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Abstract  Bofill et al. discussed blind source separation (BSS) of sparse signals in the 
case of two sensors. However, as Bofill et al. pointed out, this method has some limitation. 
The potential function they introduced is lack of theoretical basis. Also the method could 
not be extended to solve the problem in the case of more than three sensors. In this paper, 
instead of the potential function method, a K-PCA method (combining K-clustering with 
PCA) is proposed. The new method is easy to be used in the case of more than three 
sensors. It is easy to be implemented and can provide accurate estimation of mixing ma-
trix. Some criterion is given to check the effect of the mixing matrix A . Some simulations 
illustrate the availability and accuracy of the method we proposed. 

Keywords: ill-posed mixture, blind source separation, sparse representation, PCA, K-mean clustering. 

1  Introduction 

Blind source separation (BSS) aims at gaining the estimation of unknown source sig-
nals without information of the channel. In mathematical words, the mixture of source 
signals is 
 ( ) ( ), 1, , ,t A t t T= =x s  (1) 

where 1( ) ( ( ), , ( ))T
nt s t s t=s  is the vector of source signals, 1( ) ( ( ), , ( ))T

mt x t x t=x  
is the vector of observed signals. Matrix A  denotes the unknown m n×  mixing matrix. 
The vector of source signals is the unknown vector ( )ts . BSS obtains the estimation of 
the source signals up to scales and permutation multiplications. Blind in BSS means that 
the information of the source signals and the mixing matrix (or the channel) are un-
known. 

Wide applications of BSS make itself a hot spot in signal processing and neural net-
works. It has developed rapidly for not more than twenty years. Solvability and algorithm 
mechanism of BSS are concerned as the basic theory[1―4]. Algorithms are proposed with  
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different abilities of BSS and computational complexities[5―13]. In the previous results, 
ill-posed mixtures are seldom discussed. There are not effective methods to deal with 
ill-posed BSS problems, such as model (1) in n m>  case. People keep on researching, 
because the existing methods, such as JADE algorithm, ICA algorithms and blind extrac-
tion, cannot separate all the source signals.  

In practice, many signals are sparse. Or in a suitable transformation domain, such as, 
Fourier or wavelet transformation domains, they can be represented as sparse signals[14]. 
Thus, sparse representation is applied to BSS and many novel results are reported. Espe-
cially, some ill-posed BSS examples were concerned using sparse representation. To 
solve some difficult problems via sparse representation is a new approach and has gained 
widely attention[14―21]. 

Bofill et al.[14] discussed a BSS problem with two sensors and six source signals. The 
paper is a pioneer in this research. However, as the authors pointed out, the potential 
function method proposed in the paper has some limitation. It needs to decide too many 
parameters. Also, there is no theory to support the decision of the parameters. The pa-
rameters are decided by experiments. Thus, this method is difficult to be extended. How 
to improve Bofill’s method? It is one of the important problems. In this paper, instead of 
the potential function method, K-PCA method is proposed. It combines K-clustering with 
PCA. The K-PCA method can overcome the difficulty that Bofill encountered and can be 
applied to the case of more than three sensors.  

2  Features and representation of sparse signals  

What is a sparse signal? As depicted in ref. [17] intuitively, a sparse signal is the signal 
that is or almost is zero at most sampling points. In other words, it has larger magnitudes 
at few sampling points. Thus, at almost all sampling points, only one of the source sig-
nals values nonzero (priori to other signals). Usually, the signals are called to be suffi-
ciently sparse. Eq. (1) can be written as 
 ( ) ( ) ( ) ( )1 1 n nt A t s t s t= = ⋅ + + ⋅x s a a . (2) 

If all the signals are sufficiently sparse, at a sampling point t , we assume that si(t) takes 
priori value (i.e. the other signals have sufficient small values or are equal to zeros at this 
sampling point). It follows that eq. (2) approximates to the following expression: 

 ( ) ( ) ( ) ( ) ( )1

1

m
i i i

i mi

x t x t
t s t s t

a a
= ⋅ ⇒ = = =x a . (3) 

