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Adaptive learning-based optimal tracking control system design
and analysis of a disturbed nonlinear hypersonic vehicle model
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We propose an adaptive learning-based optimal control scheme for height-velocity control models considering model un-
certainties and external disturbances of hypersonic winged-cone vehicles. The longitudinal nonlinear model is first established
and transformed into the control-oriented error equations, and the control scheme is organized by a steady-compensation
combination. To overcome and eliminate the impact of model uncertainties and external disturbances, an adaptive radial basis
function neural network (RBFNN) is designed by a q-gradient approach. Taking the height-velocity error system with estimated
uncertainties into account, the adaptive learning-based optimal tracking control (ALOTC) scheme is proposed by combining the
critic-only adaptive dynamic programming (ADP) framework and parameter optimization of system settling time. Furthermore,
a novel weight update law is proposed to satisfy the online iteration requirements, and the algorithm convergence and closed-
loop stability are discussed by the Lyapunov theory. Finally, four simulation cases are provided to prove the effectiveness,
accuracy, and robustness of the proposed scheme for the hypersonic longitudinal control system.
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1 Introduction

The great hypersonic flight systems, especially the height-
velocity control system, play an enormous role in guiding the
aircraft to achieve stable flight missions. Owing to the fea-
tures of high speed, strong coupling, nonlinearity, and rapid
response, the comprehensive performance design and ana-
lysis of the height-velocity tracking control system with
disturbances are facing great challenges.
During the decades of development, the adaptive strategies

have always been a significant focus on different control
approaches for hypersonic flight control. Nair et al. [1]
developed a mechanism for adjusting the proportional-in-
tegral-derivative (PID) controller parameters using the gra-

dient method and Lyapunov stability theory. For the velocity-
loop and altitude-loop subsystem, the proposed compound
adaptive controller has essentially an error-negative feed-
back control principle with the adaptive disturbance para-
meter update laws [2]. Yin et al. [3] have proposed an
adaptive scaling strategy for prescribed performance dy-
namic surface control, which the structural parameters are set
according to initial flight state errors and constants. Huang et
al. [4] introduced the fractional exponential term into dy-
namic inversion and backstepping control methods as an
adaptive adjustment of controller convergence for velocity
and altitude subsystems. In sliding mode control, the adap-
tivity of the control system is mainly reflected by the types of
sliding mode surface, such as exponential sliding mode
surface [5], terminal sliding mode surface [6], and super-
twist sliding mode surface [7]. However, the application
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scope of the above designed adaptive strategies is limited in
the time-varying characteristic parameters of the hypersonic
control system. Therefore, those methods for fast-variation
parameter estimation are unable to effectively provide reli-
able approximation.
With the development of artificial intelligence technology

and optimization theory, the intelligent control methods have
received much attention for their advanced approximation
ability and rapid response capability compared with tradi-
tional adaptive tricks. The neural network (NN) has the ty-
pical function properties with infinite approximation, which
is regularly employed in the adaptive learning-based control
methodologies. After Bellman first published the dynamic
programming (DP) algorithm in 1966 [8], the branch of
adaptive dynamic programming (ADP) was gradually ex-
panded through the integration of optimal control techniques
with reinforcement learning. Reinforcement learning mainly
focuses on the interaction process between the agent and the
current environment. After observing the present state from
the environment, the agent makes a feasible decision by
critic NN according to the total rewards calculated by actor
NN. Therefore, the goal of reinforcement learning is to find a
suitable strategy to maximize current and future expected
returns. Based on the above actor-critic framework, the ADP
approach is developed to obtain optimal policy and value by
introducing optimal control theory.
To this end, many researchers have done lots of theoretical

design and analysis about the ADP applied in hypersonic
vehicle control systems [9,10]. Commonly, the major con-
sideration of ADP-based controllers is to design the effective
weight update law for actor and critic NN, which is deduced
by the gradient descent method respectively [11–13]. Many
existent main results are all obtained by combining the
Lyapunov stability theory and backstepping control [14–17],
the novel adaptive rules are generally deduced by innovative
Lyapunov candidate functions. It seems that the more com-
plex the update laws, the better the system control perfor-
mance. However, the expected requirements are generally
unsatisfied when the current update law is transferred to
other control tasks. Therefore, how to design an adaptive
learning control scheme to achieve desired control perfor-
mance for different control objects and scenarios is the main
focus of this article.
The model uncertainties caused by external disturbances

