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Most of nonlinear oscillators composed of capacitive and inductive variables can obtain the Hamilton energy by using the
Helmholtz theorem when the models are rewritten in equivalent vector forms. The energy functions for biophysical neurons can
be obtained by applying scale transformation on the physical field energy in their equivalent neural circuits. Realistic dynamical
systems often have exact energy functions, while some mathematical models just suggest generic Lyapunov functions, and the
energy function is effective to predict mode transition. In this paper, a memristive oscillator is approached by two kinds of
memristor-based nonlinear circuits, and the energy functions are defined to predict the dependence of oscillatory modes on
energy level. In absence of capacitive variable for capacitor, the physical time t and charge q are converted into dimensionless
variables by using combination of resistance and inductance (L, R), e.g., τ=t×R/L. Discrete energy function for each memristive
map is proposed by applying the similar weights as energy function for the memristive oscillator. For example, energy function
for the map is obtained by replacing the variables and parameters of the memristive oscillator with corresponding variables and
parameters for the memristive map. The memristive map prefers to keep lower average energy than the memristive oscillator, and
chaos is generated in a discrete system with two variables. The scheme is helpful for energy definition in maps, and it provides
possible guidance for verifying the reliability of maps by considering the energy characteristic.
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1 Introduction

Nonlinear circuits are often used as signal sources and fur-
ther filtering of the output signals can match with some
realistic signals within specific frequency band. High order
nonlinear terms account for complexity and specific function
in electric components, which are crucial for supporting
chaotic states and field energy savage. By taming some in-
trinsic parameters, chaos and hyperchaos are induced in the
nonlinear circuits [1–4], which are often described by
equivalent nonlinear oscillators, and these chaotic systems
have potential application in image encryption [5–8]. The

bionics throws light on the achievements of artificial in-
telligence [9,10] and functional enhancements of artificial
neurons and setting on biophysical neurons [11–15]. For
further clues about model approach of neural activities from
physical aspect, readers can explore suggestions in the recent
review and the references therein [16].
The reliability of nonlinear circuits depends on the con-

trollability. It means that most of the intrinsic parameters can
be controllable in wide range. External stimuli accompany-
ing with energy injection can be encoded to guide the outputs
to reach target levels. The cell membrane and synapse of a
biological neuron have distinct flexibility, as a result, gra-
dient energy and external stimuli including forcing current,
depolarized field will change the energy level and firing
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modes in neural activities in adaptive way. Therefore, the
synaptic intensity is regulated under the energy flow [17,18].
For example, an adaptive law [17,18] is suggested to control
the growth of synaptic intensity in two kinds of memristive
neurons, which are developed from neural circuits connect-
ing with memristive channels. Furthermore, two or more
neurons can be connected by synapses with a growth of the
synaptic intensity until reaching energy balance, while het-
erogeneity [19,20] can be created in the neural network due
to continuous energy collection from the adjacent neurons.
Most of the nonlinear circuits can present periodic or

chaotic states. A few nonlinear circuits can be tamed to
present similar firing patterns derived from biological neu-
rons. Some neural circuits are designed and their di-
mensionless forms are used as neuron models [21–25]. It is
crucial to consider the physical property of biological neu-
rons before building an equivalent simple neural circuit.
Static distribution of intracellular ions induces electric field
in the cell membrane, stochastic diffusion and propagation of
ions across the cell membrane induce magnetic field due to
current effect. Continuous exchange of energy flow will
change the distribution of intracellular and extracellular ions,
and thus the relation between membrane potential and
channel current becomes nonlinear dependence. Therefore,
capacitor, inductor, nonlinear resistor and constant voltage
source are four necessary elements for building a simple
neural network. The capacitor accounts for the capacitive
property of cell membrane, an inductor mimics the magnetic
field effect because of propagation and diffusion of ions,
constant voltage results from the resting potential in an ion
channel. In a neural circuit, a constant voltage source is often
connected to the inductor in series, and the nonlinear resistor
is used as additive channel to shunt energy flow. When
piezoelectric ceramics, phototube and thermistor are in-
corporated into the neural circuit, the neurons become sen-
sitive to external voice, illumination and temperature [26–
30]. In particular, the involvement of memristive current and
magnetic flux variable into the neuron models can estimate
the electromagnetic induction and radiation [31–35]. Based
on these memristive neurons, the collective neural activities
can be controlled under field coupling even synaptic cou-
pling is suppressed greatly.
Oscillator-like models can be derived from circuit equa-

