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Swarming behaviors play an eminent role in both biological and engineering research, and show great potential applications in
many emerging fields. Traditional swarming models still lack integrity, uniformity, and stability in swarm forming processes,
resulting in fragmentation and void phenomena. Inspired by the shepherding behaviors observed in nature, we propose an inte-
grated negotiation-control scheme for distributed swarm control of massive robots. The core idea of this scheme is that the robots
at the boundary of the group herd the internal robots to form an equilibrium swarm. For this purpose, we introduce a concept of
virtual group center towards which boundary robots herd internal robots. Then, a distributed negotiation mechanism is designed
to allow each robot to negotiate the virtual group center only through local interactions with its neighbors. After that, we propose
a shepherding-inspired swarm control law to drive a group of robots to form an integrated, uniform, and stable configuration from
any initial states. Both numerical and flight simulations are presented to verify the effectiveness of our proposed swarm control
scheme.
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1 Introduction

In nature, groups of biological swarms can emerge various
collective behaviors that are functional for swarms adapting
to the environment and survive [1, 2]. These fascinating be-
haviors provide valuable insights into building massive multi-
robot collaboration systems. This study focuses on the prob-
lem of distributed swarm control that has received tremen-
dous attention in recent years due to its great potential across
many domains [3–10]. The objective of swarm control is to
steer a group of robots to assemble an equilibrium configura-
tion from any initial disorder states in a distributed manner.
Swarm control is important for robots to achieve desired nav-
igation tasks or dynamically respond to the environment.

Significant progress in swarm control is to develop simple
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models by simulating the internal mechanisms of natural
swarming behaviors [11]. Most of the existing works rely
on the Reynolds framework [12], i.e., repulsion in the short
range, velocity alignment in the middle range, and attraction
in the long range. On the basis of these primary rules, re-
searchers have developed hundreds of models to implement
synchronized collective motion of multi-robot systems, such
as Vicsek model [13–15], Couzin model [16–18], Cucker-
Smale model [19–21], and Olfati model [22,23]. These mod-
els can be called self-organized because the interactions be-
tween robots are completely local and the motion decisions
are made independently by the robots themselves [14].

Self-organization is an important characteristic of swarm
systems [24]. In motion decision-making, robots require con-
sidering not only their states, but also the behaviors of other
neighboring robots. In social creatures, limited by the ability
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to acquire information, such consideration is a local obser-
vation, that is, each robot only perceives neighbors’ states
[25, 26]. As for artificial swarms, such as multi-robot sys-
tems, since the support of wireless technology, information
can be shared between robots. Therefore, this considera-
tion can be a broader global observation, which would be
conducive to robots making more reasonable decisions and
avoiding falling into local optimal [27]. However, most of
the existing approaches rarely consider global behavior with
a broader perspective. Although these methods can realize
swarm intelligence to a certain extent, due to the lack of
global observation, local minimum may occur, such as frag-
mentation and void phenomena which are well-known pit-
falls of swarm control [22]. The work in ref. [22] solves
these problems by informing all the robots of a time-varying
reference to be tracked, which is not fully distributed.

Motivated by the above analysis, this study focuses on the
problem of fully distributed swarm control of multi-robot sys-
tems considering the global observation. This problem has
rarely been addressed in existing studies. The studies in ref.
[28] proposed a control algorithm to maintain the connectiv-
ity of the swarm network by introducing the group center.
Here, the group center, whose calculation requires a central-
ized approach, is inherently global information. Instead, Gu
and Wang [29] presented a decentralized consensus protocol
to estimate the group center via local interactions. These two
works can be regarded as typical methods of considering the
global information. Subsequently, Bhowmick et al. [30] im-
proved the estimation protocol of the group center. However,
the difference between the estimated group center and the ac-
tual group center is still large. In addition, these methods
[28–30] only consider the single-integrator model due to its
simplicity. However, this model usually cannot well approxi-
mate real robot dynamics well because the velocity of a single
integrator can be arbitrarily assigned [31].

Despite the existing approaches, the following challenges
remain open to overcome. The most important thing is how
to prevent robot swarms from falling into a local minimum
using only local peer-to-peer information. Since the local
measurement, it is difficult to obtain the global stabilization
to the group center. The second problem is the accuracy of
group center negotiation in local information environments.
Existing methods can provide the convergence of the negoti-
ation protocol, but cannot accurately estimate the group cen-
ter. Thus, it is still an open problem whether robots can reach
a consensus on the group center with only local interactions.

Compared with the existing results, the novelty and con-
tribution of this paper are summarized as threefold. First,
we establish an integrated negotiation-control swarm scheme
to avoid local optimal problems such as fragmentation and

void phenomena. The key component to resolve this is the
virtual group center (inherently global information), which
is obtained through local negotiations among robots. It is
called a “virtual group center” because it is not the actual
center of the robot swarm yet a consensus center negotiated
by all the robots. Such a negotiation-control scheme has
been employed in our previous work on the shape forma-
tion of swarm robots [32]. In contrast, we here consider a
more complex case of the double-integrator model. Second,
we propose a distributed negotiation protocol to address the
negotiation problem on the virtual group center in both free
swarm control and time-varying swarm control. Compared
with the existing methods [28–30], we provide a guarantee
that our proposed negotiation protocol can converge to the
desired states globally and asymptotically. Third, we propose
a shepherding-inspired swarm control strategy for massive
robots. Here, we introduce two types of robots with different
roles, i.e., herding robots acting as shepherd dogs and herded
robots acting as sheep. The core idea of this strategy is that
herding robots control herded robots to form an equilibrium
swarm. The comparison between our strategy and two state-
of-the-art methods [11, 22] demonstrates the improvement of
integrity, uniformity, and stability for swarm control.