and the introduced assumptions owing to the nonlinear
properties of hypersonic vehicles bring enormous challenges
to the overall flight control system. In order to eliminate the
unstable chattering and potential divergence, the un-
certainties can be approximated by the radial basis function
neural network (RBFNN) surrogate model. Compared with
the existent results [18,19], the RBFNN not only takes the
computational efficiency into account, but also maintains the

high approximation accuracy [20]. The RBFNN is com-
monly utilized to estimate the disturbances [21], uncertain
state parameters [22], and unknown nonlinear functions [23].
However, the approximation performance of RBFNN is
mainly determined by feasible adaptive weight rules and
other flexible parameters. Therefore, how to design an ef-
fective RBFNN compensator to achieve advanced properties
of rapid disturbance response and low approximation error is
the second attention of this article.
Based on those discussions, we propose an adaptive

learning-based optimal tracking control scheme with a novel
RBFNN disturbance observer for the hypersonic height-ve-
locity control system. The proposed scheme establishes a
control-oriented model of longitudinal flight states to
achieve integrated adaptive full-state optimal control. The
control inputs are designed to include optimal control and
compensation control. Based on the developed adaptive
learning-based optimal tracking control (ALOTC) algorithm,
the value iteration and parameter optimization are data-dri-
ven, and the optimal feedback control policy is obtained. The
designed adaptive RBFNN disturbance observer is utilized to
estimate the chattering disturbance and uncertainties. The
main motivations and contributions can be unfolded as fol-
lows.
(1) As far as we all know, the ADP-based optimal control

framework implements the iterative control just through the
designed actor or critic update laws, which leads to the
system response time can not achieving the optimal solution
when the overall control sequence is being solved, such as
refs. [9,15]. Compared with these results, the optimization
and statistical analysis of response time are considered in the
ALOTC scheme to improve the control performance of the
tracking states.
(2) Based on the concepts of q-calculus [24], an adaptive

q-parameter learning rule for the RBFNN disturbance ob-
server is proposed by the stochastic descent algorithm. The
convergence condition is provided for the proposed approach
and extensive comparative analysis of this work is carried
out with the existent results [25,26].
(3) In contrast with complex equations of critic NN in ref.

[14], a novel single critic NN weight update law is proposed
to obtain the optimal NN weights iteratively, which has
concise expression but fast convergence based on the addi-
tional parameter error feedback term.

2 Problem formulation

As shown in Figure 1, the longitudinal dynamics in the earth
and body coordinate system can be deduced in eq. (1), which
can also be derived from 6-DOF full-state equations of the
vehicle considering the lateral states are all zero.
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where V and h are the velocity and height of the hypersonic
vehicle, respectively, γ, α, and q represent the angle in-
formation defined as flight path angle, angle of attack, and
pitch angle rate. The physical parameters mass m and mo-
ment of inertia Iyy are provided for calculation. The term g =
μ/r2 represents the acceleration of gravity, where μ and Re in
equation r = h + Re are the atmospheric parameters and earth
radius. The aerodynamics, thrust, and moments are described
as follows:
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where c and Sref represent the mean aerodynamic chord and
reference area. Q = 0.5ρV2 is the dynamic pressure, ρ is the
atmospheric density. Based on the configuration in Figure 1,
the nonlinear aerodynamic model is provided by ref. [27].
Therefore, the terms CL, CD, CT , and Cm can be deduced as
follows:
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where and δe are the actual control variables throttle and
elevator angle.
For the convenience of controller design, the dynamic

equations are generally rewritten as an affine nonlinear
model in eq. (4) according to ref. [28],

f g dx x x u= ( ) + ( ) + , (4)j

where RV h qx = [ ,  , , , ]T 5, R[ ]u = ,  e
T 2, f(x) and

g(x) represent the nonlinear terms, d dj j,max,

j V h q= , , , , indicate the unknown model uncertainties
and disturbances of the system, dj,max is the constant upper
bound, θ is the pitch angle.
Then, substitute eqs. (2) and (3) into eq. (1) and introduce

the desired height signal hd and velocity signal Vd, the con-
trol-oriented error dynamic equations can be deduced as
shown in eqs. (5) and (6):
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In eq. (6), the desired flight path angle d
* is derived in

eq. (7) by the height error equation ( )( )e h V= arcsin + /hd
*

d

and the designed proportional-integral (PI) dynamic con-

vergence mode e k e k e=h h h h hp I .

