way to design an SA
model is as follows. Developers can use the feature model-based architecture derivation
mentioned above, that is, organize features in a feature model into responsibilities, ag-
gregate semantically-related responsibilities into a component, and produce a draft SA
model. If OO analysis and design are adopted, the class diagram for the target system is
designed first; after that, the classes can be encapsulated into coarser grained components
guided by some principles; finally, an initial SA can also be derived from OOD artifacts.
Before the initial SA is implemented, we adopt the process as shown in Fig. 9 to make
the SA model self-adaptive.

Fig. 9. SA-centric modeling of self-adaptive Internetware.

First, the SA model should be analyzed to ensure the desired functionalities and quali-

ties; otherwise, the SA model should be modified or refined before starting the
self-adaptation modeling. During the modification, if the architects find that it is difficult
to design a static SA that can achieve the desired functionalities or qualities, it implies the
necessity of self-adaptation modeling. The self-adaptation modeling may or may not
change the SA model violently. If components involved can be designed as autonomous
component which can fulfill the requirements, it is unnecessary to modify the topology of
the SA model. For example, if some autonomous components is capable of processing
requests according to their priorities, surely it can also satisfy such requirement that the
response time should be varied according to the priorities of requests. However, if the
component involved cannot be designed as autonomous, or the autonomy is not enough
to achieve the desired functionalities or qualities, then it is necessary to figure out a
proper self-adaptation policy. Usually, there are two ways to design the self-adaptation
policy. One is to clarify what should be done for adaptation, including the triggering con-
ditions and the addition or deletion of specified components or connectors. This is ap-
propriate when only part of SA needs to be adapted. The other is to prepare several SA
candidates, each of which satisfies certain functionalities or qualities. These SA candi-

A software architecture centric engineering approach for Internetware 719

We illustrate the ATAM analysis by Java Pet Store (JPS). JPS is divided into four parts,
namely the pet store (PS), order processing center (OPC), administration and supplier.
The PS part interacts with end users directly, and sends order forms to OPC. OPC is re-
sponsible for the processing of order forms and for sending order requests to the admini-
stration. The administrators approve (charging fees accordingly from the user’s credit
card) or reject (if the credit card has no enough money) the order forms through the ad-
ministration part. The results are then sent back to OPC. For approved order forms, OPC
forwards the order forms to the supplier, who ships the ordered pets to the end user and

dates are switched at runtime according to the desired functionalities or qualities. The
above two ways may be combined to produce a more complex self-adaptive SA. Once
the SA model satisfies all desired functionalities and qualities (otherwise, the require-
ments may be modified), it can be implemented by component composition and deployed
into a proper execution platform. The execution platform for self-adaptive Internetware
should have sufficient self-adaptation mechanisms, such that it can monitor the runtime
information and adapt the runtime SA accordingly. In short, ABC locates the part of In-
ternetware that requires self-adaptation through SA analysis, determines when and what
should be done for self-adaptation by SA design, records strategies for self-adaptation in
DSA, and interprets these strategies by means of autonomous components or reflective
middleware.

The modeling process in Fig. 9 is independent of specific techniques. To validate its
feasibility and effectiveness, ABC currently adopts ATAM[12] to analyze the qualities of
an SA model, ADD[13] to design an SA model in terms of given qualities, ABC/ADL[7] to
describe DSA, and a reflective middleware, PKUAS[14], as well as the autonomous com-
ponent model[15] to execute architectural adaptations. The process is exemplified as fol-
lows.

ATAM is a systematic SA evaluation technique, which is proposed by CMU/SEI and
put into practice for several years. All stakeholders are involved in ATAM to investigate
whether a specified SA model does satisfy desired quality attributes. In ATAM, scenarios
are used to capture requirements on qualities. These scenarios are prioritized and organ-
ized by a utility tree. Each quality attribute scenario uses six elements to identify a spe-
cific scenario: a source (some entity outside the system) generated a stimulus (a condition
to be considered when it arrives at a system) to some artifact (the stimulated artifact in
the system) in a specific environment (the condition of the system when the stimulus oc-
curs) and the artifact responses (the activity undertaken after the arrival of the stimulus)
to the stimulus by some response measure (the response should be measurable in some
fashion so that the requirement can be validated). After a careful analysis, sensitivity
points and tradeoff points are identified, which are used to trade off different quality at-
tributes. The ATAM in ABC is regulated to fit our needs; particularly, the semantics of
some artifacts are specific to ABC, e.g., the quality attribute scenario is used to analyze
the time when self-adaptation is necessary, the source and stimulus are used to record the
external conditions or events that trigger self-adaptation, all involved elements are re-
corded in environment and artifact, and the threshold of quality attributes is recorded by
response and response measure.

