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Passive daytime radiative cooling (PDRC) technology has great potential in reducing cooling energy consumption. In order to
further improve the spectral performance of PDRC coatings, current researchers mostly focus on the selection and size design of
functional particles, while ignoring the optical properties enhancement effect caused by the interlayer binder. In this study, based
on the principle that the refractive index difference between layers enhanced the backscattering performance of the solar
spectrum, we proposed and manufactured a double-layer PDRC coating with polyvinylidene difluoride (PVDF) as the film-
forming material in the upper layer and polydimethylsiloxane (PDMS) as the film-forming material in the lower layer, both filled
with Al2O3 and SiO2 particles. The double-layer PDRC coating exhibited excellent spectral performance that a high solar
reflectivity of 98% and an emissivity of 0.95 at the “atmospheric window” band. In comparison, the solar spectrum reflectivity of
the single-layer PDRC coatings based on PVDF and PDMS of the same thickness was 95% and 94.7%, respectively. Outdoor
tests showed that the PDRC coating achieved a temperature decrease of up to 7.1°C under direct sunlight at noon time. In
addition, the PDRC coating had excellent weather resistance, water resistance, and other basic properties. This article opens up a
new idea and provides methodological guidance for the design of double-layer PDRC coatings.
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1 Introduction

In the context of global warming, building cooling systems
consumed 15% of global energy production, and the result-
ing energy crisis also deserves attention [1–6]. Passive
daytime radiative cooling (PDRC) technology, as a novel
environmentally friendly cooling method, can achieve a sub-
ambient temperature cooling effect without consuming any

energy [7,8]. The fundamental principle of the PDRC tech-
nology for achieving cooling is to strongly reflect solar ir-
radiance (0.3–2.5 μm) and radiate electromagnetic waves to
outer space through the “atmospheric window” (ATSW,
8.0–13.0 μm) [9–12]. In the future, PDRC materials can be
widely used in green buildings [13,14], facility agriculture
[15], efficient solar cells [16–18], and other related fields
[19–25].
The cooling effect of PDRC materials is primarily de-

pendent on the solar spectrum reflectivity and the emissivity
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within the “atmospheric window” band [26]. For each 1%
increase in solar spectrum reflectivity, an additional theore-
tical cooling power of approximately 10 W/m2 can be ob-
tained [27]. Enhancing the emissivity within the
“atmospheric window” band also contributes positively to
improving the cooling effect. Therefore, how to improve the
performance of these two indicators was the focus of current
researchers [17,28–31]. Many researchers achieve high
spectral performance by designing surface structures or uti-
lizing internal particles for enhanced electromagnetic re-
sponse to achieve high optical properties [32–35]. The
single-layer PDRC coating, employing a sole film-forming
substance to envelop particles and producing a uniform
single-layer film, has consistently remained a focal point in
research as the most convenient radiative cooling material
[31,36]. It was composed of filler particles, film-forming
binders, and additives. The filler particles predominantly
include TiO2, CaCO3, and BaSO4 [20,37,38], exhibiting
strong reflection of the solar spectrum, as well as SiO2, SiC,
Si3N4 [39], demonstrating high emissivity in the “atmo-
spheric window” band. Commonly used binders encompass
acrylic resin, polyvinylidene difluoride (PVDF), poly-
dimethylsiloxane (PDMS), and polymethyl methacrylate
(PMMA) [20,40–42].
To enhance the spectral performance of PDRC coatings,