Obviously, eq. (3) gives a line. The sampling points of the source ( )is t , at which ( )is t  

valued priori magnitudes, give a line. The direction vector ( )1 , , T
i mia a  of the line is 

just the ith column of the mixing matrix A. Assume that each column vector of A has 

norm 1, that is 2
1

1, 1, ,m
jij

a i n
=

= =∑ [15]. If every m m×  sub-matrix of the mixing 

matrix A is invertible, every source signal will determine a line. Therefore, source signals 

1( ), , ( )ns t s t  determine n lines. For example, in ref. [14] two mixed signals are ob-
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tained from six sparse source signals. The scatter plot is given in Fig. 1. The mixing ma-
trix is 

 
0.7071    0.9659    0.2588     0.9659    0.7071   0.2588
0.7071    0.2588 0.9659 0.2588 0.7071  0.9659

A
⎛ ⎞

= ⎜ ⎟− − −⎝ ⎠
. (4) 

 
Fig. 1.  Scatter plot of the six sparse signals. 

 
From Fig. 1, one can see that the six sparse signals give six lines. Since the column 

vectors of the mixing matrix make the directions of the lines in the scatter plot, we can 
estimate the mixing matrix A via line clustering. We will discuss it later. 

Signals in time domain may have no ideal sparse property. We use short-time Fourier 
transformation in Hanning window to transfer the signals into frequency domain. Like 
the method given in ref. [14], we do BSS in transformation domain. In the rest of this 
paper, t is frequency bin and ( ) , 1, ,t t T=x  are the sampling points in the transforma-

tion domain. 

3  A new algorithm for BSS of sparse signals 

If there exists noise, model (1) becomes X AS V= + . From ref. [14], BSS of sparse 
signals is to solve an optimization problem (5), when the signals are obey Laplacian dis-
tribution. 

 ( )2
2, ,

1min
2 iA S i t

AS X s t
σ

− + ∑ , (5) 

where σ 2 is the variance of the noise V. The first term is the sum of squared error, while 
the second term is the penalty under the assumption of independent Laplacian source 
signals. Problem (5) is a multi-variables optimization problem. It is difficult to solve it 
directly. If A was given in ahead, problem (5) becomes 

 
( )

( ) ( ) ( )2
2

1min , 1, ,
2

n

it i
A t t s t t T

σ
− + =∑s x

s
. (6) 
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In the case of noise free, problem (6) is reduced into 

 ( )
( )

( ) ( )

min ,

. . : , 1, , .

n

it i
s t

s t A t t t T

⎧
⎪
⎨
⎪ = =⎩

∑
s

s x
 (7) 

Up to now, two-step approach is a main and effective approach to solve BSS problem 
of sparse signals[14―17]. This approach is divided into two steps: one is to estimate the 
mixing matrix A, the other is to solve the source signals s(t) based on the estimation of A. 
Problem (7) can be separated into T problems at each t, which are easier to be solved. 
The kernel is how to estimate the mixing matrix. Estimate of the mixing matrix A affects 
accuracy of the BSS problem directly. Lower accuracy of the estimate would cause fail-
ure of BSS. On the other hand, mixing matrix is unknown. How can we check the accu-
racy of the estimate of mixing matrix A? It is a problem. 

3.1  Bofill’s method to estimate the mixing matrix A  

In ref. [14], Bofill proposed a method to estimate the mixing matrix A based on the 
potential-function. The authors gave an example of BSS with only two observed signals. 
The potential function is defined as 
 ( ) ( )( ), t t

t
lθ λ φ λ θ θΦ = −∑ , (8) 

where ( ) ( ) ( )2 2 1
1 2 2 1, tan /t t t t

t tl x x x xθ −= + =  and 

 ( ) 1 , / 4.
/ 4

0, otherwise.

α α π
φ α π

⎧ − <⎪= ⎨
⎪⎩

 (9) 

Since there are only two observed signals ( ) ( )1 2, , 1, , ,t tt x x t T= =x  Bofill et al. took 

/ 2 / , 1, ,k K k K k Kθ π π= + =  and obtained ( ), , 1, , .k k Kφ θ λ =  They recognized 

that the local maximum of the potential function is one of the column vectors of the mix-
ing matrix. By this reason, the estimate of A was obtained. 

