
•Article• https://doi.org/10.1007/s11431-024-2764-5

A systematic framework of constructing surrogate model for slider
track peeling strength prediction

DONG XingJian1*, CHEN Qian1*, LIU WenBo2, WANG Dong1,3,
PENG ZhiKe1 & MENG Guang1

1 State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China;
2 KEIPER Seating Mechanisms Co., Ltd., Soochow 215500, China;

3 Department of Industrial Engineering and Management, Shanghai Jiao Tong University, Shanghai 200240, China

Received April 7, 2024; accepted July 26, 2024; published online September 14, 2024

Peeling strength can comprehensively reflect slider track safety and is crucial in car seat safety assessments. Current methods for
determining slider peeling strength are primarily physical testing and numerical simulation. However, these methods encounter
the potential challenges of high costs and overlong time consumption which have not been adequately addressed. Therefore, the
efficient and low-cost surrogate model emerges as a promising solution. Nevertheless, currently used surrogate models suffer
from inefficiencies and complexity in data sampling, lack of robustness in local model predictions, and isolation between data
sampling and model prediction. To overcome these challenges, this paper aims to set up a systematic framework for slider track
peeling strength prediction, including sensitivity analysis, dataset sampling, and model prediction. Specifically, the interpretable
linear regression is performed to identify the sensitivity of various geometric variables to peeling strength. Based on the variable
sensitivity, a distance metric is constructed to measure the disparity of different variable groups. Then, the sparsity-targeted
sampling (STS) is proposed to formulate a representative dataset. Finally, the sequentially selected local weighted linear
regression (SLWLR) is designed to achieve accurate track peeling strength prediction. Additionally, a quantitative cost as-
sessment of the supplementary dataset is proposed by utilizing the minimum adjacent sample distance as a mediator. Experi-
mental results validate the efficacy of sequential selection and the weighting mechanism in enhancing localization robustness.
Furthermore, the proposed SLWLR method surpasses similar approaches and other common surrogate methods in terms of
prediction performance and data quantity requirements, achieving an average absolute error of 3.3 kN in the simulated test
dataset.
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1 Introduction

The slider track serves as a crucial connecting component
between the car seat and the chassis, fulfilling essential
functions such as fixation, adjustment, and locking for the
seat. As depicted in Figure 1(a), it typically comprises upper
rail, lower rail, locking module, bearing, and carriages. Sli-

der track plays a crucial role in automotive safety assess-
ments [1], adhering to specific national standards [2].
Common metrics for evaluating the slider track strength in-
clude peeling strength, unlocking strength, free clearance,
etc. Notably, as shown in Figure 1(b), peeling strength, re-
presenting the maximum force before deformation and fail-
ure, could comprehensively reflect the slider track’s safety
performance. Therefore, obtaining peeling strength is vital
for track profile design, seat performance evaluation, and
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passenger safety assurance [3,4].
The peeling strength of the slider track exhibits nonlinear

dependence on multiple coupled geometric variables. Cur-
rently, various methods are employed to evaluate the peeling
strength. However, the majority, if not all, rely on physical
testing and finite element analysis (FEA). Physical testing
conducts multiple standard physical peeling experiments on
slider tracks to acquire precise peeling strength data. Con-
versely, FEA [5‒7] constructs numerical models of the slider
track under corresponding constraints and loads to derive
peeling strength. For example, Liu et al. [8] established a
slider track model to optimize the geometric parameters for
specific application scenarios. While FEA reduces resource
and time costs compared to physical testing, it still en-
counters challenges in offering a comprehensive assessment
of slider track strength under diverse conditions, which may
not align with the iterative calculation requirements inherent
in the slider track design process. Therefore, the surrogate
model emerges as a viable approach [9‒11], which could
offer a swift, cost-effective, and precise solution for pre-
dicting slider track peeling strength.
The surrogate model construction [9,12,13] consists of two

main parts: dataset sampling and model prediction. Specifi-
cally, a training dataset is obtained through numerical si-
mulation, such as finite element analysis (FEA), and utilized
to train the surrogate model for predicting the target output.
Unlike direct numerical simulation, the surrogate model
eliminates the need for real-time calculations, relying solely
on numerical simulation during the dataset sampling phase.
This streamlined approach significantly reduces time costs
and computational resources, making it well-suited for the
time-consuming assessment of slider track peeling strength.
An appropriate dataset sampling strategy can maintain the

quality of the surrogate model while mitigating prohibitive
sampling costs. As illustrated in Figure 2, dataset sampling is
classified into stationary and adaptive methods [9]. Sta-
tionary methods, based upon patterns [14] like Latin hy-
percube sampling [15,16] or design of experiments (DOE)
literature [17] like orthogonal sampling, are straightforward
but inefficient due to the lack of feedback from prediction

task, resulting in high sample costs. In contrast, adaptive
sampling [18‒22] selects samples sequentially to enhance
the surrogate model’s precision with the consideration of the
current dataset and feedback from the prediction task.
However, these methods entail a high prediction cost and
require careful tuning due to multiple evaluations of pre-
diction performance required in each iteration [23‒25].
Therefore, it is necessary to develop a dataset sampling
method that balances the effectiveness (i.e., considering
prediction task feedback) and the ease of implementation
(i.e., reducing reliance on prediction model).
Regarding model prediction, current methods can be