2 Problem statement

Consider a group of n autonomous robots in Rd, where n > 2
and d = 2 or 3. Each robot is regarded as a circle with the
body size of rb, and it can interact with other robots within
the sensing range of rs. Without loss of generality, we can
use a double integrator to describe the motion of each robot: ṗi = vi,

v̇i = ui,
(i = 1, . . . , n), (1)

where pi, vi,ui ∈ Rd represent the position, velocity, and ac-
celeration command of robot i, respectively. The double-
integrator model is closer to the actual system than the single
integrator. In practice, the control and planning of quadrotors
can be designed based on a double integrator [33, 34].

The interaction among robots is described by an undi-
rected graph G = (V,E), which consists of a vertex set
V = {1, ..., n} and an edge set E ⊆ V ×V such that

E =
{
(i, j) :

(
pi, pj

)
∈ D, i, j ∈ V, j , i

}
with D = {(pi, pj) ∈ Rd × Rd : ∥pi − pj∥ < rs}, where ∥ · ∥
refers to the Euclidean norm in Rd. The edge (i, j) ∈ E in-
dicates that robot i can receive information from robot j, and
robot j is a neighbor of robot i. Thus, the set of neighbors of
robot i is

Ni =
{
j ∈ V :

(
pi, pj

)
∈ D

}
. (2)
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In refs. [22, 32], to simplify the problem analysis, it is of-
ten assumed that robots can perceive neighboring individuals
within a certain distance, which is called a metric interaction
topology.

The objective of this paper is to steer a group of robots
from their initial disorder configuration to assemble an inte-
grated, uniform, and stable spatial structure in such a way
that the herding robots enclose the remaining herded robots
(Figure 1). Different from shape formation problems where
robots can form user-specified shapes [35–37], we here al-
low robots to spontaneously form a certain shape configura-
tion only relying on local interactions with their neighbors,
also known as swarm aggregation [38]. To do that, robots
first need to reach an agreement on virtual group center with
their neighbors, as shown in Figure 1(b). At the same time,
the herding robots at the boundary of the group control the
herded robots inside the group to form an equilibrium con-
figuration, as shown in Figure 1(c). One may notice that the
role of each robot is dynamically switched according to the
robot’s location in the group. Furthermore, the swarm robots
should be able to track a time-varying reference while main-
taining the equilibrium configuration. Next, we show how to
design an appropriate swarm control scheme to achieve such
an objective.

3 Distributed negotiation on virtual center

The proposed swarm control scheme consists of two compo-
nents, as shown in Figure 1(a). The first is a distributed ne-
gotiation protocol that can autonomously reach a consensus
among robots on the final location of the virtual group cen-
ter. The second is a swarm control strategy that drives swarm
robots to form an equilibrium configuration by imitating the

process of shepherding sheep. This section first addresses
how to design the distributed negotiation protocol.

3.1 Negotiation protocol design

Our scheme is to allow robots to reach a consensus on the fi-
nal location of the virtual group center. While one may spec-
ify the coordinate of the virtual group center by informing all
robots, we here consider a fully distributed scenario where
each robot negotiates and finally reaches a consensus on the
virtual group center in a distributed manner (Figure 1(b)).

Let pc and vc be the position and velocity vectors of the
virtual group center, respectively. The interpretations of pc

and vc by robot i are denoted as p̂c,i and v̂c,i. Then, the in-
terpretations of all the robots on the virtual group center can
reach an agreement by the following negotiation protocol:

˙̂vc,i = −
∑
j∈Ni

ai j

[
c1

(
p̂c,i − p̂c, j

)
+ c2

(
v̂c,i − v̂c, j

)]
− v̂c,i, (3)

where constant c1 > 0 and variable c2 = α1+c1/(α1γi). Here,
α1 is a positive constant, and γi satisfies γi =

∑
j∈Ni

ai j. The
adjacency coefficient ai j ∈ {0, 1} is determined by: if j ∈ Ni,
ai j = 1, and otherwise ai j = 0. Initially, p̂c,i(t0) = pi(t0) and
v̂c,i(t0) = 0 show that each robot treats itself as a statically vir-
tual group center. The convergence analysis of eq. (3) under
this initial condition will be presented later in Theorem 1.

As can be seen from eq. (3), the first term is the state coor-
dination component. Its primary objective is to reduce the ne-
gotiation deviation of neighboring robots for the virtual group
center and ensure that the state interpretations can converge
uniformly in the end. The second term is a damping velocity,
whose responsibility is to adjust the evolution speed of the
virtual group center.