Bofill’s method is not reasonable since it is not proved theoretically. Also, this method 
is not convenient to be used. Parameter K could be taken almost arbitrary, and parameter 
λ may be taken up to users. How could the so-called “Heuristic” parameter be taken to 
suit a problem of BSS? There is no theory or empiricism to support this method. The pa-
rameter λ could be selected differently in each case. Moreover, the method does not suit 
the case of more than three observed signals. Therefore, the uncertainty makes Bofill’s 
method difficult to estimate the mixing matrix A accurately. The conclusion is that a rea-
sonable method for estimating the mixing matrix needs to be developed.  

3.2  New method to estimate the mixing matrix A: K-PCA method 

From the above discussion, to estimate the mixing matrix A for BSS can be realized by 
line clustering in the scatter plot of the observed signals. For simplicity, the observed 
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signals ( ) , 1, ,t t T=x  should be normalized in scale and transformed in mirroring 

direction. 
(i) Normalization. 

( ) ( ) / ( ) ,t t t=x x x  

where ⋅  denotes Euclidean norm. 

(ii) Transform in mirroring direction.  A straight line can be depicted by two directions.  
For example, a straight line in 3-dimensional space can be depicted by direction vector  
( )1,2,3  or another vector ( )1, 2, 3− − − . To depict the direction of the line by unique vec- 

tor, we take mirroring mapping of the direction vectors to the positive side of the plane or  
sphere. For example, map vector ( )1, 2, 3− − −  to ( )1,2,3 . Later, we always map the  

normalized lower half unit circle to the upper half unit circle in mirroring direction. 
Denote ( ) , 1, ,t t T′ =x  as the normalized signal of ( ) , 1, , .t t T=x  Normaliza-

tion maps the points (except the origin) to the half unit circle (sphere or hyper-sphere) 
shown in Fig. 2(b). Each straight line maps to a unique point on the half unit circle. Thus, 
solving the mixing matrix A is changed into clustering the points ( ) , 1, ,t t T′ =x  on 

the half unit circle. It is a standard problem of “non-spectral clustering” [22]. To this end, 
we use K-mean clustering based on Euclidean distance. 

 
Fig. 2.  Normalization of the observed signal (project on half unit circle). 

 
Although K-mean clustering can realize classification of the T observed points 
( ) , 1, , ,t t T′ =x  it lacks accuracy of estimating direction of the lines (accordingly, the 

columns of matrix A) and robustness. For scatter plot in Fig. 2, there are 2 observed sig-
nals ( ) ( )( )1 2, , 1, , .x t x t t T=  Normalize and map them into the upper half unit circle in 

Fig. 2(b). K-mean clustering classifies 1 2( ( ), ( )), 1, ,x t x t t T′ ′ =  into six classes. We ob-

tain the estimate of mixing matrix Â  as (they are six centers of clustering) 

 

0.7317    0.9775    0.2464     0.9095    0.6269    0.2419ˆ .
0.6594    0.1341  0.9601 0.3892 0.7683  0.9582

A
⎛ ⎞

= ⎜ ⎟− − −⎝ ⎠
 

The scatter plots of the six classes are illustrated in Fig. 3. From the scatter plots, one can 
see that clustering gives six lines. The estimate Â  is different from A given by eq. (4). 
The second, fourth and fifth plots show errors. To enhance the accuracy, we use principle 
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component analysis (PCA) to estimate mixing matrix A. 

 
Fig. 3.  Directions of lines estimated by clustering. 

 
PCA is a classical statistical analysis[22]. It can discover the relationship of variables. 

Geometrically, observed signal vectors ( ) ( ) ( )( )1 , , , 1, ,T
mt z t z t t T= =z  are T  

points in m -dimensional space. So, PCA of the observed signal vector z(t) is just the 
eigenvalue decomposition of m m×  covariance matrix Σ. Without loss of generality, we 

assume that m eigenvalues satisfy 1 2
ˆ ˆ ˆ 0mλ λ λ≥ ≥ ≥ ≥  and 1 2ˆ ˆ ˆ, , , ma a a  are the 

corresponding eigenvectors. The eigenvector ( )1 11 21 1ˆ ˆ ˆ ˆ, , T
ma a a=a  derived from the 

maximal eigenvalue 1̂λ  can indicate the linear relationship of the variables in vector z(t). 