broadly categorized into two types: deep learning [26] and
statistical learning. Deep learning methods [27‒29] exhibit
potent non-linear mapping capabilities but demand sub-
stantial training data, rendering them less suitable for sce-
narios with high data costs. Conversely, prevalent statistical
learning methods, such as response surface [30,31] and
support vector regression [32], typically use the entire
training dataset to construct the surrogate model, known as
global methods. However, predicting slider peeling strength
is a complicated task with multiple factors, high coupling,
and intricate non-linearity. It proves very challenging to es-
tablish an effective general global model, particularly when
data is limited. To address this challenge, local methods,
adeptly leveraging adjacent samples of the test data to craft
more focused local models, are well-suited for intricate
prediction tasks, and local weighted linear regression
(LWLR) [33] is a typical one. For instance, Zhang et al. [34]
utilized LWLR to predict the damping ratio of a dominant
mode in real power systems, while Xu et al. [33] applied
LWLR to an ensemble of surrogate models, achieving dy-
namic response prediction for submerged floating tunnels.
Despite the demonstrated effectiveness of local methods
across various applications [33‒35], different localization
settings and distance metrics can result in different selection
of adjacent samples, and eventually affect the stability of
prediction results [36,37]. Consequently, mitigating sensi-
tivity to the localization settings (i.e., the number of adjacent
samples k) [38,39] and choosing appropriate distance metrics
[40,41] emerge as crucial challenges in refining local pre-

Figure 1 (Color online) Illustration of the structure of the slider track and
the peeling process. (a) The slider track structure; (b) the peeling process.

Figure 2 (Color online) A simple introduction of dataset sampling and
model prediction.
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diction methods.
Furthermore, the current surrogate model construction also

faces the challenge of the isolation between data sampling
and model prediction. Specifically, although scholars have
developed detailed research on data sampling and model
prediction, these investigations often focus on a single as-
pect, lacking an effective combination of both [9,12]. This
overlooks that model prediction might lay the groundwork
for improved data sampling, or alternatively, data sampling
could assess the supplementary cost for model performance.
Therefore, proposing a systematic framework for con-
structing surrogate models that effectively combinates data
sampling and model prediction is also a pivotal concern in
current research on surrogate models.
To address the aforementioned challenges related to da-

taset sampling and model prediction, we present a systematic
and engineering-oriented framework comprising sensitivity
analysis, sparsity-targeted sampling (STS), sequentially-se-
lected local weighted linear regression (SLWLR), and the
associated quantitative cost assessment of supplementary
dataset. This framework ultimately establishes a cost-effec-
tive, efficient, accurate, and incrementally learning solution
for slider track peeling strength prediction. The innovations
of this work can be summarized as follows.
(1) Regarding dataset sampling, a sparsity-targeted sam-

pling (STS) method is established based on the sensitivity
analysis of the slider track. STS not only effectively reduces
the sample cost to construct a representative dataset, but also
avoids the involvement of prediction models, ensuring ease
of implementation.
(2) Concerning model prediction, the sensitivity analysis is

leveraged to formulate the distance metric and the sequen-
tially-selected local weighted linear regression (SLWLR)
method is proposed to improve the robustness of localization.
(3) Besides, a systematic framework is established for

slider track peeling strength prediction, incorporating a
quantitative supplementary cost assessment derived from
sampling estimation and prediction experience.

2 Experimental

2.1 Problem defination

Based on prior knowledge, specific geometric variables of
the slider track, recognized as influential on peeling strength,
are selected to form the design variable group

x x xx = [1, , , , ]p
p

1 2
+1R . Here, the first element 1 is

employed as a bias term in linear regression, p represents the
number of chosen geometric variables, and the correspond-
ing peeling strength is denoted as the label y to be predicted.
Subsequently, the peeling strength prediction task is deli-
neated into two primary phases: dataset sampling and model

prediction.
During dataset sampling, the design variable groups x{ }i

n
=1

are determined through a sampling algorithm, and the cor-
responding peeling strengths y{ }i

n
=1 are acquired via FEA.

Consequently, the training dataset { }D yx= ( , )i i i
ntrain
=1
is as-

sembled by combining these pairs of variables and labels.
For the test dataset { }D yx= ( , )i i i

mtest
=1
, a similar procedure is

followed, except that the design variable groups are ran-
domly sampled for model evaluation. Here, n and m re-
present the number of samples in the training and test dataset,
respectively.
As for model prediction, a predictive model f : p+1R R

is developed using the training dataset D train , and subse-
quently employed to estimate the peeling strength for the
samples within D test.

2.2 Local weighted linear regression

Local weighted linear regression (LWLR), an extension of
traditional local linear regression (LLR) incorporating a
weighted mechanism, is a widely utilized regression method
in diverse fields, including hydrology [33,42‒44], computer
science [45,46], medical imaging [47], and others. As de-
picted in Figure 3(a), traditional LLR treats all adjacent
samples equally, assigning them equivalent weights. How-
ever, this approach overlooks the fact that excessively distant
samples may not contribute sufficient information and can
even impair the predictive accuracy of the model. Hence,
LLR is extremely sensitive to the number of adjacent sample
k, as distant samples do not provide adequate support for
accurate predictions.
Addressing this limitation, LWLR intuitively assigns

varying weights to each adjacent sample based on its
proximity to the input sample. This approach optimally uti-
lizes information from nearby neighbors, mitigating poten-
tial harm to model prediction accuracy caused by distant
neighbors. As illustrated in Figure 3(b), LWLR assigns
higher weights to nearby adjacent samples and lower weights