Similarly, both d
* and qd

* are obtained by the first-order
differential equation (eq. (8)) to avoid the differential ex-
plosion problem.
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Figure 1 (Color online) The diagram of longitudinal motion.
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Based on the aforementioned system transformation de-
scription, the final control-oriented error equations can be
rewritten as the matrix form
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where u = for velocity subsystem and R[ ]u q= , , e
T 3

for height subsystem.
Furthermore, considering the achievement of optimality of

major dynamics and robustness of disturbance approxima-
tion, the integrated control policy is divided into two parts in
this article for design as shown in eq. (10).
u u u= + , (10)op comp

where uop and ucomp represent the optimal controller and
compensative controller, respectively.
To this end, the main purposes of this article conclude the

two aspects.
(1) Design an adaptive learning-based optimal controller

for the hypersonic height-velocity comprehensive control
system (eq. (9)) to accurately track the desired signals hd and
Vd, and the angle states can also be stabilized by the virtual
control.
(2) Construct an adaptive RBFNN-based compensation

controller to implement the approximation of the unknown
disturbances to enhance the robustness of the height-velocity
control system.

3 Adaptive learning-based optimal control sys-
tem design and analysis

3.1 Adaptive compensation controller design

In order to eliminate the impact of disturbances on the
closed-loop system, an adaptive RBFNN-based disturbance
observer is first introduced to approximate the unknown
system uncertainties dj on the right side of eq. (4). The
conventional architecture of RBFNN is composed of an in-
put layer, a hidden layer, and an output layer, in which the
hidden layer is activated by a number of Gaussian kernel
functions applied commonly. Let Rx m0 be the input vec-
tor, then the overall mapping with the Gaussian kernel
function of the RBFNN is provided as

y w b

b

x c

x c x c

= (|| ||) + ,

(|| ||) = exp || || ,
(11)i

m

i i i

i i
i

w

=1
2

2

1

where m1 is the number of neurons in the hidden layer, wi are
the weights of all the neurons connecting the hidden layer

and output layer, i are the Gaussian kernel function, b is the
bias term of the output, Rc i

m0 are the pre-defined center
vector of the RBFNN, bw is the width of the Gaussian kernel.
Commonly, the infinite approximation ability of RBFNN

can be improved by the specific weight update rules, which
can be deduced by the gradient descent algorithm. For the
implementation of the gradient descent algorithm, the cost
function is first defined to minimize the approximation error
according to approximation value dj, which is shown in
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In the conventional gradient descent algorithm, the gra-
dient of εRBF respect to wi is evaluated by the chain rule as
shown in
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then the weight update rule can be obtained as
w k w k( + 1) = ( ) , (14)i i w RBFi

where k is the current iteration step and η is the learning rate.
In order to achieve the desired convergence property, the

regulation of derivation calculation is generally evaluated by
different calculus rules. A q-factor gradient descent-based
RBFNN has been proposed in ref. [25] which introduces the
concept of q-calculus into the gradients of the cost function,
the proposed convergence expression is given as shown in
eq. (15), and the weights are updated by the following rule:
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where q is the pre-designed convergence term. The robust-
ness of q-RBFNN has been analyzed and guaranteed using
the small gain theorem that the convergence condition of q
must be satisfied as shown in
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where μ is the step size.
Based on the above proposed results, a novel convergence

law of q is proposed and an adaptive RBFNN disturbance
observer is trained as follows:
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mated by

d w b b
x c

= exp + . (18)j
i

m

i
i

w=1

2

2

1

Based on the above analysis and results of the adaptive
RBFNN disturbance observer, the compensative controller
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can be designed as
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where xd is the desired state vector and fj(xd) is the desired
values of the major dynamic.