It means that ( )1 11 21 1ˆ ˆ ˆ ˆ, , T
ma a a=a  is a good estimate of the lines in z(t). Doing PCA 

respectively to each signal of the six classes (each signal in Fig. 3), we obtain six eigen-
vectors. The six vectors make an estimate A  of mixing matrix A as 

 

0.7072   0.9664      0.2542      0.9656     0.7059    0.2592
0.7070   0.2569   0.9672   0.2601  0.7084   0.9658

A
⎛ ⎞

= ⎜ ⎟− − −⎝ ⎠
. 

The relationship between each direction in scatter plot and the direction of the according 
column vector in A  is given in Fig. 4. From Figs. 3 and 4, we see that A  is more ac-
curate than Â . By PCA, the estimate of the mixing matrix A becomes much more accu-
rate. 

3.3  Trust degree criterion of the estimate of mixing matrix A 

It is important to check how accurate the estimate of mixing matrix A is, since A is 
unknown. In this section, we wish to give some criterion to check the trust of the esti-
mate. 
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Fig. 4.  Directions of lines given by PCA. 

 

From ref. [22], the covariance matrix Σ of the signal vector ( ) ( ) ( )( )1 , , T
mt z t z t=z  

is a positive definite matrix. The T observed points ( ) , 1, ,t t T=z  give an (hyper-) 

ellipse in scatter plot. The center of it is at z . The main axis is with the direction of Σ. 

Each axis is in the positive proportion of ˆ , 1, ,i i mλ =  respectively. If variables 

( ) ( )1 , , mz t z t  are collinear strongly, the maximal eigenvalue 1̂λ  will be sufficiently 

greater than (or much more greater than) the rest eigenvalues 2̂
ˆ, , mλ λ . In this case, the 

(hyper-)ellipse becomes very thin and approximates to a line. Otherwise, if collinear rela-
tionship of the vectors ( ) ( )1 , , mz t z t  is not strong enough, the maximal eigenvalue 

1̂λ  is not remarkably greater than 2̂
ˆ, , mλ λ . In this case, the ellipse becomes almost a 

sphere. 
Next, we define an “intensity of line” to check whether the T samples of the signal 

vector ( ) , 1, ,t t T=z  approximately lay on a line, or how they approximate a line.  

Definition.  Let covariance matrix of m-dimensional signal vectors ( ) , 1, ,t t T=z  

be Σ. Suppose that the m eigenvalues of Σ satisfy 1 2
ˆ ˆ ˆ 0mλ λ λ≥ ≥ ≥ ≥ . The linear 

intensity ( )( )Q tz  for vector ( )tz  is defined as 

 ( )( ) 2

1

ˆ
1

ˆ
Q t

λ

λ
= −z . (10) 

It is obvious to see that ( )( )0 1Q t≤ ≤z . When samples ( ) , 1, ,t t T=z  tend to lie on 

a line, we have ( )( ) 1Q t →z . Otherwise, it approaches to 0. Key problem of BSS for 
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sparse signals is that the scatter plots of the mixed signals appear as lines. BSS for sparse 
signals would failure if the plots of x(t) were not lines. Thus, the linear intensity should 
be checked.  

The T sampling points of observed signal vector x(t) are classified into n classes. Each 
class is according to a source signal. Denote every class of the sampling points is 

( ), 1, , , 1, ,i it t T i n= =x . If source signals are sufficiently sparse and the mixing ma-

trix A is estimated accurately, each class of sampling points ( ), 1, , , 1, ,i it t T i n= =x  

appears as a line. The linear intensity of this class will satisfy ( ( )) 1iQ t →x . Contrarily, 

when ( ( ))iQ tx  is 0 approximately, we judge that the clustering is not accurate or the 
source signals are not sufficiently sparse. It may indicate that the estimate of mixing ma-
trix A may be unsure. Therefore, linear intensity is used to judge the trust degree of the 
estimate of mixing matrix A. Then, reliability of BSS can be judged. From simulation, 
BSS will achieve a good effect when ( ) 0.6Q ⋅ > . 