720 Science in China Series F: Information Sciences

sends according invoices to OPC; for rejected order forms, OPC sends a notification
email to the end user. Table 1 shows part of quality attribute scenarios. These scenarios
are analyzed with the utility tree, which prioritizes quality attribute scenarios according
to the category of qualities. The importance as well as the difficulty to the support of
each scenario is also determined. An important output of ATAM analysis is sensitivity
points and tradeoff points derived from the quality attribute scenarios. A sensitivity point
is a property of the architecture that is critical for the achievement of a particular quality
attribute (e.g., using encryption to achieve confidentiality). A tradeoff point is a sensitiv-
ity point that is sensitive for multiple quality attributes (e.g., encryption improves secu-
rity but increases latency). From ABC’s perspective of self-adaptive analysis and design,
the quality attribute scenarios imply when self-adaptation is necessary; the according
sensitivity and tradeoff points show which part of the SA model should be adapted when
some response measures are not satisfied. Based on quality attribute scenarios as shown
in Table 1, we can find that the first 5 scenarios are concerned with performance. After
evaluating the SA model of JPS, we can find that most components involved in these
scenarios access databases. A performance sensitivity point of database access is then
deduced. There are usually two ways to access a database. One is accessing databases
whenever data is read or written (in this case, less memories are required at the cost of
longer response time), and the other is buffering data and accessing databases only when
data is written (in this case, shorter response time is acquired at the cost of more memo-
ries). As a result, components that access databases should compromise between per-
formance and memory usage.

After the adaptation point is located, the corresponding adaptation policy should be
designed. There are three possible design decisions for the above example. One is to
modify the SA model for JPS. For components (including Customer, Order, Catalog) that
access databases, they are assigned two implementations (one uses data buffering, while
the other does not). Both implementations are composed into the target system. When
there are enough memories, the implementation using data buffering is used for better
performance; when available memories become limited, the other implementation will be
used to ensure the stability of the whole software system. The switching between imple-
mentations can be implemented by the connection or disconnection to corresponding
connectors. Another design decision is based on the self-adaptability of middleware. If
those components leverage the data access services provided by middleware (e.g., entity
EJB), the time when data buffering should be used is left to middleware. What middle-
ware needs to know is the switching rules (for example, a possible rule may be that data
buffering should not be used when more than 80% of memories have been consumed).
The rules are part of configurations for the target software system. The last decision is
concerned with the self-adaptability of software entities. When involved components are
autonomous, the switching of implementation is left to components themselves. What
designers need to do then is the determination of the switching rules.

Similar to the above analysis, we can also find[16] that 1) the process control in OPC is
a tradeoff point for performance and security; accordingly, the design of process control
should be revised to enable adaptability; 2) the encryption of order forms is also a trade-

A software architecture centric engineering approach for Internetware 721

Table 1 Quality attribute scenarios for JPS
No. Source Stimulus Environment Artifact Response Response Measure

Scenario
1 End User Detail pet informa-

tion in the catalog Runtime Web site
The according pet
information, in-
cluding pictures

Response time is
less than 5 sec

Scenario
2 End User Query of pets in the

catalog Runtime Web site Query result Response time is
less than 2 sec

Scenario
3

Orders to
be proc-

essed

Sending orders to
OPC

Runtime
with normal

load
OPC Order processing

More than 10 or-
ders are processed

in 1 min

Scenario
4 End User Order submission

Runtime
with normal

load
OPC

Notification to the
end user (rejected

or approved)

Response time is
less than 5 min

Scenario
5 End User Order submission

Runtime
with heavy

load
OPC

Notification to the
end user (rejected

or approved)

Response time is
less than 6 min

Scenario
6 End User Order submission Runtime

The
whole
system

Detail information
on orders

All shopping re-
cords

Scenario
7

Orders to
be proc-

essed

Sending orders to
OPC Runtime OPC Order reception The order should

be encrypted

Scenario
8 Maintainer Transporting to

other databases
After deliv-

ery

The
whole
system

The transportation
can be done easily

The transportation
can be done within

12 h

off point for performance and security; we can design proper connectors to make it
adaptable. All these designs for adaptability can be implemented, more details of which
are discussed in the next section.