(a) (b)

(c)

Figure 1 An overview of the integrated negotiation-control swarm scheme. (a) Architecture of the proposed scheme. (b) Example to show the negotiation
process of robots. (c) Example to show the swarm control process of robots.
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Next, we present the convergence analysis of the proposed
negotiation protocol (eq. (3)). To do that, we make the fol-
lowing assumptions.

Assumption 1 The negotiation process converges faster
than the control process.

This assumption is valid because the negotiation process
is a numerical computational process that relies only on vir-
tual states, that is, p̂c,i and v̂c,i. These states are not subject
to the physical dynamics of the robot. In contrast, the control
process is subject to the real physical dynamics of the robot.
As a result, the control process evolves much slower. The
subsequent simulation results support this assumption.

Assumption 2 The swarm networkG remains connected
and time-invariant.

Network connectivity is the basis for the global conver-
gence of swarm control algorithms [39, 40]. Assumption 2 is
valid when the initial graph is connected and Assumption 1 is
valid. Specifically, when the negotiation process converges,
the swarm configuration is almost unchanged and thus G re-
mains connected and time-invariant. In fact, an alternative
that can strictly ensure the assumption of G would be to run
an initialization process, during which we wait for the nego-
tiation process to converge first.

Then, we discuss the nonsingularity of γi by Lemma 1 and
show the convergence of protocol (eq. (3)) by Theorem 1.

Lemma 1 Under Assumption 2, γi > 0 for all i ∈ V.

Proof. Recall that γi =
∑

j∈Ni
ai j. Since all the diagonal

entries of degree matrix D(G) is positive by Assumption 2, it
holds that γi > 0 for all i ∈ V.

Theorem 1 At the initial moment, let p̂c,i(t0) = pi(t0)
and v̂c,i(t0) = 0 for all i ∈ V. Under Assumption 2, the po-
sition interpretations under protocol (eq. (3)) converge to the
means of all the robots’ initial interpretations globally and
asymptotically.

Proof. Suppose p̂c = [ p̂T
c,1, ..., p̂

T
c,n]T, v̂c = [v̂T

c,1, ..., v̂
T
c,n]T ∈

Rdn. The matrix-vector form of eq. (3) is

˙̂vc = −c1 L̃ p̂c − c2 L̃v̂c − v̂c, (4)

where c1, c2 > 0 and L̃ = L ⊗ Id. Here, Id ∈ Rd×d is
an identity matrix, and L is a Laplacian of [ai j]n×n. Let
pc =

1
n
∑n

i=1 p̂c,i and vc =
1
n
∑n

i=1 v̂c,i. Since ai j = a ji for all
i, j ∈ V, v̇c =

1
n
∑n

i=1 v̇c,i = −vc holds. Denote p̂c = δp+1n⊗pc

and v̂c = δv + 1n ⊗ vc, where δp and δv ∈ Rdn are negotiation
errors and satisfy δv = δ̇p. Substituting p̂c and v̂c into eq. (4)
yields

δ̇v = −c1 L̃δp − (c2 L̃ + Idn)δv − 1n ⊗ (v̇c + vc). (5)

Here, note that L̃(1n ⊗ pc) = 0 and L̃(1n ⊗ vc) = 0 due to
ai j = a ji for all i, j ∈ V. Since v̇c =

1
n
∑n

i=1 v̇c,i = −vc, the

error dynamics (eq. (5)) can be expressed as follows: δ̇p

δ̇v

 =
 0 Idn

−c1 L̃ −(c2 L̃ + Idn)


 δp

δv

 . (6)

Let λ be an eigenvalue of eq. (6). The characteristic equa-
tion is given by det((λ2 + λ)Idn + (λc2 + c1)L̃) = 0. Then,
the roots of the above equation can be obtained by solving
λ2 + λ = (λc2 + c1)σ where σ is an eigenvalue of −L̃. Thus,
we obtain:

λ =
1
2

[
c2σ − 1 ±

√
(c2σ − 1)2 + 4c1σ

]
. (7)

Note that λ in eq. (7) has a similar form as eq. (15) in ref.
[41]. As a result, it can follow a proof similar to Lemma 4.6
in ref. [41] to show that p̂c,i(∞) = pc and v̂c,i(∞) = 0 if σ > 0
and

∑n
i=1 v̂c,i(0) = 0 by Assumption 2.

3.2 Tracking moving virtual group center

To track the virtual-maneuvering group center, we introduce
a small number of informed robots who know the navigation
information of a time-varying reference to be tracked. The
basic idea is that the informed robots would insist on their
interpretations of the desired motion during the negotiation
process. As a result, the interpretations of the other unin-
formed ones would converge to those of the informed ones.