3.4  Algorithms of BSS for sparse signals 

A BSS algorithm is proposed in the following procedures: 
1. If the signals are not sufficiently sparse, do Fourier transform (e.g., windowed Fou-

rier transform) or wavelet transform of the signals. Generally, this procedure can transfer 
the signals in to sparse signals in some transform domain. Without loss of generality, we 
suppose that the observed signals ( ) , 1, ,t t T=x  are sufficiently sparse. 

2. Normalize the observed signals ( ) , 1, ,t t T=x  by use the method given in sec-

tion 3.2. It becomes ( ) , 1, ,t t T′ =x . 

3. Do K-clustering of ( ) , 1, ,t t T′ =x  based on Euclidean distance. It gives n 

classes of ( ).t′x  Accordingly, ( ), 1, ,t t T=x  is divided into n classes ( ),i tx  

1, , , 1, ,it T i n= = . Each class is according to a source signal, respectively. 

4. Do PCA of ( ), 1, , , 1, ,i it t T i n= =x  respectively. According to the ordered ei-

genvalues we have n  eigenvectors 1 2, , , na a a . Then the estimate of the mixing ma-

trix is ( )1 2
ˆ , , , nA = a a a . 

5. Solve the optimization problem by linear programming 

( )

( )
( )

min ,

ˆ. . : ( ) , 1, , .

it i
s t

s t A t t t T

⎧
⎪
⎨
⎪ = =⎩

∑s

s x
 

Taking transform 

 ( ) ( ) ( )
( )

, 0,
0, 0,
i i

i
i

s t s t
s t

s t
+ >⎧⎪= ⎨

⎪⎩ ≤
  ( ) ( ) ( )

( )
, 0,

0, 0,
i i

i
i

s t s t
s t

s t
− − <⎧⎪= ⎨

⎪⎩ ≥
 (11) 
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where ( )is t+  and ( )is t−  are nonnegative, ( ) ( ) ( ) ,i i is t s t s t+ −= − ( ) ( )i is t s t+= + ( )is t− , 

thus the above problem is transferred into a linear programming 

 

( )
( ), ( )
min ( ) ( )

( )ˆ ˆs.t. : ( , ) ( ), 1, , .
( )

i i
t t i

s t s t

t
A A t t T

t

+ −

+ −

+

−

⎧ +
⎪
⎪
⎨ ⎛ ⎞
⎪ − = =⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎩

∑
s s

s
x

s

 (12) 

6. Solve linear programming (12) to give n  sparse source signal in the transform 

domain 1ˆ ˆ ˆ( ) ( ( ), , ( )) , 1, ,T
nt s t s t t T= =s . 

7. Take inverse Fourier transform or inverse wavelet transform to reconstruct the 
source signals. 

8. Check the trust degree of the result. For classes ( ), 1, , , 1, ,i it t T i n= =x , we 

compute linear intensities ( ( )), 1, ,iQ t i n=x , respectively. If ( ( )), 1, ,iQ t i n=x  are 
large, the trust degree of BSS is high. Otherwise, the trust degree of BSS is low. 

4  Simulations and discussion 

To check effectiveness of the results, some simulations are given here, in different 
cases. 

4.1  Index of performances 

To check the performance of the BSS algorithm, we use the correlative coefficient of 
the source signals and the separated signals. From probability and statistics, the correla-
tive coefficient will approximate to 1 or −1, if the algorithm is effective. Otherwise, it 
will approximate to 0. Moreover, we use the SNR /S N  proposed in Bofill’s paper[14] to 
check the performance. The S/N is defined as 

 
2

2

ˆ
/ 10log

s s
S N

s

−
= − , (13) 

where ŝ  is the estimate of s . We adjust the scales of ŝ  and s  so as to have the same 
energy. Then we compute S/N by formula (13). Big /S N  means good effect of BSS. 
Generally, an algorithm of BSS is effective when / 25S N ≥ dB. 