numerous researchers have devised various solutions [43–
45]. For example, Luo et al. [46] developed a versatile
scalable photonic film with excellent mechanical stability by
combining the excellent scattering efficiency of the hex-
agonal boron nitride (h-BN) nanoplates. The Ecoflex@h-BN
film exhibited sufficiently high solar reflectance (0.92) and
ideal emissivity (0.97), and achieved sub-ambient cooling
effect of 9.5°C during the continuous outdoor measurements.
Currently, the design concepts for multi-layer PDRC coat-
ings primarily involve particles in different layers playing
distinct roles, yet most of them employ the same matrix. A
double-layer PDRC coating was designed by Huang and
Ruan [47]. According to the Mie theory, the top and bottom
layers were acrylic resin embedded with TiO2 and carbon
black particles, respectively responsible for reflecting the
solar irradiation and emitting the heat in the “atmospheric
window”. The TiO2 particles with a size of 0.2 μm were
optimized by Mie theory and solving the Radiative Transfer
Equation to provide the best scattering ability. Similarly, Bao
et al. [48] designed a double-layer PDRC coating with a
reflective top layer and an emissive bottom layer. The top
layer comprised densely packed rutile TiO2 (D=0.5 μm)
submicron particles, while the bottom layer embedded SiO2

or β-SiC nanoparticles. The film-forming materials for the
upper and lower layers were all acrylic resin. The double-
layer PDRC coating exhibited solar reflectivity (90.7%) and
atmospheric transmission window emittance (∼90.11%). To
achieve the high optical performance of the double-layer

PDRC coatings, Dong et al. [49,50] introduced a masking
layer for these coatings. The lower layer served as the re-
flection layer embedded with TiO2 and SiO2 particles, while
the upper layer was a masking layer composed of Al2O3 and
SiO2 particles. The matrix of both upper and lower layer was
acrylic resin. This PDRC coating achieved solar reflectivity
(94.0%) and “atmospheric window” emittance (93.0%).
The literature survey indicated that in the design of double-

layer PDRC coatings, researchers primarily concentrated on
functional particle selection and sizing, overlooking the po-
tential improvement in optical properties due to the inter-
layer binder. In this study, based on the principle that the
differences in refractive indices between layers enhanced the
backscattering performance of the solar spectrum, we pro-
posed and manufactured a double-layer PDRC coating with
PVDF as the film-forming material in the upper layer and
PDMS as the film-forming material in the lower layer, both
filled with Al2O3 and SiO2 particles. The double-layer PDRC
coating exhibited excellent spectral performance that a high
solar reflectivity of 98% and an emissivity of 0.95 at the
“atmospheric window” band. In contrast, single-layer PDRC
coatings, based on PVDF and PDMS with equivalent
thickness, exhibited solar spectrum reflectivity of 95% and
94.7%, respectively. Outdoor tests showed that the PDRC
coating achieved a temperature decrease of up to 7.1°C under
direct sunlight at noon time. Moreover, the PDRC coating
demonstrates commendable weather resistance, water re-
sistance, and other basic properties.

2 Theory design of the double-layer PDRC
coating

Based on the principle that the differences in refractive in-
dices between layers enhanced the backscattering perfor-
mance of the solar spectrum, a double-layer radiative cooling
coating structure was proposed, with PVDF as the film-
forming substance in the upper layer and PDMS in the lower
layer, both containing Al2O3 and SiO2 particles, as shown in
Figure 1(a). The film-forming substance PVDF and PDMS
were chosen as film-forming materials for the upper and
lower layers, respectively, due to their significant difference
in refractive indices (Figure 1(b)).
In terms of functional particle selection, Al2O3 particles

were used as reflective particles because of their wide
semiconductor bandgap, which allows them to reflect a
broad spectrum of solar energy. SiO2 particles were selected
as emitting material due to their relatively large extinction
coefficient in the wavelength range of 8–13 μm. Besides, the
natural wrinkles on the coating surface could also increase
the emission of energy in the “atmospheric window” band,
thereby enhancing the cooling capability of the coating [42].
The finite difference time domainmethod (FDTD) solution
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was used to establish a simulation model for the double-layer
structure and optimize the coating parameters. The simulated
incident light was set as a plane wave light source with the
periodic boundary conditions (Figure 1(c)). Initially, ver-
ification of the double-layer structure’s potential to enhance
spectral scattering capability in the solar band was required.
The electromagnetic field two-dimensional (2D) distribution
in the double-layer PDRC coating (Figure 1(d)) and the
single-layer coating (PVDF, Figure 1(e)) were calculated at
an incident light wavelength of 0.5 μm. Comparing both
figures revealed a decreasing trend in the internal wave phase
of the incident light coating, while the electromagnetic field
intensity of the double-layer structure coating at the interface
attenuates more slowly. This illustrated that the substantial
difference in refractive index between the double layers re-
sulted in high dielectric contrast, thus augmenting the scat-
tering capability.
Next, the particle size and volume fraction of the Al2O3