Figure 3 (Color online) Illustration of the comparison between LLR and
LWLR. (a) LLR treats all adjacent samples equally by assigning them
equivalent weights; (b) LWLR assigns different weights to each adjacent
sample based on their proximity to the input sample.
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to distant adjacent samples, enhancing the model’s adapt-
ability and robustness.
Mathematically, the standardized weight wi assigned to

each neighbor x i of the input sample x can be denoted as

w w
w w d x x= , = 1

( , ) + , (1)i
i

j D j
j

j
k

where wj represents the non-standardized weight, Dk re-
presents the adjacent sample set containing k samples, d( , )
is the distance metric to measure the disparity between two
samples, and is a small positive constant introduced to
prevent singularity in the division operation.
Denoting the sample matrix X and the label vector y as

y y y
X x x x
y

= [ , , , ] ,

= [ , , , ] .
(2)

T T
n
T n p

n
T n

1 2
×( +1)

1 2
×1

R
R

Then, the predicted values y of a linear regression model
(including LLR and LWLR) could be expressed as
y X= , (3)

where b= [ , , , , ]p
p

1 2
+1R is the regression coeffi-

cient vector to be optimized, and b is the bias of linear re-
gression.
Incorporating both sample weighting w w ww = [ , , , ]k1 2

kR and variable regularization r r rr = [0, , , , ]p
p

1 2
+1R ,

the optimization objective of LWLR can be formulated as
L D

w y y r

w s

X y W X y R

  min ( , , , )

= min ( ) +

= min( ) ( ) + , (4)

k

i D

k

i i i
j

p

j j

T T

2

=1

2

k

where is the regularization coefficient, and W w= diag( )

and R r= diag( ) denote the diagonal matrices of w and r,
respectively. The first term of L is weighted square errors to
ensure prediction accuracy, while the second term is the
variable regularization to prevent overfitting.
The derivative of the above optimization objective L can

be obtained as
L X WX R y WX y y

X WX R X Wy

= [ ( + ) 2 + ]

= 2( + ) 2 . (5)

T T T T

T T

Since the optimization objective L is convex, setting eq. (5)
to zero leads to the optimal regression coefficient as

L X WX R X Wy= 0 = ( + ) . (6)T T1

In model prediction, bringing back into eq. (3), the
predicted value y pre for a new sample x pre can be expressed
as

y x= ( ) . (7)Tpre pre

3 Methodology

3.1 Framework

The holistic systematic framework for slider peeling strength
prediction is illustrated in Figure 4. This framework com-
prises four main components: sensitivity analysis (SA),
sparsity-targeted sampling (STS), sequentially-selected lo-
cally weighted linear regression (SLWLR), and supplemen-
tary cost assessment. The workflow of this framework is as
follows.
Sensitivity analysis: Acquire a mini batch datasetD SA and

calculate the sensitivity s pR for each variable in the slider
track, which forms the basis for the weighted distance metric

Figure 4 (Color online) The holistic systematic framework of constructing surrogate model for slider track peeling strength prediction.
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d ( , )s utilized in subsequent STS and SLWLR algorithms.
Sparsity-targeted sampling: With the weighted distance

metric d ( , )s and current training samples x{ }train, STS
iteratively explores sparse regions in the variable space and
conducts sampling within these regions, progressively re-
ducing the potential sparsity and aiming to construct a re-
presentative dataset.
Sequentially-selected local weighted linear regression:

With the weighted distance metric d ( , )s , current training
dataset D train , and test dataset D test, SLWLR considers the
repulsive effects from the already selected samples and se-
quentially selects k neighbor samples D x( )k pre for each test
sample Dx pre test. Subsequently, SLWLR assigns different
weights and predicts the peeling strength y pre of x pre based
on D x( )k pre , similar to the approach utilized by LWLR.
Supplementary cost assessment: Leveraging the mini-

mum adjacent sample distance as a mediator, this assessment
establishes the relationship between the performance im-
provement of predicting peeling strengths and the number of
required supplementary samples. This constitutes a quanti-
tative assessment between the supplementary cost and the
targeted accuracy.

3.2 Sensitivity analysis

Sensitivity analysis aims to obtain the sensitivity of each
variable in the slider track, which is a prerequisite for sub-
sequent STS and SLWLR algorithms. The sensitivity si
quantifies the impact of each variable on the output and is
typically defined as the partial derivative, formulated as

s y
x= . (8)i

i

Linear regression, as a typical interpretable statistical
learning model, not only achieves effective predictions but
also elucidates the sensitivity of corresponding variables via
the optimized regression coefficient . The relationship be-
tween linear regression and variable sensitivity is demon-
strated through a case study with the following linear
regression model:

y y x xx= = 3 8 1, (9)T
1 2

where b= [ , , ] = [ 1, 3, 8]1 2 . Then, we could get the
sensitivity si from the optimized regression coefficient as

s y
x

y
x

s y
x

y
x

= = = 3,

= = = 8.
(10)

1
1 1

1

2
2 2

2

Based on the above explanation, the sensitivity analysis
could be conducted as follows.
Initially, acquire a small batch of variable groups x{ }SA

using specific basic sampling methods such as Latin hy-
percube sampling (LHS). Then, calculate corresponding
peeling strengths y{ }SA via FEA and formulate a mini dataset