3.2 Adaptive optimal controller design

Substitute eqs. (10) and (19) into eq. (9), the major dynamic
equations can be split from the error subsystems (eqs. (5) and
(6)) as follows:
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Without loss of generality, in order to find the optimal
control policy, considering the integral value function given by

J e s t r e u s i h V( ) = exp( ( )) ( , )d ,   = , , (23)i t i i i

where κ is the discount factor, RJ e( )i
+, ri(ei, ui) are the

reward function, which is generally designed as a quadratic
function of the control inputs and state errors, as shown in eq.
(24).
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Then the optimal cost function can be obtained as follows:
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where Ru is the admissible control set.
According to the optimal control theory, the Hamilton-

Jacobi-Bellman (HJB) equation can be deduced by taking the
first-order time derivative of eq. (25):
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Combining eqs. (25) and (26), the optimality condition is

defined as
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Then, the optimal control policy can be obtained from the
time derivative of HJB equation (eq. (26)) as follows:
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1 T *

Remark 1: The terms Ri and g(x) have been known from
the aforementioned discussion, but the last term J x/i

*

must be calculated by solving the HJB equation (eq. (26))
because of the inherent nonlinearity. Therefore, an NN-ap-
proximation-based reinforcement learning algorithm is de-
veloped in the following sections to evaluate the cost
function and optimal policy, which can avoid the large
computation consumption of solving the HJB equation.

3.3 Reinforcement learning value function approx-
imation: critic NN structure

Assume the optimal cost function is smooth, then the optimal
value function can be approximated by an NN structure:

J e eW( ) = ( ) + , (29)i i i i,c
T

c ,c

where RW i
n
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×1 is the ideal weight vector (n is the vector

dimension), Ri
n
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×1 is the activation function and the

second term R,i i i,c ,c ,bound is the bounded approx-
imation error.
Then, the gradient of the approximated optimal value

function Ji
* is defined as follows:
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Assume the gradients of i,c are all bounded meeting

bi i,c , , then the estimation of the optimal value
function is deployed as

J e W( ) = , (31)i i i,c
T
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where W i,c is the estimation value of W i,c.
Substitute eq. (31) into eq. (28), and the approximation of

optimal control policy is rewritten as
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Then, the Bellman error function can be derived by the
temporal-difference (TD) learning algorithm as follows:
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where T is the time interval and ( ) ( )e t e t T= ( ) ( )i i i,c c c ,
Ri,step(t) is the one-time-step reward in eq. (14).

( )R t s t T r e u s( ) = exp( ( ( ))) , d . (35)i t T

t
i i i,step ,op

Together with the performance index function
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2 , the minimal εi,c-B can be obtained by the

gradient descent method, and then the update law of W i,c is
designed as
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where the weight estimation error is determined by
W W W=i i i,c ,c ,c. The first term of the right-hand side re-
presents the robust adaptive adjustment term, which can
guarantee the convergence of W i,c, and Ri

n n
,c

× is a po-
sitive-definite matrix representing the gain coefficient.

Rk i W
n

,
×1 can accelerate convergence with the appropriate

value.

3.4 Stability analysis

The stability analysis of the proposed ALOTC scheme with
RBFNN disturbance observer applied in the closed-loop
system are discussed in this section. The detailed results are
as follows.
Theorem 1: For the control-oriented dynamic model (eq.

(9)) of the hypersonic vehicle, if the control input is designed
as eq. (10) with the proposed ALOTC algorithm and dis-
turbance observer, then the state errors and weight approx-
imation errors can satisfy the ultimately uniformly bounded
(UUB) convergence condition.
Proof: Define the Lyapunov candidate function as follows:
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Then, the first term on the right-hand side can be replaced
with the HJB equation (eq. (26)) as
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and the third term can be deduced by the expression of Wi,c in
eq. (36) as
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Substitute eq. (34) into eq. (40), then the equality can be
derived as
(41)
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*
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*T

,c ,op

If the time interval is enough small, the integral term can
be approximated as

( )s t T u u u u s

T T T T
T T T T

R R

W W W W

W W W W

exp( ( ( ))) + d

4 exp( ) 4 exp( )

= 4 exp( ) 2 exp( ) .

(43)
t T

t
i i i i i i

i i i i i i

i i i i i i

,op
T

,op ,op
T

,op

,c
T
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*T
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*

,c
T

,c ,c
*T

,c

Then, eq. (41) can be reformulated by

( )
( )T T

W W

W k W

W W W W

= +

  × + 4 exp( ) 2 , (44)

i i i

i i i i W i i
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and
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According to Assumption 1 and the eigenvalues of matrix
Qi, we can obtain eq. (46), where λmin(Qi)>0. Define the

vector ez W= ,i i
T

,c
T T

, then the expression can be trans-

formed into the following form:
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Assume that C cM , it can be deduced that L z( ) 0p if

z c Q/ ( )M imin , so the state errors and weight estima-
tion errors are all bounded. Furthermore, all the signals in the
closed-loop system are bounded. The proof has been con-
cluded.