4.2  Simulations 

Since signals in time domain may be not sparse ideally, we use frame Hanning win-
dowed Fourier transform[14] for sound signals in the following three simulations. Also, 
we do BSS in a transform domain for the real and image parts of the transformed signals. 

Simulation 1.  BSS of four voice signals from three mixed signals. 
The four voice signals are taken from http://personals.ac.upc.edu/pau/shpica/in- 

stant.html (see Fig. 5). The sampling rate is 22050 Hz. There are 65536 sampling points. 
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Fig. 5.  Source signals. 

 
Mixing matrix is obtained by MATLAB command rand (‘state’, 8); A = rand(3,4)−0.5 

(see Fig. 6). 
0.4660   0.2186    0.1009     0.2584

 0.0450      0.4909     0.3829     0.1737
0.3714   0.2444    0.4658   0.3423

A
− −⎛ ⎞

⎜ ⎟= −⎜ ⎟
⎜ ⎟− − −⎝ ⎠

. 

 
Fig. 6.  Mixed signals. 

 

As in ref. [14], we take Fourier transform of three mixed signals in piecewise. To each 
piece with 2048L =  we multiple a Hanning window. The overlap between the con-
tinuous pieces measured by length 614d = . Normalize A  into A  using the method 
proposed in section 3.2. 

0.7798      0.3703     0.1650     0.5585
0.0753   0.8316    0.6263     0.3753
0.6215      0.4139     0.7619  0.7398

A
⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

. 

Then, we obtain the estimate of A as 
0.4543    0.7472       0.3642    0.2018

ˆ 0.4887    0.0476   0.8499    0.6597
 0.7449    0.6629       0.3810    0.7239

A
−⎛ ⎞

⎜ ⎟= − −⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

Based on this estimate Â , we obtain the reconstruct signals shown in Fig. 7. 
The intensity of the four lines can be computed as 1( ( )) 0.6139,Q t =x  

2( ( )) 0.7884Q t =x , 3( ( )) 0.7826,Q t =x  4( ( )) 0.7716.Q t =x  Big intensities of the lines 
cause the clear lines in the scatter plot. Then, the estimate of A is accurate. Comparing 
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corresponding column vectors of A  and Â , we can see the accuracy. On the other 
hand, SNRs between source signals and separated signals /S N  are listed as 26.1741, 
26.3476, 29.2017 and 29.5396 dB. The correlative coefficient matrix is 

 0.1276   0.9659   0.0771   0.0732
0.0746   0.1202   0.9630       0.0686

  0.1444       0.0993   0.0991       0.9745
0.9705       0.0372      0.1164    0.0298

− − −⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟−
⎜ ⎟

− −⎝ ⎠

. 

 
Fig. 7.  Separated signals. 

 
Every index illustrates the good effective of our method. 
Simulation 2.  Small linear intensity will cause failure of BSS. 
Using the same source signals and same mixing matrix as them in Simulation 1, we do 

this simulation. We use 1024d =  to replace the d  selected in Simulation 1. The pa-
rameter 2048L =  and Hanning window are the same as in Simulation 1. In this case, 
different parameters cause less sparse transformed signals. This then causes worse esti-
mate of A and effect of BSS. In this case, the linear intensities are 0.5425, 0.7893, 0.6521 
and 0.5457. The estimate Â  of mixing matrix A is  

0.2616       0.3821   0.4579     0.5396
ˆ  0.6422   0.8131   0.5500     0.3753

  0.7205       0.4392       0.6985     0.7536
A

− −⎛ ⎞
⎜ ⎟= − −⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

The correlative coefficient matrix between source signals and separated signals can be 
computed as 

0.0011   0.4555       0.4024   0.7681
    0.0851   0.8624   0.0271   0.0044

     0.8958   0.1501       0.0640       0.6314
 0.2404       0.0760   0.9005       0.0269

− − −⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟−
⎜ ⎟

− −⎝ ⎠

. 