D yx= {( , ), }SA SA for sensitivity analysis.
Secondly, train a linear regression model using D SA and

obtain the optimized regression coefficient SA as discussed
in Section 2.2 with W = I and R = I.
Finally, the sensitivity of each variable s can be obtained

from SA as

s s s ss = [ , , , ] , where = . (11)p
p

i i1 2
SAR

3.3 Sparsity-targeted sampling

Aiming to construct a representative dataset, sparsity-tar-
geted sampling (STS) sequentially samples the most sparse
potential variable group based on the current training sam-
ples x{ }train and distance metric d( , ) : ×p p+1 +1R R R.
This guarantees that the resultant dataset offers adequately
adjacent samples for the input samples in prediction tasks.
Here, the weighted Euclidean distance d x x( , )s i j based on

the variable sensitivity s serves as the distance metric, which
can be formulated as

d sx x x x

x x s x x

( , ) = ( )

= ( ) diag( )( ) . (12)

s i j
k

p

k ik jk

i j
T

i j

=1

2

Denoting current training sample set as P x= { }train (P =
in initialization), the workflow of STS to construct or
supplement the training dataset can be represented as
Algorithm 1.
The core idea of STS can be divided into two steps. Firstly,

Algorithm 1 Sparsity-targeted sampling (STS)

Intput: Variable constraint space S, current sample set P, sensitivity s,
candidate sample number n1, and supplementary sample number n2

Output: Supplemented sample set P

Initializtion: P P count, 0

1: while count n< 2 do

2: C S nRandomSample( , )1
Randomly get n1 samples from S as

candidate sample set C

3: dx x xargmax min ( , )
i C j P

i j
x x

s
new Select the sparsest sample from C

compared to P

4: P P x{ }new Add x new to P

5: count count + 1

6: end while

5Dong X J, et al. Sci China Tech Sci



a candidate set C of variable groups is obtained from the
variable constraint space S through Monte Carlo uniform
sampling. Secondly, STS selects the variable group from the
candidate set C that has the most sparsity relative to the
current sample set P . This process is repeated until the
specified number of supplementary samples is obtained. The
process of STS selecting the next variable group x new can be
expressed as

( )

d P d

d P

x s x x

x x s

( , , ) = min ( , ),

= argmax ( , , ) ,
(13)

i
P

i j

C
i

x
s

x

min

new
min

j

i

where dmin is the minimum adjacent distance of the input
sample compared to the training dataset. Eq. (13) first cal-
culates the minimum adjacent distance dmin for each candi-
date sample. Then, the candidate sample with the maximum
distance dmin is selected, meaning that this sample is the most
sparse within the candidate sample set C relative to the
current sample set P .
The sampling process of STS is further elucidated in

Figure 5. In the illustration, the solid circular line represents
the variable constraint space S . Assuming the number of
candidate samples n1 is sufficiently large, the Monte Carlo
sampling approach nearly covers all points. STS will first
identify the sparsest sample #1, then consider the influence
of the selected sample #1 to determine the next most sparse
sample #2. This process continues to determine sample #3,
#4, #5, and so on, until the specified number of samples n 2 is
reached.

3.4 Sequentially-selected local weighted linear regres-
sion

Traditional local methods directly select k nearest samples as
the adjacent samples for model training. However, as illu-
strated in Figure 6(a), such methods tend to choose overly
clustered adjacent samples, leading to singularity issues
during subsequent local regression optimization, sig-
nificantly impacting prediction accuracy.
To avoid the aforementioned issues, we consider the re-

pulsive effect of the already selected samples on subsequent
sample selection and propose a sequential selection method
to determine adjacent samples. In this approach, denoting the
set of already selected q adjacent samples as D q, the selec-
tion criterion for the next adjacent sample x q+1 can be ex-
pressed as

D D

d
d

x x s

x x
x x

= SeqSelect( , , , , , )

= argmin ( , ) +
( , )

, (14)

q
q

D D
i

D

i j

x
s

x

s

+1
train pre

( )

pre
2

i
q

j
qtrain

where is the scale factor of the Gaussian kernel function
controlling the range of the repulsive effect, and is the
repulsive factor controlling the strength of the repulsive ef-
fect. This selection criterion consists of two parts: the first
part aims to make the candidate sample x i as close as pos-
sible to the predicted sample x pre, while the second part
considers the repulsive effect of the already selected samples
x j on x i.
The process of sequential selection method is illustrated in

Figure 6(b). The sequential selection method firstly selects
sample #1 that closest to the input predicted sample x pre. It
then considers the repulsive effect of the selected sample #1
and chooses samples #2 and #3 that are relatively farther
away. This leads to a broader span of adjacent samples,
aiming to mitigate the singularity issues encountered in tra-
ditional local methods as elaborated in Figure 6(a).
After determining the adjacent samples D k through the

sequential selection method, the complete SLWLR method
can be summarized as shown in Algorithm 2. Its core idea
can be divided into three steps: the first step is to sequentially
determine adjacent samples D k by eq. (14). The second step
is to assign different weights toD k base on their distances to
x pre by eq. (1). Finally, a weighted linear regression model is
trained based on D k to estimate the peeling strength y pre of
x pre as discussed in Section 2.2.

Figure 5 The process of sparsity-targeted sampling (STS).

Figure 6 (Color online) Illustration of the comparison between tradi-
tional selection and sequential selection. (a) Traditional selection directly
chooses k nearest samples as the adjacent samples; (b) sequential selection
considers the repulsive effect of the already selected samples on subsequent
sample selection.