3.5 Algorithm structure

In this section, the detailed algorithm structure discussed in
this article is provided to illustrate the iteration process of the
compound controller applied to the hypersonic vehicle sys-
tem. In Algorithm 1, the total scheme is divided into three
steps. Initializing the constant matrixes and other hy-
perparameters required by the calculation process is the first
step. Then for every epoch j, the value iteration training is
implemented to calculate the approximate value function and

Algorithm 1 ALOTC algorithm

Step 1. Initialization
1.1 Initialize positive-define constant matrixes i h VQ R,  ,  ,  = ,i i i

, and
other hyperparameters including threshold settings δh and δV.
1.2 Initialize NN weight vector W i,c

, learning rate ηi, and discount factor
κ.
1.3 Set the initial NN weight error estimate to Inf and the total iterative

training epoch Nepoch.
Step 2. Iteration
Repeat every epochj:
2.1 For an initial admissible control policy u i, op

in eq. (32) and
compensation control u i, comp

in eq. (19), the error state e t T( )i
can be

obtained.
2.2 Calculate the approximate value function ( )J e t T( )i and its

derivatives ( )J e t T( )i by the previous error state e t T( )i
.

2.3 Update the desired flight angle in eq. (6) from reference velocity and
height.
2.4 Update the control policy u t( )i,op by using the dynamic equation

information g(x) as follows:

( )u t g eR x W( ) =
1
2 ( ) ( )i i i i,op

1 T
c
T

,c .

2.5 The next error state ei(t) and ( )J e t( )i can be obtained from the
updated desired state and control policy.
2.6 If the convergence threshold δi is satisfied,

t t TW W( ) ( ) ,i i i,c ,c

then the iteration process is completed and the optimal weight vector W i,c

and control policy ui,op are obtained, else turn to step 2.7.
2.7 Update the critic NN structure parameter W i,c

by

( )
W k W=

1 +
+ ,i

i

i i
i W i i i,c

,c

,c
T

,c
2 , ,c

T
,c , c-B

and then go back to step 2.2.
End
Step 3. Parameter optimization
3.1 Calculate the response time of the system under the activation of the
compound controller.
3.2 Build optimization problem with the response time as the target
function and control parameters (khp, khI) as input variables.
3.3 Applying genetic algorithm to solve this optimization problem.
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control policy. Then, check whether the convergence
threshold is satisfied, or continue to update the network
parameters and return to step 2.2. Finally, analyze the signal
response time of the system from the initial state to the stable
state, and establish an optimization problem to obtain the
optimal control coefficients khp, khI in eq. (7) for rapid con-
vergence of the system.

4 Simulation

In this section, the effectiveness and robustness of the
ALOTC scheme applied in the hypersonic longitudinal
control system are verified. The physical parameters are
provided in Table 1 and the required hyperparameters are
also provided in Table 2. In addition, the initial settings of khp
and khI are 5 and 3, respectively. The critic NN structure
parameters are considered in Table 3 and activation functions
are provided in eq. (50):

e e e e

e e e e e e e e e

= , , tanh( ), sin( ) ,

= , , , , , , tanh( ), tanh( ), tanh( ) .
(50)

V V V V V

h q q q

2 T

2 2 2 T

The desired height and velocity signals for simulation are
defined in eq. (51),

h
t

t t t
t

V
t

t t t
t

=
34000,                           0 s < 10 s,

20 + 800 + 28000,  10 s < 20 s,
36000,                          20 s < 30 s,

=
4750,                        0 s < 10, 

2 + 80 + 4150,    10 s < 20 s,
4950,                        20 s < 30 s.

(51)

d
2

d
2

According to the initial flight states provided in Table 4,
the superiority of the ALOTC scheme is validated by four
simulation cases. These include the verification of the con-
trol system without/with uncertainties, comparison with
other approaches, and offline implementation in different
flight conditions. Additionally, the tolerant upper bounds of
height and velocity are 10 m and 5 m/s respectively, and the
tolerant band is defined as 0.95. The control performance
discussed in this article includes error accumulation (EA),

mean square error (MSE), settling time (ST), and steady-
state error (SSE).