Let pt, vt ∈ Rd denote the position and velocity of a time-
varying reference for the virtual group center. If robot i is
informed, then it applies the following protocol to update its
position interpretation:

˙̂vc,i = −
∑
j∈Ni

ai j

[
c1

(
p̂c,i − p̂c, j

)
+ c2

(
v̂c,i − v̂c, j

)]
− [

c1
(
p̂c,i − pt

)
+ c2

(
v̂c,i − vt

) − v̇t
]
, (8a)

and uninformed robots execute a variant of protocol (eq. (3))
as follows:

˙̂vc,i = −
∑
j∈Ni

ai j

[
c1

(
p̂c,i − p̂c, j

)
+ c2

(
v̂c,i − v̂c, j

)]
+

1
γi

∑
j∈Ni

ai jv̇c, j, (8b)

where c1 and c2 are the same as those in eq. (3). The role
of the first term in protocol (eq. (8)) is the same as that in
eq. (3). The second term in eq. (8a) aims to track the time-
varying reference and the second term in eq. (8b) is to align
robots’ own interpretations with neighboring ones. Next, we
prove the convergence of eq. (8) by Theorem 2.

Theorem 2 Under Assumption 2, the position interpre-
tations under negotiation protocol (eq. (8)) converge to the
time-varying reference globally and asymptotically.
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Proof. Denoting new states as p̂c,n+1 , pt and v̂c,n+1 , vt,
we rewrite negotiation protocol (eq. (8)) as

˙̂vc,i = −
n+1∑
j=1

ai j

[
c1

(
p̂c,i − p̂c, j

)
+ c2

(
v̂c,i − v̂c, j

)
− 1
γi

v̇c, j

]
, (9)

where ai,n+1 = 1 for informed robot and ai,n+1 = 0 for un-
informed one. In special, an+1,n+1 = 1. Recall that c2 =

α1 + c1/(α1γi) in eq. (9). Reorganizing and multiplying γi on
both sides of eq. (9) gives

∑
j∈Ni

ai j

[
c1

α1

(
v̂c,i − v̂c, j

)
+

(
˙̂vc,i − ˙̂vc, j

)]

= −β
∑
j∈Ni

ai j

[
c1

α1

(
p̂c,i − p̂c, j

)
+

(
v̂c,i − v̂c, j

)]
,

where β = α1γi > 0. Let

εi =
∑

j∈Ni
ai j

[(
p̂c,i − p̂c, j

)
+

(
v̂c,i − v̂c, j

)]
for i. Then, we have ε̇i = −βεi, which implies that εi is
asymptotically and globally stable. Equivalently, it follows
that p̂c,i and v̂c,i converge to pt and vt asymptotically and glob-
ally, respectively.

Some discussion about the negotiation algorithms is given
below. First, the negotiation process can be viewed as a fast
inner loop of the entire swarm system, and the control pro-
cess as discussed later can be viewed as a slow outer loop
of the entire system, as shown in Figure 1(a). As long as
the inner loop enables robots to reach a consensus on the fi-
nal virtual group center, the outer loop can control robots to
form a cohesive swarm. Second, the control process uses the
output of the negotiation process as the only input, and the
negotiation process does not rely on the control process, as
shown in Figure 1(a). In other words, the control process is
only affected by the virtual group center. By this way, robots
can gather around the virtual group center to form a coherent
swarm, which will be presented in the next section.

4 Shepherding-inspired swarm control

Previously, we have defined the distributed negotiation mech-
anism of the virtual group center, and then we present
shepherding-inspired swarm controller. The proposed con-
trol strategy is illustrated in Figure 1(c). To do that, we first
require addressing the problem of how to determine whether
a robot is a herding robot or a herded robot. Then, we need to
solve the problem of how to design local interaction behav-
iors for muti-robot swarm control based on local information.

4.1 Robot role determination

Regarding the role of a robot, we here determine it according
to the robot’s location in the group. More specifically, we de-
fine the herding robots as ones who are at the boundary of the
group, and the herded robots as ones who are located inside
the group, as shown in Figure 2.

A question that immediately follows is how to distinguish
whether a robot is at the boundary or inside the group. For
this purpose, we identify it by using the number of line-of-
sight neighbors. The definition of the line-of-sight neighbor
of a robot will be given by eq. (11) later. Recall the metric
neighbor set Ni defined by eq. (2). The metric neighbors of
a robot are determined by the distance from it, as illustrated
in Figure 2(a). Next, we identify the line-of-sight neighbors
from these metric neighbors by partitioning the robot’s vision
area.

Let m denotes the number of divisions of the robot’s vision
area. See Figure 2(b) for an illustration. Then, the neighbor
subset of the divided subarea k can be given as follows in-
spired by ref. [42]:

Nk
i =

{
j :

2π
m

(k − 1) <
⟨
θi j − θi

⟩
6

2π
m

k, j ∈ Ni

}
,

where θi is the orientation of robot i, and θi j is the azimuth
angle of neighbor j relative to robot i. The operator ⟨z⟩ trans-
forms angle z into [0, 2π). In each neighbor subset Nk

i , we
take the individual closest to robot i as the line-of-sight neigh-
bor in vision subarea k (Figure 2(b)), that is

Ñk
i =

{
j′ : j′ = arg min

∥∥∥pi − pj

∥∥∥ , j ∈ Nk
i

}
. (10)

Recall that ∥·∥ refers to the Euclidean norm in Rd. As a result,
the line-of-sight neighbor set of robot i is defined by

Ñi =
{
j : j ∈ Ñk

i , k = 1, 2, ...,m
}
. (11)

It follows from eq. (11) that Ñi ⊂ Ni. Here, we take m = 6 as
shown in Figure 2(b), which is inspired by the visibility in-
teractions in the natural swarm. The work in ref. [43] shows
that starlings only interact with 6 or 7 nearby starlings rather
than all individuals within the vision, which is related to in-
dividual tracking ability and survivability.