6 Dong X J, et al. Sci China Tech Sci



3.5 Supplementary cost assessment

SLWLR searches the training dataset D train for adjacent
samples D k at each prediction, making it a natural incre-
mental learning model. In incremental learning, it only re-
quires supplementing the current training dataset D train with
supplementary dataset Dsup.
Additionally, as a local method, the prediction of SLWLR

is only influenced by adjacent samples. Therefore, increasing
the sample numbers allows the input sample to find closer
adjacent samples, and the prediction accuracy of SLWLR
should certainly be improved.
Despite the predictive improvement brought by supple-

mentation, acquiring data (i.e., time-consuming calculation
of FEA) is quite expensive. One common issue is the as-
sessment of supplementary cost, which quantitatively mea-
sures the relationship between model performance
improvement and the number of required data samples.
To assess the supplementary cost, we use the minimum

adjacent distance dmin defined in eq. (13) as a mediator.
Specifically, as the sampling estimation depicted in Figure
7(a), the relationship between the potential minimum ad-
jacent distance dmax( )min and the number of required sam-
ples n could be estimated during the sampling process. Then,
the relationship between the error ratio e and the minimum
adjacent distance dmin could be established during prediction
process as the prediction experience depicted in Figure 7(b).
Finally, by merging the above sampling estimation and
prediction experience together, a quantitative assessment

between the supplementary cost and the targeted accuracy
could be formulated.

4 Experiment

4.1 Finite element analysis and sensitivity analysis of
slider track

To simulate the peeling process of the slider track, we con-
structed a model as depicted in Figure 8, using LS-DYNA, a
commercial FEA software. This model comprises a 550 mm
upper rail, a 600 mm lower rail, a locking module, two
bearings with carriages, along with a loading beam and other
auxiliary components.
The upper and lower rails of the slider track are discretized

into tetrahedral meshes with dimensions of 3.5 mm ×
3.5 mm. These meshes are configured as 5-point integration,
plane-symmetric shell elements, facilitating a balance be-
tween simulation precision and computational efficiency.
The material of the upper and lower rails is alloy steel,
characterized by a density of 7.85 g/cm3, Young’s modulus
of 210 GPa, and a Poisson’s ratio of 0.3. Concerning contact
modeling, a global contact friction coefficient of 0.1 and a
global viscosity damping coefficient of 20 are specified.
Fixed constraints are applied at the front and rear mounting
points of the lower slider track. Displacement excitation is
imposed along the direction of the loading beam, and LS-
DYNA solver is invoked for explicit calculation.
The simulation is executed on a server platform equipped

with two Intel Xeon E5-2680 v3 processors (48 cores in
total), 64 GB of memory. The computation is time-con-
suming, requiring approximately 16 h with parallel compu-
tation utilizing 8 cores.
Numerous geometric variables have different influences

on the peeling strength of the slider track. Key geometric
variables, such as the relative position of the upper and lower
rails and the loading direction, significantly affect track

Figure 7 (Color online) Illustration of the cost assessment of supple-
mentary dataset by using the minimum adjacent distance d min

as a mediator.
(a) Sampling estimation depicts the relationship between the potential
minimum adjacent distance dmax( )min

and the number of required samples
n; (b) prediction experience depicts the relationship between the error ratio
e and the minimum adjacent distance d min

.

Algorithm 2 Sequentially-selected local weighted linear regression (SLWLR)

Intput: Training dataset D train, input sample x pre, sensitivity s, number of
adjacent samples k , Gaussian scale factor , and repulsive factor β

Output: Predicted peeling strength y pre

Initializtion: D k

1: while D k<k do eq. (14)

2: D Dx x s= SeqSelect( , , , , , )ktrain pre

3: D D x{ }
k k

4: end while

5: DX y,k k k

6: w
w

w
w d x x= , =

1
( , ) +i

i

j D
k j

i
i

x
s

pre eq. (1)

7: r r r r sr = [0, , , , ], =
1
+p i

i
1 2

Assign regularization

8: X WX R X Wy= ( + )
T T1 eq. (6)

9: y x= ( )Tpre pre eq. (7)
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peeling strength. Conversely, variables like the cage and
mounting positions have less pronounced effects. Guided by
the prior knowledge, 12 geometric variables of the slider
track are identified as design variables as illustrated in
Figure 8.
To validate the effectiveness of the slider track FEA

model, a benchmark experiment is conducted, and the ex-
perimental result is compared with the FEA result. The
geometric variables for both are consistent, and the experi-
mental settings, along with the peeling strength curve, are
illustrated in Figure 9. The peeling strength of the physical
slider track is measured at 48.5 kN, while the corresponding
FEA simulation yields a value of 50.6 kN. The resulting
error ratio under these conditions is 4.3%. Furthermore, the
peeling strength curves of them are closely aligned, affirm-
ing the reliability of the FEA simulation.
In the sensitivity analysis, 12 design variables of the slider

track are considered as depicted in Figure 8. An orthogonal
experimental design [17] is implemented to create the sen-
sitivity analysis dataset DSA. Specifically, we utilize an or-
thogonal experimental table L27(12

3) with 12 factors and 3
levels, yielding a total of 27 variable groups. The specific
values are outlined in Table 1.
Taking the above 27 variable groups L (12 )27

3 as the input
matrix XSA and the corresponding peeling strength calcu-
lated by FEA as the output vector y SA, the sensitivity of each
variable s can be obtained as Table 2 according to the sen-
sitivity analysis proposed in Section 3.2 with specific reg-
ularization. The result highlights that variables v5 (relative

distance between upper and lower tracks), v7 (loading di-
rection), v8 (loading position), and v9 (eccentricity) sig-
nificantly influence peeling strength. This observation aligns
with our prior knowledge of the slider track.