and SiO2 particles were optimized. As shown in Figure 2(a)
and (c), when the average diameter of the Al2O3 particles was
0.5 μm and the volume of the particles was 70%, the average
reflectivity of the PDRC coating in the solar band reached
the maximum value. SiO2 particles with an average particle
size of 4.0 μm maximize the emissivity of the PDRC coating
in the wavelength range of 8.0–13.0 μm (Figure 2(b)). The
further calculation of the absorption coefficient of SiO2 in the
atmospheric window band further confirms this result
(Figure 2(b) inset). The reason why SiO2 particles with the
average particle size of 4 μm can effectively enhance the

emissivity of the coating at 8–13 μm was that smaller par-
ticles resonate at the electric dipolar resonance while higher
order electric and magnetic modes are excited in the larger
particles. As shown in Figure 2(d), when the volume fraction
of SiO2 particles reaches 8%, the emissivity of the double-
layer radiative cooling coating in the atmospheric window
band no longer increases with an increase in volume fraction.
When the upper layer (PVDF) of the double-layer PDRC

coating reached 50 μm and the overall thickness of the
coating reached 100 μm, the reflectivity of the coating in the
solar band basically no longer changed with the increase in
thickness.

3 Preparation and characterization of the double-
layer PDRC coating

As an example, for the preparation of a 200 g coating: the
required raw materials included 10 g of PDMS and 32 g of
N-methylpyrrolidone (NMP) for the bottom layer, along with
50 g of Al2O3 and 8 g of SiO2 particles; for the top layer, it
consisted of 12 g of PVDF and 30 g of NMP, along with 8 g
SiO2 particles and 50 g of Al2O3 particles.
The preparation of the double-layer PDRC coating in-

volved a sequence of key steps encompassing particle ball-
milling, precise weighing, dissolution, agitation, dual-layer
application, and drying. The first step involves preparing the
bottom layer of the double-layer radiative cooling coating
using PDMS as the binder. Utilizing an electronic balance,

Figure 1 Theoretical verification of the double-layer design of the PDRC coating. (a) Structural diagram of the double-layer PDRC coating; (b) optical
constant value of PVDF and PDMS; (c) schematic diagram of FDTD calculation parameter settings. The electromagnetic field of the double-layer PDRC
coating (d) and single-layer PDRC coating (e) at incident light with a wavelength of 0.5 μm.
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Al2O3, SiO2 particles, and PDMS binder were meticulously
weighed, followed by the addition of suitable NMP to the
composite. This mixture underwent ultrasonic oscillation for
15 min until achieving complete particle dispersion. Subse-
quently, continuous stirring at 300 r/min persisted for 8 h,
ensuring comprehensive adhesive reactivity. Prior to coating,
an optimal quantity of NMP (5–10 mL) was introduced to
modulate the coating’s viscosity until it exhibited a gradual
flow down the glass rod in filamentous strands. The pre-
paration of all test samples in this paper was conducted using
a high-pressure airless spraying process. Prior to spraying,
the required amount of coating was calculated, approxi-
mately 500 g/m2. During spraying, a thin, multiple-pass
spraying technique was employed, resulting in a final wet
film thickness of approximately 200 μm, while the film
thickness after drying was approximately 50 μm. Subse-
quently, the coating underwent a 10-h drying process within
a controlled environment at 60°C, thereby concluding the
formulation of the lower layer.
Sequentially, the upper layer (comprising PVDF) of the