4 Reflective middleware as internetware operating platform

As shown before, the operating platform for Internetware should not only possess
most capabilities in main stream platforms, such as interoperability, concurrency, security,
transaction, persistency; but also provide mechanisms for self-adaptability, including that
of runtime monitoring and management, rule-based reasoning. The operating platform
for ABC is a software middleware, named PKUAS[17,10], which has been successfully
applied in such fields as finance, communication, education and governance. It is one of
the core products of Orientware, a middleware suite sponsored by National 863
High-Tech Program. PKUAS is a J2EE-compliant application server which is the plat-
form including J2SE, common services and one or both of Web Container and EJB Con-
tainer. It provides all functionalities required by J2EE v1.3 and EJB v2.0 in its compo-
nentized structure, as shown in Fig. 10. The characteristics of PKUAS include:

● Micro kernel based-componentized platform: The design of PKUAS embodies the
idea of componentization. It provides a registry and an invocation framework for the
above platform components and other management entities, like class loading, relation,
timer and monitor, thus presenting a componentized architecture. This architecture is
based on a set of fundamental functions, which forms the micro kernel. Other plat-

722 Science in China Series F: Information Sciences

form-related functions are encapsulated into independent modules (called system com-
ponents). They can be customized or extended according to specific domains. When
PKUAS starts up, the micro kernel is responsible for the organization of a do-
main-specific component operating platform. In this way, PKUAS has great flexibility
and extensibility.

Fig. 10. Componentized structure in PKUAS.

● Container system supporting online evolution: A container provides a runtime

space for the components in the deployed applications with lifecycle management and
contract enforcement. PKUAS implements standard EJB containers for stateless session
beans, stateful session beans, bean-managed entity beans, container-managed entity
beans and message-driven beans. One instance of a container holds all instances of one
EJB. And a container system consists of the instances of the containers holding all EJBs
in a single application. The container system supports online evolution by adding,
deleting, or replacing components at runtime. In this way, the applications can be
debugged, upgraded, or optimized at runtime.

● Open interoperability framework: PKUAS supports most main-stream interopera-
bility protocols, including IIOP, JRMP, SOAP, and EJB Local. It even allows
user-defined interoperability protocols. The interoperability protocols used are deter-
mined at deploy time; therefore, the choice of protocols used is transparent to the appli-
cation developers.

● Standard and extensible service: PKUAS provides common services as specified in
J2EE, including data, communication, security, and transaction. With the support of
PKUAS, developers need to care about only business logics. Besides, PKUAS supports
extended services, such as logging, clustering, and concurrency. Specifically, users are
allowed to define specific services. For example, PKUAS supports a special data integra-
tion service that is targeted to software project management systems only.

● Rich tool support: PKUAS has provided a set of development, deployment and
management tools for J2EE applications. For example, the deployment tool facilitates the
composition, deployment, redeployment and un-deployment of J2EE applications at de-
velopment and testing phases. It is also capable of modifying deployment descriptors or
environment properties dynamically. Another example, a web-based management tool is
capable of monitoring and managing J2EE applications as well as J2EE servers at run-
time.

Based on the above characteristics, PKUAS supports SA-based reflection and the
autonomous component, which can be used to support the self-adaptability of
Internetware application structure and entities, respectively.

A software architecture centric engineering approach for Internetware 723

ware application structure and entities, respectively.

4.1 SA-based reflection

Being one of the hot topics in the researches and practices on next generation middle-
ware, reflective middleware is considered as the fundamental approach to adaptable mid-
dleware. The users are allowed to access and operate in the runtime states and behavior
of middleware in a restrict way by the mechanism of reflection. By reflection, we mean
that a system can provide a self-representation on its states and behavior. The
self-representation is always consistent with the runtime states and behavior, that is,
changes to the self-representation apply to the runtime states and behavior immediately,
and vice versa. PKUAS implements an SA-based reflection, whose self-representation is
SA and then middleware as well as its applications can be observed, reasoned, and ma-
nipulated from the perspective of SA[10].