4.2 SLWLR result with basic dataset

After completing the sensitivity analysis, the STS method
described in Section 3.3 is employed to sample 120 variable
groups as the basic dataset Dbasic for model training. Ad-
ditionally, another 150 variable groups are randomly sam-
pled as the test dataset D test. Certainly, the construction of
both datasets requires the calculation of the peeling strengths
y corresponding to these variable groups X through the FEA
of slider track.
As for the prediction evaluation, three common metrics

Figure 9 (Color online) Experimental rig and peeling strength curve. (a)
Experimental rig of physical slider track; (b) peeling strength curve of the
physical slider peeling experiment and its corresponding FEA simulation.

Table 1 The specific values of the orthogonal experimental table L27(12
3)

used for sensitivity analysis

Variable Value Variable Value

v1 (mm) 150|170|190 v7 (°) 15|45|75

v2 (mm) 180|210|240 v8 (mm) 80|‒20|‒120

v3 (mm) 400|450|500 v9 (mm) 10|15|20

v4 (mm) 30|50|70 v10 (mm) 25|30|35

v5 (mm) v8+40|140|210 v11 (mm) 20|25|30

v6 (mm) 200|220|240 v12 (mm) 50|70|90

Table 2 The sensitivity of each variable calculated by the sensitivity
analysis

Variable sensitivity Value Variable sensitivity Value

v1 (mm) 0 v7 (°) 51.1

v2 (mm) 40.1 v8 (mm) 297.8

v3 (mm) 24.4 v9 (mm) 177.3

v4 (mm) 17.2 v10 (mm) 4.6

v5 (mm) 102.1 v11 (mm) 0

v6 (mm) 5.8 v12 (mm) 21.4

Figure 8 (Color online) The finite element model of the slider track and the geometric variables selected as the design variable group x.
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[48] are used to measure the accuracy between the predicted
peeling strength and FEA result. They are the coefficient of
determination R2, mean relative error (MRE), and mean
absolute error (MAE), which are defined as

R
y y

y y
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y y
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n y y

= 1
( )

( )
,

MRE = 1 ,

MAE = 1 ,

(15)

i

n
i i

i

n
i

i

n i i

i

i

n
i i

2 =1

2

=1

2

=1

=1

where n is the number of test samples, yi is the FEA result of
the i-th test sample, yi is the predicted peeling strength of the
i-th test sample, and y is the mean of all FEA results.
Based on the basic dataset Dbasic of 120 samples, the

SLWLR model proposed in Section 3.4 is established with a
parameter setting of k = 15. The predictive performance on
the testing dataset comprising 150 samples is illustrated in
Figure 10, which depicts the relationship between the pre-
diction error ratio e and the minimum distance of its adjacent
samples dmin. Moreover, the corresponding values of R2,
MRE, and MAE are annotated above the graph.
From Figure 10, the maximum relative error is approxi-

mately 40%, and there is a clear positive correlation between
the prediction error ratio e and the minimum adjacent dis-
tance dmin. In other words, as the minimum adjacent distance
dmin decreases, the maximum prediction error ratio e would
also decrease. This phenomenon indicates the feasibility of
improving model prediction accuracy by supplementing
more dataset to reduce the minimum adjacent distance dmin.
It aligns with the inherent logic of data-driven approaches,
suggesting that more data leads to better model performance.
Overall, the predictive results based on the basic dataset
Dbasic are not ideal. Nevertheless, considering the positive
correlation between e and dmin, it is possible to enhance
model prediction performance by supplementing additional
dataset.

4.3 Cost assessment and SLWLR result with supple-
mented dataset

To conduct supplementary cost assessment and simulta-
neously validate the effectiveness of the STS method de-
scribed in Section 3.3, random sampling (RS), Latin
hypercube sampling (LHS), and STS are employed to esti-
mate the relationship between the potential minimum ad-
jacent distance dmax( )min and the number of samples n. It is
crucial to highlight that, at this stage, only geometric para-
meter groups X are determined to assess the supplementary
cost, and time-consuming FEA calculations for the corre-
sponding peeling strengths y are not needed or performed.

As shown in Figure 11, the potential minimum adjacent
distance dmax( )min for all three sampling methods exhibits an
exponential decrease with the increase of the number of
samples n. However, the descent rate of STS is significantly
higher than that of RS and LHS. This is attributed to the
capability of STS to actively identify and fill sparse regions,
thereby obtaining smaller dmax( )min with fewer samples and
constructing a more representative dataset. The above result
thoroughly confirms the effectiveness of the proposed STS
method in dataset formulation.
Using the minimum adjacent distance dmin as a mediator,

we can establish an indirect relationship between the pre-
diction error ratio e and the number of training samples n,
achieving a quantitative assessment of the supplementary
cost. The sampling estimation depicted in Figure 11 reveals
that increasing n to 240 results in dmax( )min being approxi-
mately 182. The prediction experience in Figure 10 further
indicates that when dmin is below 180, e can be controlled
within 20%. Therefore, combining the sampling estimation
and the prediction experience together, we decide to sup-
plement additional 120 samples Dsup through STS into the
basic dataset Dbasic and perform FEA calculations to de-
termine their corresponding peeling strengths. The supple-

Figure 10 (Color online) The predictive performance of SLWLR trained
on the basic dataset comprising 120 samples.