coating was fabricated, employing procedures akin to those
aforementioned. The variance lay in the introduction of
Al2O3, SiO2 particles, and PVDF binder into the NMP so-
lution to forge a composite. By subjecting it to a consistent
drying temperature of 70°C for 8 h, the culmination ensued
in the attainment of the double-layer PDRC coating. In
pursuit of subsequent comparative analyses, the same ma-
terials and preparation methods were employed to fabricate

100 μm thickness single-layer radiative cooling coatings
using PVDF and PDMS as binders, respectively.
The particle size distribution of the Al2O3 and SiO2 parti-

cles was measured using a particle size analyzer. Al2O3

particles had a median size of 0.5 μm, with 95% of their
volume fraction between 0.1 and 1.0 μm (Figure 3(b)). SiO2

particles had a median size of 4.0 μm, and 93% of their
volume fraction ranged between 1 and 8 μm, conforming to
the simulation’s particle size requirements (Figure 3(c)). The
cross-sectional images of the double-layer radiative cooling
coating were characterized using scanning electron micro-
scopy (SEM). As shown in Figure 3(d), it was evident that
the bond between the layers was very strong, while also
showing the boundary line between the layers. The coating’s
surface morphology was examined using an optical micro-
scope coupled with 3D analysis software, indicating wrinkle
heights of approximately 5 μm, characterized as micro-nano
scale wrinkles (Figure 3(e)). These wrinkles form due to
differential evaporation rates during preparation and drying,
resulting in surface tension; this structure positively influ-
ences both solar spectral band reflectance and atmospheric
window band emissivity.
The ultraviolet-visible-near infrared (UV-VIS-NIR) spec-

trophotometer and Fourier transform infrared spectrometer
combined with an integrating sphere were used to measure
the spectral properties of PDRC coatings in the 0.3–15.0 μm
bands. As shown in Figure 3(f), the double-layer PDRC
coating exhibited excellent spectral performance with a high

Figure 2 Optimization design of particles in the coating. Optimization design of particle size of Al2O3 (a) and SiO2 (b) particles; insert was absorption
efficiency of SiO2. Optimization of volume fraction of Al2O3 (c) and SiO2 (d) particles. (e) and (f) Optimization of overall coating thickness and surface layer
(PVDF) thickness design.
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solar reflectivity of 98% and selective emission with an
emissivity of 0.95 at the “atmospheric window” band. In
comparison, the solar spectrum reflectivity of the single-
layer PDRC coatings based on PVDF and PDMS of the same
thickness was 95% and 94.7%, respectively.

4 Outdoor cooling performance test of the
double-layer PDRC coating

An outdoor test experiment was conducted to evaluate the
outdoor cooling performance of the double-layer PDRC
coatings. The experimental setup comprised a data logger, a
test chamber, and a weather station. The experiment utilized
polystyrene foam with low thermal conductivity, enveloped
by aluminum foil on its surface to reflect solar radiation. To
mitigate convection effects, a 40 cm transparent poly-
ethylene film surrounded the setup, leaving the top open. The
double layer PDRC coatings were applied onto
10 cm×10 cm aluminum plates, with a thermocouple affixed
to the plate’s rear to monitor temperature changes. The four
test samples included a double-layer PDRC coating, single-
layer PDRC coatings (PVDF and PDMS), and color steel
tiles. Real-time monitoring of solar radiation intensity, re-
lative humidity, and wind speed was conducted using the
weather station [51].
The actual outdoor radiative cooling capability of the