tions by applying scale transformation on the physical vari-
ables and parameters in the neural circuits. The energy
function composed of capacitive, inductive and memristive
terms can be mapped from the field energy for the electric
components with distinct field effect including capacitor,
inductor and memristor. The energy function can also be
derived and verified by using the Helmholtz theorem when
the formulas for the neuron model are updated with vector
forms. The emergence of chaos in an autonomous oscillator
requires involvement of three variables at least in absence of

noisy disturbance and time delay. However, a map can pro-
duce chaotic series even one variable is regulated. To pro-
duce chaotic behaviour in the neural activities, three-variable
neurons and two-variable models driven by external periodic
current in the form of nonlinear oscillators have been in-
vestigated extensively. However, discrete systems and maps
(discrete neurons) [36–38] are effective to mimic the main
firing modes in some biological neurons, and the involve-
ment of memristive term is helpful to estimate the electro-
magnetic induction as well [39,40]. Memsitor shows great
application in neural circuits and synapse implement for
neuromorphic computing see recent review works [41–44].
Most of the memristive oscillators can be approached by
setting equivalent memristor-based circuits and the energy
characteristic is clear. However, many works about discrete
memristor and memristive maps are discussed from mathe-
matical definition and field programmable gate array
(FPGA) simulation [39,45–49], and how to describe the
energy characteristic keeps open. Therefore, it is a challenge
to define and estimate the energy function for map neurons,
and the energy level dependence on firing modes keeps open.
In this paper, a memristive oscillator is expressed by two

different kinds of nonlinear circuits coupled by magnetic
flux-controlled memristor (MFCM) and charge-controlled
memristor (CCM), respectively. CCM and a voltage-con-
trolled element are used to couple the inductor when capa-
citor is not available. After scale transformation, two kinds of
memristor-based circuits are described by similar memristive
oscillators and energy functions are defined. Applying linear
transformation on the variables and intrinsic parameters,
each memristive oscillator is replaced by a memristive map
under covariation. For example, dy/dt=A×y(1−y) to
xn+1=B×xn(1−xn). Then the energy function for the memris-
tive oscillator is referred to define a discrete energy function
for the map with the same weights. Bifurcation analysis is
carried out, and the average energy is calculated to predict
coherence resonance in the memristive maps.

2 Model and scheme

Reliable algorithm is crucial to obtain numerical solutions
for nonlinear equations, e.g., the fourth order Runge-Kutta
algorithm is effective to find solve numerical results for
nonlinear oscillators described by differential equations,
which are often discretized in exact forms. In particular, the
involvement of noisy excitations and disturbances makes a
stochastic dynamical system, and the approach of numerical
results depends on reliable algorithms [50,51]. On the other
hand, map modelling of complex systems can avoid and
reduce the difficulty during numerical approach. In ref. [52],
energy function for memristive devices is defined and esti-
mation of energy for some maps is discussed. It is assumed

1568 Guo Y T, et al. Sci China Tech Sci May (2024) Vol.67 No.5



that the same weights can be applied for the energy function
of a map by exploring the Hamilton energy function for an
equivalent nonlinear oscillator, which has distinct covaria-
tion with the map. In ref. [53]. linear transformation is ap-
plied to bridge connection to two nonlinear oscillators and
their equivalent maps. The capacitive energy 0.5C×V2 for a
capacitor and inductive energy 0.5L×i2 for an inductor can be
mapped into equivalent forms as 0.5A×x2 and 0.5B×y2, where
V, i are physical variables, x, y are corresponding di-
mensionless variables, and A, B are normalized gains for the
energy terms. Both MFCM [54–56] and CCM [57–59] can
save and contain field energy when they are incorporated
into a linear or nonlinear circuit. The energy property in an
MFCM and CCM can be described by suitable energy
function in an equivalent inductor and capacitor, respec-
tively. In fact, the energy description for memristive devices
often presents a high order term. That is, scale transformation
bridges connection between the circuit equations and the
nonlinear oscillator, field energy and Hamilton energy
completely [60].
For a nonlinear oscillator with a few variables, the dy-