As can be seen from eq. (11), it has at most m line-of-sight
neighbors for robot i, namely |Ñi| 6 m. By this way, we can
determine the role of a robot according to the number of its
surrounding line-of-sight neighbors. To this end, we make
the following definition.

(1) Herding robot. A robot with less than m line-of-sight
neighbors is called a Herding robot, which means that it is at
the boundary of the group. As shown in Figure 2(c), the focus
robot is a herding robot since there are 5 (m = 6) line-of-sight
neighbors around it.
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(a) (b)

(c) (d)

Figure 2 Schematic diagram of robot role determination. (a) Metric-based
neighboring robots. The focus robot is red. Orange robots are the metric
neighbors of the focus robot. (b) Line-of-sight neighboring robots. The vi-
sion area of the focus robot is divided into six subareas. Orange robots are
line-of-sight neighbors of the focus robot. (c), (d) Examples to explain the
herding robot and herded robot. Herding robots are blue and herded robots
are green.

(2) Herded robot. A robot with m line-of-sight neighbors
is called Herded robot, which implies that it is located inside
the robot group. As shown in Figure 2(d), there are 6 line-of-
sight neighbors around the focus robot, and thus it is called a
herded robot.

Next, we discuss the connectivity of subgraph G̃ = (V, Ẽ)
defined by Ẽ = {

(i, j) : i ∈ V, j ∈ Ñi
}

through Theorem 3.
This result is used later in Section 4.2 to prove the conver-
gence of the control law.

Lemma 2 If robot l is a line-of-sight neighbor of robot i
in vision subarea k, then any other metric neighbors j of robot
i in subarea k are closer to the robot j than robot i.

Proof. Denote di j = ∥pi − pj∥ as the distance between
robot i and j. By applying the Cosines law, we have d2

l j =

d2
il + d2

i j − 2dildi j cos ϕ where ϕ is the angle between vectors
pl− pi and pj− pi. Recall that m is taken to be 6, which means
ϕ 6 π/3. Then, we have

d2
l j 6 d2

il + d2
i j − dildi j = d2

i j − dil

(
di j − dil

)
.

It follows from eq. (10) that dil 6 di j. Thus, we can conclude
that d2

l j 6 d2
i j, that is dl j 6 di j, completing the proof.

Theorem 3 Consider a subgraph G̃ = (V, Ẽ) of graph
G = (V,E), where Ẽ = {

(i, j) : i ∈ V, j ∈ Ñi
}
. If G is

connected for all t > 0, then G̃ remains connected for all
time.

Proof. The idea of the proof is to show that for any pair
(i, j) ∈ E in G, there always exists a path from j to i in

G̃. Here, assume j is any metric neighbor of robot i. This
means that robot i can keep connected with j via a multi-hop
path constituted by a set of line-of-sight neighbors. Then, we
prove that there exists a path from j to i in G̃.

Suppose that robot j is in subarea k of robot i and robot l
is the line-of-sight neighbor of robot i in this subarea. Since
∥pl − pj∥ 6 ∥pi − pj∥ by applying Lemma 2, robot j is also a
neighbor in a certain subarea of robot l. At this time, if robot j
is a line-of-sight neighbor of robot l, then the theorem holds.
Otherwise, we continue to find a line-of-sight neighbor for
robot l’s line-of-sight neighbor denoted as robot s. As this
process is repeated, the distance between robots s and j de-
creases based on Lemma 2. As a result, we can always find a
line-of-sight robot such that robot j is the nearest neighbor in
one of its vision subarea. In other words, we can find a path
consisting of line-of-sight neighbors between robot i and j,
completing the proof.

4.2 Swarm control law design

Inspired by the natural shepherding behaviors, we design the
following control strategy for distributed swarm control of
massive robots:

ui = f inter
i + f herd

i + f align
i , (12)

where f inter
i , f herd

i , and f align
i represent attraction-repulsion

force, swarm-herding force, and velocity-alignment force, re-
spectively.

(1) Attraction-repulsion force. The first component is the
attraction-repulsion force f inter

i , which describes the internal
attraction and repulsion interactions among robots, as shown
in Figure 1(c). In particular, it is designed as

f inter
i =

∑
j∈Ñi

κ1 ρ(∥pi − pj∥)
∥pi − pj∥ϵ

− κ2
ρ(∥pi − pj∥)2

∥pi − pj∥2ϵ

 ni j, (13)

with

ρ (z) =
3

√
2π (rs − rb)

exp

−9
2

(
z − rb

rs − rb

)2,
where κ1 and κ2 are two positive constants, and ni j = (pj −
pi)/∥pj − pi∥ is a unit vector. The operator ∥z∥ϵ is defined by
∥z∥ϵ =

√
zT z + ϵ with a small number ϵ > 0. The use of Ñi

is to allow robots to pay attention to the neighbors who have
great impacts on themselves, and meanwhile it also conforms
to the practical characteristics of onboard sensors with local
measurement capability.