Figure 11 (Color online) The relationship between the potential mini-
mum adjacent distance dmax( )min

and the number of samples n under three
different sampling strategies: random sampling (RS), Latin hypercube
sampling (LHS), and sparsity-targeted sampling (STS).
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mented dataset D train comprises a total of 240 operating
condition samples.
With the supplemented dataset D train of 240 training sam-

ples and the experimental settings consistent with Section
4.2, the predictive performance of SLWLR on the testing
dataset comprising 150 samples is illustrated in Figure 12.
The minimum adjacent distances dmin of all test data are
within 180 and the maximum relative error is below 20%.
The coefficient of determination R2, mean relative error
(MRE), and mean absolute error (MAE) all surpass the
corresponding metrics in Figure 10. This improvement un-
derscores that supplementing additional dataset significantly
enhances the prediction accuracy of SLWLR. In conclusion,
after supplementing 120 additional samples Dsup, the mini-
mum adjacent distance dmin aligns with the previous sup-
plementary cost assessment, and the predictive performance
of SLWLR has been effectively elevated.

5 Discussion

5.1 Ablation study

SLWLR incorporates a sequential selection of adjacent
samples in addition to the distance-based weighting me-
chanism of LWLR, aiming to address the robustness issue
associated with the number of adjacent samples k. Here,
ablation study is conducted to validate the effectiveness of
the distance-based weighting mechanism and the proposed
sequential selection.
The experimental setup remains consistent with the pre-

vious section, where the full training datasetD train comprises
240 samples, and the test dataset D test consists of 150 sam-
ples. This ablation study compares the predictive perfor-
mance of four local methods under different adjacent sample
numbers k: local linear regression (LLR) [33], sequentially-
selected local linear regression (SLLR), LWLR, and the
proposed SLWLR method. The results are presented in
Figure 13, and the conclusions drawn are as follows.
(1) The effect of distance-based weighting mechanism:

LWLR, incorporating the distance-based weighting me-
chanism, outperforms LLR in terms of prediction results and
is less affected by the increase of adjacent sample number k.
It indicates that the distance-based weighting mechanism
effectively utilizes information from nearby samples,
avoiding interference from distant samples in predicting re-
sults. This conclusion similarly applies to the comparison
between SLWLR and SLLR. Experimental results demon-
strate that the distance-based weighting mechanism sig-
nificantly enhances model prediction performance and
mitigates the impact of the adjacent sample number k espe-
cially when k is large.
(2) The effect of sequential selection of adjacent sam-

ples: With sequential selection, SLLR proves effective in
selecting appropriate samples, resulting in better predictive
results than LLR when the number of k is small. However, as
k increases, the sequential selection method and traditional
method gradually converge in the selection of adjacent
samples, causing the predictive performance of SLLR and
LLR to approach each other. This phenomenon also holds
true for LWLR and SLWLR. In conclusion, experimental
results indicate that the selection of adjacent samples is
particularly effective in improving the predictive perfor-
mance when the adjacent sample number k is small.
(3) Superiority of SLWLR: SLWLR, incorporating both

distance-based weighting and sequential selection together,
adeptly avoids the issue of overly clustered adjacent samples

Figure 12 (Color online) The predictive performance of SLWLR trained
on the full dataset comprising 240 samples.

Figure 13 (Color online) The performance of different local methods
trained on the full dataset comprising 240 samples. (a) R2; (b) MRE; (c)
MAE.
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when k is small through the sequential selection approach,
and mitigates the negative impact of distant samples si-
multaneously when k is large through distance-based
weighting. SLWLR consistently achieves the best predictive
performance among the four methods, demonstrating ro-
bustness in the selection of the adjacent sample number k,
which emphasizes the superiority of the proposed SLWLR
method.

5.2 Comparison with other methods

To validate the superiority of the proposed SLWLR method,
it is compared with current popular surrogate model con-
struction methods in track peeling strength prediction task.
The methods for comparison include as follows.
(1) K-nearest neighbor (kNN) [36]: kNN is a non-para-

metric method that directly uses the nearest k samples to
predict the peeling strength of the input sample. The number
of adjacent samples k is set to 5 and the distance metric is the
same as that used in SLWLR.
(2) Support vector regression (SVR) [32,33]: SVR is a

kernel-based regression method that uses the kernel function
to map the input sample to a high-dimensional feature space
and then performs linear regression in the feature space. We
choose Gaussian kernel with the same distance metric used
in SLWLR.
(3) Radical basis function (RBF) [33,49,50]: RBF is a

typical interpolation method but can also be applied to pre-
diction tasks. After parameter optimization, RBF employs a
Gaussian kernel with a scaling factor set to 800, and the
distance metric is the same as that used in SLWLR.
(4) Multi-layer perceptron (MLP) [49]: MLP is a basic

neural network that usually performs well in simple sce-
narios with a small number of samples. After parameter
optimization, a 2-layer MLP is selected with the number of
hidden neurons set to 8, the activation function set to Sig-
moid, and Bayesian regularization employed for model op-
timization.
(5)Kriging [33,50]: Kriging is an interpolating model that

is a linear combination of a known function which is added to
a realization of a stochastic process. The kernel function
chosen is the squared exponential kernel, and the optimizer
selected is LBFGS.
The above five methods and the proposed SLWLR method