As shown in Fig. 11, the states and behavior of middleware platform and applications
can be observed and adapted from the perspectives of the platform RSA and application
RSA respectively. The platform RSA represents the implementation of middleware plat-
form as components and connectors. Middleware applications are invisible or represented
as the attributes of some components. For example, J2EE application server consists of
containers and services and the J2EE application consists of EJBs or Servlets. In the
platform RSA, the containers and services are represented as components; their interac-
tions or dependencies are represented as connectors; and the EJBs or Servlets are repre-
sented as the attributes of the containers. For reflective middleware, the platform RSA is
the representation of a set of platform-specific meta entities, which are responsible for
the reflection of base entities in the reflective middleware. On the other hand, the appli-
cation RSA represents middleware application as components and connectors. Middle-
ware platform details are typically represented as constraints or attributes of components
and connectors. For example, J2EE security and transaction services are represented as
the security and transaction constraints on the EJBs or Servlets. For reflective middle-
ware, the application RSA is the representation of a set of application-specific meta enti-
ties, which are responsible for acquiring and maintaining the RSA of the application. In
our implementation, the platform RSA is implemented as a set of meta entities, which
collect the structural information on PKUAS componentized platform and monitor its
states and behavior. The platform will be adjusted as soon as its meta data changes.
Similarly, the application RSA is implemented as a set of application-specific meta enti-
ties, which are built on top of meta entities of platform RSA. They are responsible for
maintaining the application RSA as well as rich semantics from the SA in design time.
The modification to application RSA is done by the meta entities of platform RSA indi-
rectly. Users are allowed to access or manipulate the platform and application RSA
through reflective API.

In our opinion, different structural adaptations require different reflection mechanisms.
For example, the addition or deletion of components requires the mechanism of hot de-
ployment, the replacement of components requires the mechanism of online evolution,
the adjustment of connectors usually depends on the interoperability framework, various

724 Science in China Series F: Information Sciences

constraints on components, connectors as well as SA (e.g., transaction, security, persis-
tency, availability, etc.) require various services. More details can be found in refs. [10,
11, 14, 16, 18, 19]. For the space limit, only the detail for component switching is dis-
cussed for illustrating the above adaptation sample of JPS.

Fig. 11. Framework of SA-based reflective middleware.

As Fig. 12 (a) shows, in a typical EJB container, the component interface, implemen-
tation, as well as its context are independent of each other. Each interface has an imple-
mentation, which may have several instances at runtime. Each instance has its own con-
text, which is used to maintain the instance’s information on transaction, security, session,
and so on. To support dynamic switching of component implementations, the above
structure should be modified. As shown in Fig. 12 (b), in PKUAS, the interface level
presents the EJB managed by the container. The interface instances level presents multi-
ple EJB instances for dealing with the concurrency. The implementation instances level
presents the implementation instances in an EJB array. In the three-level management, an
EJB instance still keeps an EJBContext, but the implementation instance is separated
from the EJB instance into the implementation instance level. This management makes it
possible that an EJB keeps multiple implementations in the container without breaking

Fig. 12. Automatic switching of component implementation in PKUAS. (a) Management of EJB instances in stan-
dard J2EE; (b) management of EJB instances in component array.

A software architecture centric engineering approach for Internetware 725

the concurrency. If a component implementation is isomorphic, the according implemen-
tation instance can be shared by several interfaces; otherwise, an interface instance has its
own implementation instance exclusively. The dynamic switching of component imple-
mentations is done by forwarding requests to different implementation instances accord-
ing to preset switching rules. The switching rules are defined in a similar way to those for
autonomous components, which will be discussed in the next section.

4.2 Autonomous components

Autonomous components retain the features and characteristics of traditional compo-
nents on the one hand, and they have a conjunction with agents in possessing autono-
mous behavioral abilities on the other hand. However, autonomous components are nei-
ther traditional components nor agents. Like components, autonomous components have
relatively independent functionalities. They provide specified services for outside use,
and they can be reused and assembled into software systems. Nevertheless, autonomous
components are software entities with autonomy. They are driven by their own goals, and
they provide services because doing so can help them to achieve their goals. Even when
they are achieving their goals, they can adjust their behavior in responding to the changes
of their environment via changing the time and way of providing services.

Specifically, an autonomous component can be formally described from five as-
pects[14]. First, its behavior is goal-driven. Next, it also provides services to the outside
though it is no longer passive and can even autonomously decide whether or not to pro-
vide its services. Third, the use contract describes how users can access the services in an
appropriate way. Fourth, it is situated in the environment. It can perceive the changes of
the environment and adjust its behavior to adapt to the changing environment. Finally,
the dependency relationship between its goals and the environment determines how it can
reason about and decide its behavior to achieve its goals.