namics can be investigated in its equivalent nonlinear circuit.
It is a challenge to verify the numerical results during se-
lecting and combining these potential electric components.
For example, the variables (x, y, z, …) for a nonlinear os-
cillator can be described by the output voltage for a capa-
citor, induction current along an induction coil, and a
constant term often means involvement of constant voltage
source in the branch circuit. Is it possible to build more
equivalent nonlinear circuits for mimicking the dynamics for
the same nonlinear oscillator? From physical viewpoint,
continuous oscillation in a nonlinear circuit requires the in-
volvement of capacitive and inductive components syn-
chronously. In ref. [53], the author suggested a memristive
oscillator with two variables, and scale transformation is
applied to obtain an equivalent map for further energy esti-
mation.

2.1 Linear transformations between memristive oscil-
lator and memristive map

The memristive oscillator is given in the form as follows:
y ry y y

a by

d
d = (1 ) ( + 3 ) ,

d
d = + ,

(1)
2

where r, a, b, α′, β′ are dimensionless parameters, and y, φ′
are dimensionless variables. Indeed, the eq. (1) is autono-
mous and it seldom presents chaotic series without external
stimulus or noisy disturbance. The Hamilton energy for the
memristive oscillator is described by

H y y= 1
2 + 1

2( + 3 ) . (2)2 3

When the variable y is mapped from a voltage variable, the
two energy terms are relative to capacitive and memristive
field, respectively. By applying the following linear trans-
formation in eq. (3), the memristive oscillator in eq. (1) is
replaced by a memristive map with similar form in discrete
type in eq. (4).

r r
r

b

r
r x r

r y a k

= 1 + , = , =
(1 + )

, = ,

= (1 + ) , = 1 + , = ( 1) ,
(3)

n n n n

2

2

where the variables (yn, φn′) are sampled time series for the
variables (y, φ′) in eq. (1), Δτ is the time step for numerical
approach of eq. (1).

x x x x
k x

= (1 ) ( + 3 ) ,
= + .

(4)n n n n n

n n n

+1
2

+1

The memristive map in eq. (4) can be regulated in the
parameters for developing different firing patterns. The
memristive oscillator in eq. (1) can be verified by designing
two equivalent circuits by incorporating different memris-
tors. Case 1: Capacitor, nonlinear resistor and MFCM are
connected in the neural circuit. Case 2: Inductor, a voltage-
dependent element and CCM are connected in the neural
circuit.

2.2 Approach of memristive oscillator by using MFCM

To verify the reliability of eq. (1), a nonlinear circuit in
Figure 1 is plotted to match with the energy property in
eq. (2). It is helpful to predict the physical properties of
electric components involved in this circuit.
The channel current iNR across the nonlinear resistor and

memristive current iM are respectively described by [60]

i r V V
V

i q
t M V V

= ( );

= d
d = ( ) = ( + 3 ) ,

(5)
NR

2

0

M 1 1
2

Figure 1 Schematic diagram for a neural circuit coupled by MFCM. A
memristive circuit composed of one capacitor, nonlinear resistor (NR) and
one MFCM.
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where V estimates the output voltage for the capacitor with
capacitance C, is the magnetic flux variable across the
memristor with physical parameters (α, β). V0 is constant,
and the gains (r, b) are the same parameters in eq. (1). Under
the Kirchhoff’s theorem, the relations between physical
variables for Figure 1 are defined by

C V
t i i

t A bV

d
d = ,

d
d = + ,

(6)
NR M

where the normalized parameter b has no physical unit, and
the parameter A has physical unit. The physical variables and
parameters in eq. (6) are rewritten in a dimensionless form
[61]:

y V
V CV

t
C

C V a A C

= , = , = ,

= , = , = .
(7)0 0

1
3 2

0
2

1

Inserting the variables and parameters for eq. (7) into the
eq. (6), it has the same form as presented in eq. (1). That is,
eq. (6) can produce similar behaviors in the memristive os-
cillator in eq. (1). The capacitive and memristive energy W1

and the dimensionless form for eq. (6) are estimated by [61]