are trained on the full training dataset D train comprises 240
operating conditions, and their perdictive performance on the
test dataset D test is shown in Figure 14. From the results, it
can be observed that kNN performs the worst, while SVR
and RBF show significant improvement. MLP and Kriging
perform better than the first three methods, and the proposed
SLWLR method surpasses all other methods in terms of
accuracy metrics (i.e., R2, MRE, and MAE) and aligns more

closely with the ground truth (i.e., the peeling strength of
FEA).
Additionally, we explore the predictive performance of

these methods under different numbers of training samples n
as shown in Figure 15. The results indicate that the predictive
performance of all methods gradually converges as the
number of training samples increases (i.e., converges when k
> 150), while the performance of SLWLR consistently stands
out as superior and more robust than other methods. Notably,
the performance of SVR, Kriging, and MLP fluctuates when
n is small, and even degradates when n = 60, 95, 90, re-
spectively. This underscores that the proposed SLWLR
method exhibits greater robustness to the number of training
samples n than other five methods, and have superior per-
formance especially when the training samples are limited.
In conclusion, slider peeling strength prediction is a pro-

blem with multiple factors, high coupling, and complex non-
linearity, and the cost of data acquisition limits the richness
of the dataset, making it challenging for other regression
methods to achieve the outstanding predictive performance
as the proposed SLWLR method does. Therefore, SLWLR
outperforms other regression methods in terms of predictive
performance metrics and data quantity requirements.

5.3 Effectiveness of STS

In this subsection, an experiment is conducted to validate the

Figure 14 (Color online) The performance of different methods trained
on the full dataset comprising 240 samples. (a) kNN; (b) SVR; (c) RBF; (d)
MLP; (e) Kriging; (f) SLWLR.
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effectiveness of the proposed sparse-targeted sampling
(STS) method in dataset formulation. Considering the pro-
hibitive cost of data acquisition (i.e., 16 h for a single si-
mulation), an indirect comparison is chosen. Specifically,
this experiment initially selects 30 samples from the com-
plete dataset of 240 samples. Then, STS and random sam-
pling (RS) are independently employed to sequentially select
the remaining 210 samples. The performance of the proposed
SLWLR model with the training dataset obtained from these
two sampling methods is shown in Figure 16. If the predic-
tion performance of STS surpasses that of RS, it can be
concluded that the proposed STS method is effective in da-
taset formulation.
The relationship between the prediction performance of

SLWLR and the number of training samples n under RS and
STS is illustrated in Figure 16. At the beginning (n = 30) or
end (n = 240), there is no significant difference between
these two sampling methods in dataset formulation because
this is an indirect comparison, and their corresponding pre-
diction performances are consistent. However, notably, when

n is from 60 to 180, STS outperforms RS in terms of relative
error and absolute error obviously, i.e., STS exhibits lower
error metrics than RS. In summary, although this direct
comparison was not feasible due to the cost of data acqui-
sition, the indirect comparative experiment provides ample
evidence of the effectiveness of the proposed STS method in
dataset formulation.

5.4 Physical experiment verification

To validate the predictive performance of the proposed fra-
mework in the real-world, we compare the results of our
SLWLR model (trained on 240 FEA samples) with FEA
simulation and the physical slider peeling experiment. The
peeling strengths obtained from these three methods under
three typical working conditions‒retraction (Rear), centering
(Middle), and overhanging (Overhang)‒are presented in
Table 3. The results indicate that the peeling strength error
obtained by SLWLR is within 2 kN, with a relative error of
within 4%. This effectively confirms the feasibility and ef-
fectiveness of the proposed framework in predicting the
peeling strength of slider tracks.

6 Conclusions

To overcome the high cost, time-consuming nature, and in-
sufficiently comprehensive assessment involved in obtaining
slider track peeling strength, we propose a systematic sur-

Figure 15 (Color online) The performance of different local methods
under different numbers of training samples n. (a) R2; (b) MRE; (c) MAE.

Figure 16 (Color online) The performance of SLWLR with sparsity-
targeted sampling (STS) and random sampling (RS) in different number of
training samples, where the data points and fillings represent the mean and
standard deviation of the predicted results, respectively. Smaller error and
error ratio indicate better predictive performance of the model. (a) Relative
error; (b) absolute error.
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rogate model construction framework encompassing sensi-
tivity analysis, dataset sampling, and model prediction.
Through a series of experiments, we validate the effective-
ness of the proposed method and draw the following con-
clusions.
(1) SLWLR, through sequential selection of adjacent

samples and distance-based weighting mechanism, effec-
tively overcomes the sensitivity issue to the localization (i.e.,
k), and its prediction performance is significantly better than
similar local methods.
(2) Slider track peeling strength prediction is a complex,

multi-factor, highly coupled, and nonlinear problem. Con-
sidering the data limitation due to exorbitant computational
cost, the SLWLR method outperforms other surrogate model
methods in terms of prediction accuracy and data quantity
requirements.
(3) Considering data acquisition costs, the effectiveness of

the proposed STS method in dataset construction is validated
through sampling estimation and indirect comparison.
(4) Finally, the established surrogate model demonstrates

feasibility and effectiveness in the slider track peeling
strength prediction task. In the simulated test dataset of 150
randomly samples, the average absolute error is 3.3 kN, the
average ralative error is 4.3%, and in three physical test
scenarios, the absolute error is within 2 kN, and the ralative
error is within 4%.

This work was supported by the National Natural Science Foundation of
China (Grant Nos. 12272219 and 12121002).
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