4.1 Verification of hypersonic vehicle system without
uncertainties

Based on the above initial flight conditions and hyperpara-
meters, the optimized khp and khI are 1.9934 and 7.3284,
respectively. The simulation results of trajectory tracking
performance are shown in Figures 2–7. It can be obtained
from Figures 2 and 3, the closed-loop system has great
tracking accuracy for both height and velocity commands
under the ALOTC scheme, and the velocity tracking settling
time is 0.53 s and height tracking is 0.96 s in 95% tolerance
band. The flight path angle, pitch angular rate, and angle of
attack curves are shown in Figure 4, which can converge to
the desired state in a short period of time. Figure 5 shows that

Table 1 Physical parameters of the hypersonic vehicle

Parameters Value Meaning

m 136809 kg Mass

Sref 334.73 m2 Reference area

Iyy 9.49 × 106 kg m2 Moment of inertia

c 24.384 m Mean aerodynamic chord

Re 6371368 m Radius of earth

μ 3.93 × 1014 m3/s2 Gravitational constant

Table 2 The settings of some hyperparameters in the simulation

Parameters Value

for i = V for i = h

δh 1 × 10−10

δV 1 × 10−10

τ 0.001

Nepoch 3

Qi 1/100 I3×3

Ri 2 50I3×3

i
0.5I4×4 0.5I9×9

ki,W 0.002I4×4 0.002I9×9

Table 3 Critic NN structure parameters setting in the simulation

Parameters Value

for i = V for i = h

Number of layers 1 1

Number of neurons ni 4 9

ηi 0.001 0.001

κ 0.9 0.9

Table 4 The initial flight state of the hypersonic vehicle

Parameter Value

V 4450.29 m/s

h 33.528 km

γ 0 rad

θ 0 rad

q 0 rad

α 0 rad
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the actual control inputs are maintained to provide a feasible
control performance.
The NN weight update curves can reach the stable values

with a fast convergence speed in Figure 6. Additionally, the
estimated value function in Figure 7 can also converge to the
optimal value in a few iterations. In this simulation case, the
obtained performance values are listed in Table 5. It is ob-
vious that the rapid response ability can be guaranteed by
short settling time and zero-approaching steady-state error.

4.2 Verification of hypersonic vehicle system with un-
certainties

To further illustrate the robustness of the ALOTC scheme,
different disturbances in eq. (53) are considered in the ve-
locity and height subsystems respectively. In the actual flight
task, the impact of uncertainties in angle states originates
from the external disturbances and propagation of un-

Figure 2 (Color online) Tracking trajectories of hd and Vd.

Figure 3 (Color online) Tracking errors of hd and Vd.

Figure 4 (Color online) Angle trajectories.

Figure 5 (Color online) Control inputs.

Figure 6 (Color online) NN convergence curves.
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certainties in velocity and height. In this article, the propa-
gation of uncertainties is the major consideration, thus the
uncertainties dγ, dθ, and dq are considered as the first, second,
and third-order derivatives of dh, respectively.
The superiority of the proposed adaptive RBFNN dis-

turbance observer is firstly discussed with two cases in eqs.
(52) and (54), which the simulation results are shown in
Figures 8 and 9.

d t= 10 + 50sin ( / 6), (52)V
2

d t= 20sin ( / 30), (53)h
2

d a r t a r t a r t
a a r t r t K t

= ( ) + ( 1) + ( 2)
+ [cos( ( )) + exp( ( ) )] + 0.1 ( ), (54)

i 1 2 3

4 5

where K(t) is the Gaussian function with mean zero and
variance one, a1, a2, a3, a4, a5 are the constant parameters, r(t)
is the step function, and i = h, V.
From Figures 8 and 9, the effective disturbance rejection is

obtained by the proposed q-RBFNN. Note that all three
methods can achieve approximation convergence of dis-
turbances to obtain satisfactory transient performance.
Compared with the existent approaches, the q-RBFNN has a
smaller cumulative error during the whole iteration period
and superior performance in terms of steady-state error and
mean squared error. Also, it has strong approximation ability
for the random signals in Figure 9, resulting in better esti-
mation precision. Introduce the discussed disturbances eqs.