Comparing Â  with A  in Simulation 1, we found that the estimate of mixing matrix 
is not accurate in this simulation. The SNRs /S N  are also small, they are 7.1217, 
13.2593, 14.4531 and 17.5622 dB. The separated signals are shown in Fig. 8. All of Fig. 
5, Fig. 8, the coefficient matrix and the SNRs S/N show the worse result of BSS in this 
simulation. In many cases, the sparsity of signals is worse than this simulation. Then, the 
result of BSS will be not satisfied. This can be checked by compute the linear intensity. 
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Fig. 8.  Separated signals. 

 

Simulation 3.  Effect of BSS from over-estimate/under-estimate of the source num-
ber. 

Practically, the number of source signals may not be known. Generally, this number 
could not be determined exactly (it is an open problem that all the sparse representa-
tion-based methods faced). This simulation will show that under-estimate of the source 
number affects BSS negatively. Contrarily, over-estimate of the source number may not 
affect BSS. 

Preconditions of this simulation are the same as that in Simulation 1. Also, we use the 
same method as in Simulation 1. There are four source signals. They should be classified 
correctly into four classes by clustering. If the clustering gives 3 classes (less than the 
correct number), 3 source signals are separated. The corresponding estimate Â  of mix-
ing matrix A is obtained. 

 

0.5393   0.4535       0.3828
ˆ 0.3740   0.5066   0.8273

0.7545       0.7333      0.4110
A

−⎛ ⎞
⎜ ⎟= − −⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

The three linear intensities are 1( ( )) 0.5451,Q t =x , 2( ( )) 0.5958,Q t =x  3( ( ))Q t =x  
0.7447 . We found two of them are very small. Then, the SNRs /S N  are also small. 
They are 3.5320, 14.1039 and 9.4660 dB. The correlative coefficient matrix is 

 0.6600       0.3361   0.3943
 0.0000   0.0126   0.7981
 0.7543       0.3801   0.4341
0.0113   0.8627       0.1252

−⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟−
⎜ ⎟

− −⎝ ⎠

. 

This worse effect implies that the BSS is not achieved. 
If clustering over-estimates the source number as 5, it classifies 5 classes. The estimate 

Â  of mixing matrix A  is given as 
0.7557     0.3676   -0.2187   -0.4532   0.1959

ˆ 0.0608   -0.8334     0.6007   -0.5421   0.6484
0.6521     0.4126     0.7690     0.7076   0.7357

A
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

So, 5 source signals are separated as in Fig. 9. The linear intensities are 1( ( ))Q t =x  

0.8076, 2( ( )) 0.8271,Q t =x 3( ( )) 0.5797,Q t =x 4( ( )) 0.6632,Q t =x 5( ( ))Q t =x 0.8111.  
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The four big intensities among them give an almost accurate estimate of mixing matrix. 
The SNRs /S N  are 23.3221, 28.7958, 3.3280, 30.2371 and 17.4069 dB. 

 
Fig. 9.  Separated signals. 

 
The correlative coefficient matrix is 

 

   

  0.9536   0.0325       0.0853       0.0784   0.0766
  0.1213   0.9710       0.0716   0.1100      0.1025
     0.1607   0.0611       0.6487       0.0195       0.9100
    0.0877   0.0135   0.

− − −
− − −

−
− − 5304   0.9697       0.0615

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎝ ⎠

. 

From linear intensity, SNR /S N  and correlative coefficient matrix, we can obtain 

that the third column in matrix Â  is not what we need. The corresponding signal is re-
dundant. In Fig. 9, the signal in the second row is redundant. Therefore, we conclude that 
over-estimate can cause success of BSS while under-estimate causes failure of BSS. 

5  Conclusion 

This paper proposed a method to estimate the mixing matrix of BSS model for sparse 
source signals. It drives an effective BSS. Our method is easy to be implemented. Com-
paring with the method proposed in ref. [14], our new method suits the case of more than 
three observed signals. By computing linear intensities of the lines, one can check the 
reliability of BSS. The sparsity of the source signals extremely affects accuracy of BSS. 
If the sparse precondition is not satisfied, one can do transforms, such as Fourier trans-
form or wavelet transform, first, and then, do BSS in the transform domain. However, it 
is really difficult to seek a suitable transform domain to give a sparse representation of 
the signals. It is a problem to be studied further. 
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