The force f inter
i acts as both attraction and repulsion forces

within the multi-robot system, which can drive robots to form
a tight group, as shown in Figure 1(c). If one robot is close
to another robot, mutual attraction occurs between these two
robots to drive them closer, as seen from the first term in
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brackets of eq. (13). We refer to this behavior as attraction in-
teraction. If approached by another robot infinitely, the focal
robot pushes it away from another one to avoid a collision, as
seen from the second term in brackets of eq. (13). We refer
to this behavior as repulsion interaction. For a better under-
standing, an illustrative example is introduced to describe the
attraction and repulsion interactions among nearby robots, as
shown in Figure 1(c).

(2) Swarm-herding force. The most important component
in control law (eq. (12)) is the swarm-herding force f herd

i ,
the responsibility of which is to enclose the herded robots to
assemble a cohesive swarm, as shown in Figure 1(c). In par-
ticular, it is defined as the following form:

f herd
i = κ3ςi

(
p̂c,i − pi

)
+ κ4

(
v̂c,i − vi

)
+ ˙̂vc,i, (14)

where κ3, κ4 > 0 are two constants, and ςi ∈ {0, 1} is used
to mark whether robot i is a herding robot or a herded robot.
If there is always a line-of-sight neighbor in each vision sub-
area around robot i, i.e., |Ñi| = m, then robot i is denoted as a
herded robot. At this time, ςi is taken to be 0. If there exists at
least one subarea without neighbors around robot i, |Ñi| < m,
then robot i is a herding robot and ςi is taken to be 1. Recall
that m is the number of divisions of robot i’s vision area.

As seen from eq. (14), there are two objectives of the
swarm-herding force f herd

i . On the one hand, if robot i is a
herded robot (ςi = 0), it aims to maneuver at the same ve-
locity with the virtual group center. At this time, only the
second and third terms in eq. (14) come into play. On the
other hand, if robot i is a herding robot (ςi = 1), then its
purpose is to enclose the internal herded robots towards the
virtual group center while maintaining the same velocity as
the virtual group center. At this time, all the terms in eq. (14)
are effective. An easy-to-understand example of f herd

i can be
found in Figure 1(c).

(3) Velocity-alignment force. The aim of velocity-
alignment force f align

i is to achieve velocity alignment with
neighbors, as illustrated in Figure 1(c). To this end, it is de-
signed as

f align
i = −

∑
j∈Ñi

ãi j

(
vi − v j

)
, (15)

where the adjacent weight ãi j simulates the interaction
strength between two adjacent robots, which is defined by

ãi j =


1, 0 6 ri j 6 2rb,

1
2

[
1 − cos

(
π

ri j − 2rb

rs − 2rb

)]
, 2rb < ri j < rs,

0, ri j > rs,

(16)

where ri j = ∥pi − pj∥. It follows from eq. (16) that if robots i
and j are close to each other, the interaction strength ai j will

increase. On the contrary, if ri j increases, ai j will decrease.
If ri j → rs, there is ai j → 0. The weight ai j is introduced to
facilitate separation between robots, that is, with weights de-
creasing to zero as robots separate [19], which is meaningful
for swarm control.

As can be seen from eq. (15), f align
i serves as a friction.

Since the evolution direction of f align
i is opposite to the direc-

tion of the relative velocity vi−v j, it will reduce the difference
of the relative velocity until vi and v j reach a consistent ve-
locity.

4.3 Convergence analysis

Up to now, we have achieved the design of the shepherding-
inspired swarm controller. Then, we present the conver-
gence analysis of the proposed control law as follows. De-
note p = [pT

1 , ..., p
T
n ]T, v = [vT

1 , ..., v
T
n ]T ∈ Rdn and p̂c =

[ p̂T
c,1, ..., p̂

T
c,n]T, v̂c = [v̂T

c,1, ..., v̂
T
c,n]T ∈ Rdn. The matrix-vector

form of eq. (12) is

v̇ = −∇V(p) − L̃v + κ3Ω ( p̂c − p) + κ4 (v̂c − v) + ˙̂vc, (17)

where ∇ is the gradient operator along p, and matrix L̃ and
Ω are defined by L̃ = L ⊗ Id and Ω = diag(ς1, ..., ςn), re-
spectively. Here, L is the Laplacian of [ãi j]n×n, and Id is a
d-dimensional identity matrix. The potential energy V(p) of
swarm system (eq. (1)) is defined by

V(p) =
n∑

i=1

∑
j∈Ñi

∫
Γi

κ2 ρ(∥pi − pj∥)2

∥pi − pj∥2ϵ
− κ1
ρ(∥pi − pj∥)
∥pi − pj∥ϵ

 ni jdpi,

where Γi is the motion trajectory of robot i. The boundedness
of functions is discussed as below.

Lemma 3 The function V(p) is bounded for all p ∈
Rdn.

Proof. The design of V(p) has a similar form as that in eq.
(3) in ref. [11]. By applying the Lemma 5 in ref. [11], one
can conclude that there exists h, c ∈ R such that h 6 V(p) 6 c
holds for all p ∈ Rdn.