W CV L i CV i

H W
CV y y

= 1
2 + 1

2 = 1
2 + 1

2 ,

= = 1
2 + 1

2( + 3 ) .
(8)

1
2

M M
2 2

M

1
1

0
2

2 3

That is, the field energy in eq. (8) is consistent with the
energy description in eq. (2), and the Hamilton energy is
verified by using the Helmholtz theorem when the memris-
tive oscillator is rewritten in a vector form. Therefore,
combination of a capacitor and an MFCM accompanying
with a nonlinear resistor is effective to reproduce similar
dynamical behaviors in the nonlinear oscillator in eq. (1).
The potential mechanism is that continuous oscillation in
nonlinear system requires continuous exchange between
capacitive and inductive field.

2.3 Approach of memristive oscillator by using CCM

A CCM has similar physical property as capacitor by keep-
ing capacitive property in field and energy characteristic. It is
interesting to investigate whether combination of inductor
and CCM can develop similar dynamics in eq. (1), and the
circuit implement is plotted in Figure 2.
According to Figure 2, the dimensionless variables (y, φ′)

in eq. (1) can link to the channel current across the inductor
and charge for the CCM. The relation between variables in
Figure 2 is defined as follows:

L i
t V V

q
t Bq di

d
d = ,

d
d = + .

(9)
L

i

L

ML

The parameter B is relative to the physical property of the
CCM, and it is approached by B=σ/C0, which C0 measures
the capacitive ability in the CCM and σ is a constant con-
ductance. The physical characteristic for the CCM and
channel current for NR are defined by

V i i
V

V M q i q i

= ( ),

= ( ) = ( + 3 ) .
(10)i L

L

L L

2

0

M 2 2
2

L

By applying similar scale transformation for the variables
and parameters in eqs. (9) and (10), a group of new variables
and parameters are obtained by

z i
V q q

C V
t
C

C
L

C
L

C V
L c

= , = , = , = ,

= , = , = .
(11)

L
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2
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0
2

0
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2

2

As a result, the eq. (9) is updated in a dimensionless form
as follows:

z z z q z

q cq dz

d
d = (1 ) ( + 3 ) ,

d
d = + .

(12)
2

It has the identical form shown in eq. (1) even the symbols
for variables and parameters show some differences.
Therefore, the two memristive systems in eqs. (1) and (12)
can present similar oscillatory characteristic by applying
suitable parameters. It is important to identify the energy for
the nonlinear circuit in Figure 2 and the field energy and its
dimensionless energy form are given in

W Li C V Li qV

H W
C V z q q z

= 1
2 +1

2 = 1
2 +1

2 ,

= = 1
2 + 1

2 ( + 3 ) .
(13)

L L2
2

M M
2 2

M

2
2

0 0
2

2 3

By using similar linear transformation, the dynamics in
eq. (12) can be presented in a map form.

w w w q w
q q µw

= (1 ) ( + 3 ) ,
= + .

(14)n n n n n

n n n

+1
2

+1

Figure 2 Schematic diagram for a neural circuit coupled by CCM. A
memristive circuit connected by one inductor, nonlinear resistor (NR) and
one CCM.
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From eq. (12) to eq. (14), it requires the following criterion
for redefining the parameters and variables.

d µ

q q w z c

= 1 + , = , =
(1 + )

, = ,

= (1 + ) , = 1 + , = 1,
(15)

n n n n

2

2

where the variables (z′n, qn′) are discretized from the vari-
ables (z′, q′) in eq. (12). Both eqs. (4) and (14) have the
similar form even these dimensionless variables are mapped
from different physical variables. However, their energy
functions in eqs. (8) and (13) are much different because the
physical field energy can be kept in different types. It means
that combination of different electronic components will
have different energy thresholds and ranges. Indeed, circuit
implement of the same nonlinear oscillator is dependent on
the combination of electric components greatly. A capacitive
component is crucial to keep electric field, and then dis-
charge will pump energy into inductive components for in-
ducing continuous oscillation. When a capacitor is not
available, a CCM is effective to save and propagate charges
in continuous way. As a result, changes of the channel cur-
rent passed in the inductor or induction coil generate an in-
duced electromotive force. Therefore, capacitive
components are indispensable elements to build nonlinear
circuits, and specific component dependent on charge flow
similar as the form of eq. (10) becomes indispensable.