Because an autonomous component is specified mainly via its goals, the services, and
the environment, it is crucial to reflect the interaction relationships among the goals, the
services, and the environment in the implementation of the autonomous component.
Therefore, we use the goal-driven rules and plan to relate the goals, the environment and
the services together.

When the environment comes upon the state which allows the autonomous component
to achieve a goal, the autonomous component will trigger corresponding rules to activate
the process of achieving the goal.

f(E) → Activate(G),
where f is a function of the environment and G is one of the goals of the autonomous
component.

After the process of achieving a goal is activated, the autonomous component will plan
the achievement of the goal, i.e., determine how to take actions to achieve the goal.
Among the actions that the autonomous component takes to pursue the achievement of its
goal, there may involve the activities of requesting or providing services.

Plan: G → S*,
where a plan is a mapping from a goal to a sequence of actions (probably including ac-

726 Science in China Series F: Information Sciences

tivities of providing services).
When the autonomous component perceives a request for service from others, it will

reason about its behavior to check out whether the request will activate the process of
achieving a specific goal. If yes, it will respond to the request while achieving its goal;
otherwise, it will reject or ignore the request. Even for the same request for service, the
autonomous component possibly activates different goals, which may lead to different
ways of responding to the request, under different states of the environment.

Although an autonomous component has some extends of autonomy, it must expose its
interface and provide normal functionalities, like those traditional components, so that it
could be assembled into software systems. Therefore, what makes an autonomous com-
ponent different from traditional components is that the autonomous component takes a
different way to implement its interface, i.e., it may adjust its behavior to provide ser-
vices and implement its interface according to the states of the environment. However,
users always use the component and request its services through its interface and they
care about neither how the autonomous component implements its interface nor how it
adapts its behavior while providing services. We can say that the true difference between
an autonomous component and a traditional component is the implementation structure
and the runtime behavior. The implementation structure of an autonomous component is
shown in Fig. 13.

Fig. 13. The implementation structure of the autonomous component.

In Fig. 13, the environment information includes those environmental variables or data

that the autonomous component cares and can perceive. The sensor is used to capture the
states and changes of the environment and it is also responsible for maintaining the envi-
ronment information according to the perceived information. The rule set specifies those
rules driving and controlling the behavior of the autonomous component. A plan in the
plan repository specifies the sequence of actions for the autonomous component to
achieve a goal or implement a service. In order to simplify the implementation, we cur-
rently adopt an off-line way to define plans for the autonomous component.

The autonomous component will not take any actions unless a specific rule is triggered.
The rule engine is responsible for deducing and triggering rules based on the environ-
ment information and the rule set. The plan engine will be actuated by some rules and is

A software architecture centric engineering approach for Internetware 727

responsible for selecting appropriate plans to achieve goals.
The behavior mode that an autonomous component responds to requests and provides

services can be described as follows. 1) When the autonomous component receives a re-
quest for service, its rule engine will reason about its behavior based on the current envi-
ronment and the rule set. If there is no such rule being able to be triggered, the autono-
mous component may not take any actions or directly rejects the request for service; oth-
erwise, it may activate the plan engine to select and execute an appropriate plan to carry
out the service. 2) In the execution of the selected plan, if all actions involved in the plan
can be performed correctly and their executions do not violate any environment con-
straints, the requested service will be provided successfully; otherwise the autonomous
component will report an exception of service failure. 3) Even if there is no outside re-
quest for service, the rule engine may also trigger rules to carry out some actions accord-
ing to the current environment states.

Since the usage of an autonomous component is like that of a traditional component,
we add a new container into PKUAS to support the run of autonomous components. In
the implementation, we integrated an open-source rule engine called Drools and devel-
oped a plan engine to supply the capabilities of rule-driving and planning for autonomous
components, as shown in Fig. 14. Just like the EJB containers in PKUAS, the autono-
mous component container provides the running space for the instance of an autonomous
component, managing the life cycle of the autonomous component and the communica-
tions between the autonomous component and other components. The interceptor in the
container implements the sensor of the autonomous component. The interceptor is re-
sponsible for intercepting communications between autonomous components and sup-
ports the interoperability of autonomous components. On the other hand, it captures the
state information about the environment and maintains the environment information,
which will be used by the rule engine to infer and trigger rules.