With the above presentation, we are ready to present the
convergence of control law (eq. (17)). To do that, we need to
introduce an assumption ofG as shown in Assumption 2. The
assumption is essential when the initial graph G is fixed and
connected and the negotiation process of the virtual group
center converges much faster than the swarm control process.
By this way, we suppose that the negotiation process has al-
ready converged when analyzing the control process, thus
making Assumption 1. Then, we analyze the convergence
of eq. (17) by Theorem 4.

Theorem 4 Under Assumptions 1 and 2, the swarm
robots can form an equilibrium configuration, i.e., (1) there
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exists r > 0 such that ∥pi − p̂c∥ 6 r for all t > t0, and (2) as
t → ∞, it holds that ∥vi − v̂c∥ = 0 for any i ∈ V.

Proof. Let χ = p̂c − p and υ = v̂c − v. Then, the matrix-
vector form of system (eq. (1)) applying (eq. (17)) is formu-
lated as χ̇ = υ,υ̇ = −∇U(χ) − L̃υ + κ4υ,

(18)

where U(χ) = V(χ)+ 1
2κ3Ωχ

Tχ. Here, L̃ is positive semidef-
inite according to Lemma 2. Then, we define a Lyapunov
candidate of eq. (18) as

H(χ, υ) = U(χ) +
1
2
υTυ. (19)

By using Lemma 3 and Assumption 1, the initial Lyapunov
H(χ(t0), υ(t0)) is finite, denoted as H1. Eqs. (18) and (19)
have a similar form as eqs. (20) and (21) in our previous
work [11]. As a result, it can follow a proof similar to The-
orem 3 in ref. [11] to show that ∥pi − p̂c∥ 6

√
2(H1 − h)/κ3

for all t > t0 and ∥vi(∞) − v̂c(∞)∥ = 0 hold for any i ∈ V,
completing the proof.

5 Numerical and flight simulations

To verify the theoretical results, we implement and text our
proposed swarm scheme in both numerical and flight simula-
tions. The details are given as below.

5.1 Performance metrics

To evaluate the performance of our proposed scheme, we de-
fine the following performance metrics.

The first metric, uniformity, is to evaluate the distribution
uniformity of robots. Let j = arg mink∈Ni ∥pi − pk∥ be the
nearest neighbor to robot i. Then, the metric is defined as

M1 =

n∑
i=1

(
ri j −

1
n

∑n

i=1
ri j

)
,

where ri j =
∥∥∥pi − pj

∥∥∥. The metric M1 reaches zero when the
distance of any two adjacent robots tend to be the same.

The second metric, swarm radius, is the minimum radius
of a sphere centered at group center that contains all the
robots. In particular, the metric is defined as

M2 = max
i∈V

∥∥∥∥∥pi −
∑n

j=1
pj

∥∥∥∥∥ .
If robots form an aggregated swarm, M2 eventually converges
to a fixed value. Otherwise, M2 diverges.

The third metric, velocity polarization, is to evaluate the
polarization of the velocities of the robot swarm. The metric
is defined as

M3 =
∥∑n

i=1 vi∥∑n
i=1 ∥vi∥

.

If all the robots move coherently in same velocity, then M3 is
close to one. On the contrary, if all the robots move chaoti-
cally, then M3 is approximately zero.

5.2 Numerical simulation

We present two simulation examples as below to test and
verify the effectiveness and maneuverability of our proposed
scheme. In simulation, each robot is modeled as a circular
omnidirectional robot with a body size rb = 1.5 m. Robots
can sense any other robot who lies within its sensing range
rs = 8.4 m.

The first example is used to evaluate the effectiveness of
our proposed scheme for swarm control of massive robots.
In this example, we compare the proposed scheme with two
state-of-the-art methods. The first is the well-known Olfati
scheme [22] and the second is our previous scheme [11]. The
parameter settings of these three methods are listed in Ta-
ble 1. As illustrated in Figure 3, we set up 4 different cases
for comparisons, corresponding to 4 different initial configu-
rations and 3 types of swarm size. It is shown that, given the
same initial configurations, three schemes can assemble an
aggregated swarm when the number of robots is as small as
10. At this time, the uniformity between robots is consistent,
while the swarm formed by our method are more compact,
as demonstrated in Figure 3(b). However, as the swarm size
increases, fragmentation will occur in Olfati scheme, which
is consistent with the conclusion in ref. [22]. In contrast, the
method in ref. [11] is suitable for swarm control of a large
number of robots. However, the fragmentation phenomenon
also occurs when the initial positions of robot swarm are
sparse, as shown in Case 2 of Figure 3(a). Furthermore,
the method in ref. [11] also causes void phenomenon, as
shown in Case 4 of Figure. 3(a). Different from the above two

Table 1 Simulation parameters

Method in ref. [22] Method in ref. [11] Our proposed

d 7.0 rs 1.5 rb 1.5

r 8.4 rc 8.4 rs 8.4

a 5 α 51 κ1 51

b 5 β 151 κ2 151

c 4.5 – – c1 4

h 0.2 – – α1 6

– – – – κ3 0.45

– – – – κ4 2.36
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(a) (b)

(c)

Figure 3 Comparison between our proposed method, Olfati method [22], and our previous method [11]. (a) Final configurations and trajectories of the swarm
control by the three methods. (b) Performance metrics of comparison results. (c) Negotiation errors of the position and velocity with the means of all the
robots’ initial interpretations of our proposed method.

methods, our proposed scheme can form an integrity, unifor-
mity, and stability configuration without fragmentation and
void phenomena. Moreover, the final configuration is rela-
tively tighter, as demonstrated in Figure 3(b). It is also shown
that the position interpretations on the virtual group center of
all the robots converge to the means of their initial interpre-
tations and the velocity interpretations converge to zero, as
shown in Figure 3(c).