2.4 Scale transformation for physical parameters and
units

In generic way, standard physical time unit is available when
both intrinsic parameters including capacitance and re-
sistance (C, R) or capacitive and inductance (C, L) are
known, and then the physical time is converted into di-
mensionless time variable as τ=t/RC, or τ=t/(LC)1/2. In fact,
when the intrinsic parameter C is not known, another time
factor can be used as reference value

d µ

q q w z c

= 1 + , = , =
(1 + )

, = ,

= (1 + ) , = 1 + , = 1.
(16)

n n n n

2

2

Therefore, replacing the variables in eq. (9) can develop
the memristive circuit in another form without clarifying
B=σ/C0. A group of new variables and parameters are de-
fined by

z i
V q LV q t

L
L V k BL

= , = , = ,

= 1 , = , = .
(17)

L

0

2

0

2

2
0
2

5 2 2

The memristive circuit in eq. (9) is updated with a new
form as follows:

z z z q z

q k q dz

d
d = (1 ) ( + 3 ) ,

d
d = + .

(18)
2

2

It presents similar form as shown in eq. (12). As a result,
similar dynamics can be reproduced by taming the para-
meters in eq. (18). As a result, similar discrete system for
eq. (18) can be obtained in the form as presented in eq. (14).
The energy function for eq. (18) is given in the form as
follows:

W Li C V Li qV

H W
V L

W
LV z q q z

= 1
2 +1

2 = 1
2 +1

2 ,

= ( / ) = = 1
2 + 1

2( + 3 ) .
(19)

L L3
2

M M
2 2

M

3
2

0
2 2

2
2

0
2

2 3

Indeed, scale transformation seldom changes the energy
function for the memristive circuit. Therefore, eq. (18) has
the same form of energy function defined in eq. (13) ac-
companying the gain p=1/γ. It is interesting to discuss the
energy approach for the memristive maps in possible way.
Eq. (8) presents exact calculation of energy for the mem-
ristive eq. (1). Considering relation between these para-
meters for the oscillator and map, a discrete energy function
for eq. (4) is estimated as follows:

H x x= 1
2 + 1

2( + 3 ) . (20)n n n n n
2 3

For the memristive map in eq. (14), the energy function is
suggested as follows:

H p w q q w= [1
2 + 1

2( + 3 ) ] . (21)n n n n n
2 3

The weight or gain for the energy function in eq. (14) can
be selected with p=1, and it has no distinct impact on the
exchange between capacitive and inductive energy terms.
The discrete energy function in eq. (21) is consistent with a
discrete form from eq. (19), and it indicates that the di-
mensionless energy function is independent of the scale
transformation because the energy function can be mapped
from the sole field energy function for the memristive circuit
completely.
Appearance and emergence of chaos in an autonomous

nonlinear oscillator requires three variables at least. In ab-
sence of external periodic forcing or noisy excitation, the
memristive oscillator in eqs. (1), (12), (18) just contains two
variables. Therefore, periodic oscillatory states can be de-
veloped rather than inducing any chaotic series. As is known,
chaos can be induced one-variable map and two-variable
map. Therefore, the memristive maps shown in eqs. (4) and
(14) can be tamed to present chaotic states by setting ap-
propriate values for the dimensionless parameters for sup-
porting a positive Lyapunov exponent. The potential
mechanism is that the discretization operation for the non-
linear oscillators introduces time factor for the variables into
the new developed maps, and the sampled time series in
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periodic type are encoded in the amplitude and interval
synchronously. Therefore, these mapped discrete systems
can present chaos or new periodic characteristic. In this case,
the memristive maps have distinct advantage than the
memristive oscillators for producing similar firing activities
as biological neurons.