Fig. 14. The runtime support platform for autonomous components based on PKUAS.

728 Science in China Series F: Information Sciences

Considering that every instance of the autonomous component has a rule engine and a
plan engine, we implement the rule engine and the plan engine as public services and put
them into the public service management framework in the middleware. The autonomous
component container will call those public services to control the behavior of the
autonomous component. When the autonomous component container receives a request
for service, it will transfer the request to the interceptor, and then the interceptor will ac-
tivate the rule engine and the plan engine to schedule the executions of the actions of the
autonomous component.

For example, as mentioned above, when a JPS entity component (e.g., Customer) be-
comes the performance bottleneck of the system, it possibly needs to change the structure
or the implementation of the entire system. In order to improve the structural and behav-
ioral adaptabilities of the system, we can implement these components as autonomous
components. We can customize specific behavior rules for the autonomous components
to enable them to switch automatically between different service providing modes ac-
cording to the runtime states of the environment and the system.

<rule name="normalCustomer">
 <parameter identifier="customer">
 <class>Customer</class>
 </parameter>
 <java:condition>
 memUsage/memAllocated < 0.8
 </java:condition>
 <java:consequence>
 loadNormalCustomer ();
 </java:consequence>
</rule>

<rule name="cacheCustomer">
 <parameter identifier="customer">
 <class>Customer</class>
 </parameter>
 <java:condition>
 memUsage/memAllocated >= 0.8
 </java:condition>
 <java:consequence>
 loadCachedCustomer();
 </java:consequence>
</rule>

Fig. 15. Rules for the autonomous component to adjust its behaviors.

For example, for the Customer, it can provide its services in different ways when it

uses different modes to access the database. Thus, we can specify behavior rules for the
Customer to adopt different ways to perform its service as follows (Fig. 15). These rules
specify that, when the ratio between the amounts of occupied memory and the allocated
memory is greater than 0.8, which implies that the request for the Customer’s services
has already become the performance bottleneck, the Customer will start the implementa-
tion version that uses the cache memory, otherwise it will start the normal version.

This kind of adaptation may influence the interaction relationships inside or among
autonomous components. Under a specific circumstance, the changes of the interaction
relationships among autonomous components may result in the reconfiguration of the
software architecture.

5 Conclusion

In the past several decades, software technologies have experienced a series of devel-
opment. The main line for this development is clear: the granularity of constituent soft-
ware entities grows coarser; the software model fits our thinking better and better; as the

A software architecture centric engineering approach for Internetware 729

power of software execution platform keeps increasing, more and more underlying com-
plexities as well as those relating to software development are hidden; software tech-
niques have been applied to more and more real world areas. As the Internet keeps rapid
and continuous development, the existing software technologies may confront more and
more requirements and challenges. Typically, due to their static and close nature, the tra-
ditional software technologies are not adequate and suited for the open, dynamic and
ever-changing Internet; instead, a new software paradigm, Internetware, appears naturally.
It accommodates the open, dynamic and ever-changing Internet in a better way, mani-
festing itself as flexible, continually reactive software with multiple compatible goals.
The engineering of Internetware requires innovations on traditional software develop-
ment methods and techniques. In this paper, we introduce a component-oriented, archi-
tecture-centric and middleware-based approach, called ABC, to support the engineering
of Internetware. ABC spans over all phases of software lifecycle, including the analysis,
design, implementation, deployment, maintenance and evolution of Internetware. In par-
ticular, feature models are used to model, organize and manage “disordered” software
resources; adaptive SA models are used to design a self-adaptive Internetware; reflective
middleware is used to enforce the self-adaptation. Whatever, there are many open issues
to be addressed, such as improving the automation of design for self-adaptability, incar-
nating cooperation among Internetware, refining component models dedicated to
Internetware, and so on.

Acknowledgements This work was supported by the National Basic Research Program of China
(973) (Grant No. 2002CB312003); the National Natural Science Foundation of China (Grant Nos.
60233010, 90612011, 90412011, 60403030, 60303004), and the Natural Science Foundation of
Beijing (Grant No. 4052018).