The second simulation example demonstrates the motion
property of our method in terms of translation and rotation.

As shown in Figure 4, we set up a scenario where robot
swarm tracks a moving virtual group center. In this example,
only one fifth of the robots are informed robots who know
the navigation information of a time-varying reference to be
tracked, and other robots, uninformed robots, do not require
knowing who the informed robots are. As can be seen, robots
swarm can form an aggregated and orderly swarm from an
initially disordered configuration and track a time-varying
reference stably. Moreover, the equilibrium configuration of
robot swarm is formed by the way that herding robots enclose
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(a)

(b)

(c)

Figure 4 Simulation results to illustrate the maneuverability of the proposed swarm scheme. (a) Swarm trajectories for tracking moving virtual group center.
(b) Negotiation errors and motion states of the maneuvering swarming. (c) Performance metrics of the maneuvering process.

internal herded robots. As shown in Figure 4(a), the green cir-
cle represents the herded robot and the blue one is the herd-
ing robot, which is dynamically determined by the number
of its line-of-sight neighbors. It can also be found that all
the robots are evenly distributed by this way. Most impor-
tantly, each robot’s interpretation on the virtual group center
can quickly tend to be consistent and converge to the time-
varying reference, which is an important basis for achieving
swarm aggregation. Moreover, the negotiation results of each
robot do not fluctuate with the movement of robot swarm.

5.3 Flight simulation

To validate the efficiency of our proposed scheme, we per-
form a high-fidelity simulation using the AirSim simulator
built on Unreal Engine that offers physical simulations. Air-
Sim is an open-source platform that aims to bridge the gap
between simulation and reality [44].

In order to adapt to aerial robots, we design the following
conversion to convert acceleration commands into pitch angle
θi, roll angle ϕi and throttle τi of aerial robot i:
θi = arcsin

−ux,i

T
,

ϕi = arcsin
uy,i

T cos θi
,

τi = κ5(pz,i − pr
z,i) + κ6vz,i + τ

r
i ,

where ux,i and uy,i represent the components of ui along x-
axis and y-axis respectively, and pz,i and vz,i are the compo-
nents of position pi and velocity vi along z-axis, and κ5, κ6 > 0
are positive constants. Moreover, T indicates the main thrust
given by the four rotors. In this simulation, we mainly con-
sider horizontal flight at a specified altitude pr

z,i, thus T can be
obtained by T = mg/(cos θ cos ϕ). Here, m is the mass of an
aerial robot and g is the acceleration due to gravity. The con-
stant τr

i represents the throttle reference when a quadcopter
is hovering at pr

z,i. It should be noted that axes x, y, and z
correspond to north, east, and ground respectively

Figure 5 shows the example to verify the proposed scheme
for aerial robot swarm. At the beginning, robots are randomly
distributed, and the graph formed by their positions is ini-
tially connected. Then, all the robots take off in batches and
climb to the specified altitude −20 m. Next, each robot grad-
ually forms a gathered swarm through local interactions and
moves to the target reference at a speed of 2 m/s. In this
simulation, we demonstrate that our proposed scheme can be
easily extended to aerial robots, and it can provide reliable
performance.

6 Conclusion

In this article, we proposed an integrated negotiation-control
scheme for distributed swarm control inspired by the shep-
herding behaviors. The proposed swarm scheme can prevent
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(a) (b)

Figure 5 Flight simulation of the proposed scheme. (a) Architecture of the simulation. (b) Snapshots of 50 aerial robots forming an equilibrium swarm.

robot swarms from trapping in a local minimum caused by
local observations, such as fragmentation and void phenom-
ena. To be specific, herding robots enclose the internal herded
robots by gathering towards their virtual group center, and
then forming a collective swarm. The introduction of the vir-
tual group center obtained by local negotiations with neigh-
bors, enables robots to have a broader global observation ca-
pability. In this case, robots can make comprehensive trade-
offs from a global perspective in motion decision-making. In
addition, we also present both numerical and flight simula-
tions to demonstrate the correctness and effectiveness of our
proposed control laws. The results show that our scheme pro-
vides effective improvement of integrity, uniformity, and sta-
bility for swarm control. In future work, we will incorporate
the predefined time consensus into the negotiation process,
and consider time delays and disturbances in practical net-
worked systems.
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14 Vásárhelyi G, Virágh C, Somorjai G, et al. Optimized flocking of
autonomous drones in confined environments. Sci Robot, 2018, 3:
eaat3536
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