2.5 Adaptive growth law controlled by energy level

Biological neurons often show controllable properties during
the polarization and magnetization, and even shape de-
formation is induced by specific mechanical stimuli. As a
result, some intrinsic parameters for ion channel, capacitive
and inductive properties are changed. Indeed, we can use a
similar control law as in refs. [17,18] for the memristive
parameters in eqs. (1), (12) and (18), and then the memristive
oscillators can experience different firing modes and the
average value for the energy function will show corre-
sponding jump between different energy levels. To keep the
same form for variables, the growth of intrinsic parameter is
controlled with exponential form smoothly. For maps, the
growth criterion is considered as saturation form restricted
by a Heaviside function. For simplicity, we consider the
adaptive growth of one memristive parameter for the mem-
ristive map as follows:

( )n
N H

P P P P

= + int ( ),

( ) = 1, 0, ( ) = 0, < 0,
(22)n0

0

where α0 is the initial value for memristive parameter, Δα is
the growth step, n denotes iterations, N0 measures the in-
terval for next growth, κ is the energy threshold and the
Heaviside function in eq. (22) controls its growth when the
energy level is beyond a threshold. On the other hand,
average energy value often predicts high regularity in the
neural activities. Adaptive reduction in some parameters is
also effective to control the mode transition. For example,

( )n
N H

P P P P

= int ( ),

( ) = 1, 0, ( ) = 0, < 0.
(23)n0

0

In the next section for numerical approach, the case de-
fined in eq. (22) will be discussed. Δα>0 means positive
growth of the memristive parameter from a small value,
Δα<0 can calculate the case for reduction of memristive
parameter from a high value.

3 Results and discussion

The memristive neuron can be presented in similar form in
eqs. (1), (12) and (18) and parameters can be adjusted to
trigger similar dynamical behaviors. The fourth order Runge-
Kutta algorithm can be applied to explore the dynamics by
finding the numerical solutions for the memristive oscillator
even different symbols are used for the variables and para-
meters. Bifurcation parameters are changed to present dif-
ferent firing patterns, and the corresponding energy function
is calculated as well. Our main aim is to investigate the
dynamics and energy characteristic of the memristive map,
and nonlinear response under the suggested adaptive law in
eq. (23). At first, we calculated the mode selection in eq. (4)
by changing one parameter carefully, and the distribution of
variable series is plotted in Figure 3.
From Figure 3, it is demonstrated that the memristive map

shows distinct transition between different firing modes by
changing one intrinsic parameter carefully. Complete firing
patterns including spiking, bursting and chaotic states are
induced by taming a single parameter in continuous way. To
discern the dynamics and energy characteristic of this
memristive oscillator, formation of attractors and energy
evolution are plotted for the neuron presenting different
neural activities in Figure 4.
The profile of the attractor is relative to the firing mode

and energy level. From chaotic state to periodic firing pat-
terns, chaotic attractor is suppressed and the average energy
value is increased. The similar case for memristive map in
eq. (14) is explored, and the bifurcation diagram is plotted in
Figure 5.
Complete firing modes are found in the memristive map in

eq. (14) by adjusting one normalized parameter carefully,

Figure 3 Bifurcation diagram of Xn vs. parameter λ (a) and parameter ε (b). (a) ε=0.15; (b) λ=4.2. Setting parameters α=0.4, β=0.02, k=0.5 and initials (0.2,
0.1).
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and the mode transition in Figure 5 is some different from the
distribution in eq. (3). Furthermore, the formation of attrac-
tor, changes of variable and energy function for the map are
calculated in Figure 6. Shift in the average energy and
changes of attractor profile predict mode transition in the
memristive map.
By changing a single parameter in eq. (14), chaotic at-

tractor is guided to show periodic type, and the average en-
ergy for the map also shows slight increase. Furthermore, it
is interesting to discuss the formation of attractors and mode
transition when the memristive map neuron in eq. (14) is
regulated by the adaptive law in eq. (22), and changes of
attractors are shown in Figure 7. Form simplicity, α0=0.1,
Δα=0.005, κ=0.5, N0=40 are used for the control law and
map attractors are presented.
The shape of attractors is changed with adaptive growth of