References

1 Yang F Q, Mei H, Lu J, et al. Some thoughts on the development of software technologies. Acta Electronica
Sinica (in Chinese), 2003, 26(9): 1104―1115

2 Mei H, Chang J C, Yang F Q. Software component composition based on ADL and middleware. Sci China Ser
F-Inf Sci, 2001, 44(2): 136―151

3 Zhang W, Mei H. A feature-oriented domain model and its modeling process. Journal of Software (in Chinese),
14(8): 1345―1356

4 Zhang W, Mei H, Zhao H Y. A feature-oriented approach to modeling requirements dependencies. In: Pro-
ceedings of 13th IEEE International Requirements Engineering Conference (ICRE), La Sorbonne, France,
August 29-September 2, 2005. 273―282

5 Zhang W, Zhao H Y, Mei H. A propositional logic-based method for verification of feature models. In: Pro-
ceedings of Sixth International Conference on Formal Engineering Methods (ICFEM). Lecture Notes in Com-
puter Science Series (LNCS 3308), Berlin: Springer, 2004. 115―130

6 Zhang W, Mei H, Zhao H Y, et al. Transformation from CIM to PIM: Feature-oriented component-based ap-
proach. 8th International Conference on Model Driven Engineering Languages and Systems (MoDELS 2005),
Montego Bay, Jamaica, October 2-7, 2005, Proceedings. LNCS 3713: 248―263

7 Mei H, Chen F, Wang Q X, et al. ABC/ADL: An ADL supporting component composition. In: George C, Miao
H K, eds. Formal Methods and Software Engineering, LNCS 2495. Heidelberg/New York: Springer-Verlag.
Proceedings of 4th International Conference on Formal Engineering Methods, ICFEM2002, Shanghai, China,
Oct. 2002, 38―47

730 Science in China Series F: Information Sciences

8 Yang J, Huang G, Chen X P, et al. Consistency assurance in flattening hierarchical architectural models. Jour-
nal of Software (in Chinese), 2006, 17(6): 1391―1400

9 Lan L, Huang G, Ma L Y, et al. Architecture based deployment of large-scale component based systems: The
tool and principles. 8th International SIGSOFT Symposium on Component-based Software Engineering
(CBSE), USA, 15―16 May 2005, 123―138

10 Huang G, Mei H, Yang F Q. Runtime software architecture based on reflective middleware. Sci China Ser
F-Inf Sci, 2004, 47(5): 555―576

11 Huang G, Mei H, Yang F Q. Runtime recovery and manipulation of software architecture of component-based
systems. Inter J Auto Software Eng, 2006, 13(2): 257―281

12 Kazman R, Klein M, Clements P. ATAM: Method for architecture evaluation. Technical Report. Software En-
gineering Institute, Carnegie Mellon University, 2000

13 Bass L, Clements P, Kazman R. Software Architecture in Practice. 2nd ed. Boston: Addision-Wesley, Apr 9,
2003

14 Mei H, Huang G. PKUAS: An architecture-based reflective component operating platform. 10th IEEE Interna-
tional Workshop on Future Trends of Distributed Computing Systems, 2004, Suzhou, China. 163―169

15 Jiao W, Zhu P P, Mei H. Modeling internet-based software systems using autonomous components. Chinese J
Electronics, 2006, 15(4): 593―598

16 Shen J R, Sun X, Huang G, et al. Towards a unified formal model for supporting mechanisms of dynamic
component update. The Fifth Joint Meeting of the European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC-FSE'05), Lisbon, Portugal, Sep-
tember 5-9, 2005. 80―89

17 Zhu Y, Huang G, Mei H. Modeling diverse and complex interactions enabled by Middleware as connectors in
software architectures. 10th IEEE International Conference on the Engineering of Complex Computer Systems
(ICECCS2005), Shanghai, China, 16-20 June 2005. 37―46

18 Teng T, Huang G, Li R C, et al. Feature interactions induced by data dependencies among entity components.
8th International Conference on Feature Interactions in Telecommunications and Software Systems (ICFI05),
28th June to 30th June, 2005, Leicester, UK. 252―269

19 Liu T, Huang G, Fan G, et al. The coordinated recovery of data service and transaction service in J2EE. In:
Proceedings of 29th Annual International Computer Software and Applications Conference (COMPSAC05),
Edinburgh, Scotland, July 2005. 485―490

	A software architecture centric engineering approach for Internetware
	MEI Hong, HUANG Gang, ZHAO Haiyan & JIAO Wenpin
	1 Overview of ABC methodology
	2 Feature-oriented requirement modeling for Internetware
	3 Architecture modeling of self-adaptive internetware
	4 Reflective middleware as internetware operating platform
	5 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