(52) and (53) into velocity and height subsystems, respec-
tively. As illustrated in Figures 10‒12, the great chatter oc-
curs in the control system without the observer, leading to a
significant steady-state error. At the same time, Figure 13
indicates that the control performance statistics for the dis-
turbed system with an observer are all superior to the in-
formation without the observer. The control inputs are shown
in Figure 14.

4.3 Comparison of different approaches with un-
certainties

To demonstrate the advantages of the proposed ALOTC
scheme, the existent adaptive backstepping approach in ref.
[29] and the actor-critic method in ref. [9] are introduced as

Figure 7 (Color online) Estimated value functions.

Table 5 Error information statistics of the proposed method applied in
hypersonic vehicle

Tracking
State

Error
accumulation

Mean
square error

Settling
time

Steady-state
error

h 6.74 × 103 m 4.55 ×107 m 0.62 s 0.5476 m

V 3.03 ×103 m/s 9.17 ×106 m/s 0.45 s 0.8583 m/s

Figure 8 (Color online) Uncertainty estimation in case 1.

Figure 9 (Color online) Uncertainty estimation in case 2.
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Figure 10 (Color online) Tracking trajectory and error of hd.

Figure 11 (Color online) Tracking trajectory and error of Vd.

Figure 12 (Color online) Angle trajectories with the observer.

Figure 13 (Color online) Error information for the disturbed system
without/with the observer.

Figure 14 (Color online) Control inputs with the observer.
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the comparative cases, and the results are depicted in Figures
15‒17. It is obvious that the controllers can all achieve
control purposes, but the adaptive backstepping and actor-
critic methods cannot satisfy the requirements of con-
vergence amplitude. In Figure 16, the actor-critic method has
significant oscillations around the zero line. Figure 17 in-
dicates good performance for the ALOTC scheme in MSE
and ST for height and in MSE and SSE for velocity.

4.4 Offline implementation of the ALOTC control
scheme

In this section, the offline implementation of the obtained
ALOTC control scheme is considered in different initial
flight states for hypersonic vehicles. The specific initial in-
formation is given as follows:

x = [32.528 km,  4650m/s,  0 ,  5 ,  0 ,  0 ] ,T

and the desired height and velocity signals for implementa-
tion simulation are extended in eq. (55):

h

t
t t t

t
t

V

t
t t t

t
t

=

34000,                           0 s < 10 s,
20 + 800 + 28000,   10 s < 20 s,

36000,                           20 s < 30 s,
35500,                           30 s 50 s,

=

4750,                        0 s < 10 s,
2 + 80 + 4150,    10 s < 20 s,

4950,                        20 s < 30 s,
4750,                        30 s 50 s.

(55)

d

2

d

2

The height and velocity tracking errors in Figure 18 clearly

Figure 15 (Color online) Comparison of tracking errors of hd and Vd.

Figure 16 (Color online) Comparison of control inputs.

Figure 17 (Color online) Error information for the disturbed system with different methods.
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illustrate that once the trained NN are applied to new initial
states and reference commands, the desired tracking per-
formance is still completed with possible significant accu-
mulated errors. Figure 19 shows the effective control inputs.
By statistical analysis, the ST is greater than 10 s for height
and 0.26 s for velocity, resulting in the weak control per-
formance. A fact can be obtained that the NN controllers
trained with some specific trajectory samples can be applied
offline to handle the similar-type trajectory control, which
however cannot effectively address the maneuver trajectory
control problem of gliding vehicles because the NN has not
been exposed to similar samples during the training process,
which is the partial work in our future research.

5 Conclusions

In this article, our purpose is to solve the height-velocity
tracking control problem by proposing an adaptive learning
approach for disturbed hypersonic vehicle systems. Based on
the control-oriented dynamic equations, an integrated com-
pound control model has been proposed to achieve the op-

timality and robustness of comprehensive control
performance. Through the designed adaptive q-parameter
update rule, the RBFNN was online trained to estimate the
model uncertainties and external disturbances. Considering
the system response time and approximation optimality, an
ALOTC scheme was proposed to guarantee the convergence
of weight parameters and the desired performance index. The
simulation results indicated that the desired control perfor-
mance and approximation accuracy are obtained for the
hypersonic vehicle with the uncertainties and disturbances.
In our future work, we will continue to focus on the appli-
cation of intelligent algorithms in hardware-in-the-loop si-
mulation.
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