one memristive parameter in the map, chaotic and periodic
attractors can be formed as well. For better clarification, the

transition in the membrane potential, energy level and
growth of memristive parameter is shown in Figure 8.
Distinct changes are observed in the series for membrane

potential and energy function during the growth of mem-
ristive parameter with constant footstep. Similar to the
growth criterion in eq. (22), one memristive parameter can be
regulated with negative growth in eq. (23), which begins
from a higher value to a lower value. Similar mode transition
can be detected. By changing other parameters with the same
control low, similar mode transition and jump between en-
ergy levels can be found as well.
By setting higher value for the gain Δα or smaller interval

N0, the memristive parameter encounters rapid growth and
mode transition becomes more distinct. Furthermore, the
case for μ=1.58, 2.85 is calculated in Figures 9 and 10.
From Figure 8 to Figure 10, the average energy is in-

creased from 0.142 to 0.607, and the firing mode is also
switched from chaotic to periodic oscillation. For most of the

Figure 4 Developed attractors, evolution of variable xn and energy level. (a1, a2, a3) ε=0.15; (b1, b2, b3) ε=1.45; (c1, c2, c3) ε=1.95. The other parameters
are fixed at λ=4.2. (a3) <Hn′>=0.214; (b3) <Hn′>=0.435; (c3) <Hn′>=0.572. The enlarged images show the situation with iterations between 500 and 550.

Figure 5 Bifurcation of variable Wn vs. parameter η (a) and parameter μ (b). (a) μ=1.75; (b) η=3.9. Setting parameters α=0.1, β=0.01, and δ=0.3.
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neuron models, the distributions of peak value, interspike
intervals (ISI), discrete variable vs. bifurcation parameter
seldom show continuous changes, and the firing modes in
neural activities are modified when one parameter is changed
continuously. That is, one bifurcation parameter can select
different values to support the same firing activities such as
chaotic, periodic spiking and bursting, and quiescent state.
By extensive approach the average Hamilton energy of a
neuron with similar firing mode, four distinct energy levels

or footsteps can be detected when a neuron is excited to
present four different firing activities [51]. A chaotic pattern
often occupies a lower energy level, and periodic pattern
often occupies a higher energy level. Both spiking and
bursting can be considered as similar to quasi-periodic state,
because distinct periodicity often requires higher energy le-
vel for keeping periodic oscillation.
For complete showing the dynamics of neural activities in

a neuron model, oscillator like or map type, reproduction of

Figure 6 Developed attractors, evolution of variable wn and energy level. (a1, a2, a3) μ=0.22; (b1, b2, b3) μ=1.85; (c1, c2, c3) μ=2.58. Setting parameters
η=3.9, p=1. The average energy for (a3) <Hn′′>=0.233, (b3) <Hn′′>=0.379, (c3) <Hn′′>=0.544. Enlarged images show the situation with iterations between 500
and 550.

Figure 7 Developed attractors by changing parameter μ. (a) μ=0.22; (b) μ=1.85; (c) μ=2.58. Setting parameters α0=0.1, Δα=0.005, κ=0.5, N0=40, β=0.01,
η=3.9, and the initial values select (0.2, 0.1).
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complete firing modes is the main characteristic. In presence
of noisy excitation, nonlinear resonances can be induced by
taming the intensity of noisy disturbance. Besides the cal-
culation of SNR (signal to noise ratio) and CV (coefficient

variability) vs. noise intensity, the distribution of average
Hamilton energy <H> with different noise intensities pro-
vides a more effective way to predict the emergence of co-
herence resonance. Within a transient period or iterations N,

Figure 8 Evolution of variable wn,qn (a), Hamiltonian energy (b), and growth of memristive parameter α (c). Setting parameters α0=0.1, β=0.01, κ= 0.5,
η=3.9, p=1, μ=0.22. Average energy value finds 0.142.

Figure 9 Evolution of variable wn,qn (a), Hamiltonian energy (b), and growth of memristive parameter α (c). Setting parameters α0= 0.1, β=0.01, κ= 0.5,
η=3.9, p=1, μ=1.85. Average energy value finds 0.502.

Figure 10 Evolution of variable wn,qn (a), Hamiltonian energy (b), and growth of memristive parameter α (c). Setting parameters α0= 0.1, β=0.01, κ= 0.5,
η=3.9, p=1, μ=2.58. Average energy value finds 0.607.

1575Guo Y T, et al. Sci China Tech Sci May (2024) Vol.67 No.5



average energy <H> prefers to estimate the average power of
the neuron or nonlinear oscillator, and high energy level is
effective to keep distinct periodic state. Therefore, noise
excitation can be applied on the right side of the first formula
in eqs. (4) and (14). By taming the noise intensity, similar
coherence resonance can be induced and confirmed by es-
timating the distribution of CV values or <Hn> for eqs. (21)
and (22). The Hamilton energy function H can be used as
Lyapunov function, dH/dτ often means energy release and
the system becomes stable within finite transient period. The
discrete energy functionHn is effective to restrict the stability
in a map. When energy is released in stable way, Hn is de-
creased in each iteration, and then

H H
H H < 1 . (24)n n

n n

+1

1

In the last decades, more interesting works about compu-
tational neuroscience have been finished on neuron models
presented in nonlinear oscillators [62–65], some of which are
included with biophysical effects, and numerical approach of
membrane potentials for neurons and further statistical
analysis often involves reliability of numerical algorithm in
presence of noisy disturbance. Based on these oscillator-like
models, coupling channels and links are tamed to control the
collective behaviors in networks with linear, hybrid and
higher order interaction [66–70], respectively. Map approach
from equivalent nonlinear oscillator and nonlinear circuits,
and reliability verification of the proposed maps can find
clues from the scheme in this paper. In particular, energy
definition for maps becomes helpful to discern the depen-
dence of oscillatory modes on energy level provides new
insights to predict occurrence of nonlinear resonance and
further control under energy flow.

4 Conclusions

In this work, physical approach of an oscillator neuron with
memristive term is discussed, and the equivalent nonlinear
circuits are suggested to mimic the nonlinear terms and
neural activities in the memristive neuron. It suggests two
kinds of neural circuits by using different functional electric
components. That is, a memristive oscillator can be im-
plemented in some equivalent circuits composed of different
electric components. When capacitive component as capa-
citor is not available, a CCM can behave similar role for
supporting energy exchange between magnetic field and
electric field. In particular, linear transition of sampled
variables from the memristive oscillator and accompanying
with time scale (such as time step for the nonlinear oscillator)
can define a group of new variables, which are combined to
build function maps. It provides theoretical evidence and
guidance to design functional maps rather than giving

mathematical maps arbitrarily. The obtained functional maps
have good covariant feature with the original functional os-
cillators. For example, removing the subscript for the vari-
ables in the map will show the same form in the formula for
nonlinear oscillator. As a result, a suitable energy function
with the same weight for capacitive, inductive and memris-
tive terms can be obtained for the memristive map in theo-
retical way. We also suggest an adaptive law to control one
memristive parameter in the map under energy flow, mode
transition occurs accompanying with energy shift during the
mode transition. It explains the self-adaption property in map
neurons from energy aspect. For further application of digital
circuits and intelligent computation based on maps, readers
can refer to this work and then some feasible maps can be
designed from physical aspect. The suggested functional
maps can be used for exploring pattern stability and wave
propagation in the networks composed of maps [71–74]. The
scheme throws insights on the study the maps coupled with
discrete memristor [75–80]. The scheme is also helpful for
presenting reliable map neurons and further application of
setting map networks. Memristive terms accounts for the
emergence of multistability and coexistence of more attrac-
tors, and it also provides energy source for some controllable
neural circuits and biological neurons [81,82]. It is worthy of
investigating the collective behaviors and self-organization
of networks composed of reliable neurons, and thus re-
searchers can find bridges to discover the potential dyna-
mical mechanism for some neural disease [83,84].
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