coating was characterized on an unobstructed roof in Weihai

city (37°31′46″N, 122°4′40″E, 0-m altitude) on April 1–2,
2023. As shown in Figure 4(c), continuous outdoor tests
revealed that the double-layer PDRC coating achieved a
cooling effect of 5–8°C lower than the ambient air tem-
perature. Compared to other samples, the temperature of the
double-layer PDRC coating consistently remained 2–3°C
lower than the single-layer PDRC coatings (PVDF and
PDMS) and 10–27°C lower than the color steel tile. At noon,
between 10:00–14:00 on April 01, 2023, under the meteor-
ological environmental conditions of an average solar irra-
diance of 736 W/m2, an average wind speed of 1.7 m/s and
an ambient humidity of 16.4%, the double-layer PDRC
coating demonstrated an average sub-ambient temperature
drop of 7.1°C. In contrast, the temperatures of the single-
layer PDRC coating (PVDF), single-layer (PDMS) and color
steel tile samples were 20°C, 2.7°C, and 3.2°C higher than
the double-layer PDRC coating, respectively (Figure 4(d)).
This observation highlights the superior practical cooling
capacity of the double-layer PDRC coating.

5 Other performance test of the double-layer
PDRC coating

The PDRC coating, a material with broad applications in
construction, requires to have excellent adaptability during
application and strong adherence to building surfaces. We
selected three types of materials: marble, wood, and metal,

Figure 3 Testing and characterization of the double-layer PDRC coating. (a) Preparation process of the coating; (b) and (c) particle size distribution of
Al2O3 and SiO2 particles; (d) SEM images of the cross-section of the double-layer PDRC coating; (e) photo of the surface morphology of the coating;
(f) spectral reflectivity curves of double-layer coating and single-layer coatings.
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and applied coatings on the surfaces of the materials, all of
which showed good adhesion (Figure 5(a)–(c)). Ad-
ditionally, as an outdoor product, PDRC coatings must

withstand rain erosion, necessitating superior water re-
sistance. We conducted a 96-h water resistance test, sealing
coating edges with paraffin to prevent water seepage and

Figure 4 Outdoor test of the PDRC coating. (a) Photo of the outdoor test device; (b) relative air humidity and wind speed; (c) and (d) temperature test
curves of the PDRC coating samples.

Figure 5 Other basic properties of PDRC coatings. PDRC coatings were coated on stone (a), aluminum flakes (b), and wood respectively (c); (d) spectral
reflectivity of the coating before and after water resistance (insets: the test pictures); (e) comparison of spectral reflectivity of the coating before and after the
exposure experiment.
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corner peeling (Figure 5(d)). Post-soaking, no swelling,
peeling, or discoloration occurred. The coating underwent
hot air-drying, followed by testing its solar spectrum band
reflectance, achieving 98% (Figure 5(d)) using a UV-VIS-
NIR spectrophotometer. A 60-day outdoor durability test
revealed no cracks or peeling on the coating surface. Solar
spectral reflectance testing (Figure 5(e)) displayed no sig-
nificant degradation in spectral performance.

6 Conclusion

In this study, based on the principle that the refractive index
difference between layers enhanced the backscattering per-
formance of the solar spectrum, we proposed and manu-
factured a double-layer PDRC coating with PVDF as the
film-forming material in the upper layer and PDMS as the
film-forming material in the lower layer, both filled with
Al2O3 and SiO2 particles. The double-layer PDRC coating
exhibited excellent spectral performance that a high solar
reflectivity of 98% and an emissivity of 0.95 at the “atmo-
spheric window” band. In comparison, the solar spectrum
reflectivity of the single-layer PDRC coatings based on
PVDF and PDMS of the same thickness was 95% and
94.7%, respectively. Outdoor tests showed that the PDRC
coating achieved a temperature decrease of up to 7.1°C under
direct sunlight at noon time. Its temperature was 2.7°C,
3.2°C, and 20°C lower than the temperatures of single-layer
PDRC coating (PVDF), single-layer coating (PDMS), and
color steel tile samples. In addition, the PDRC coating has
excellent weather resistance, water resistance, and other
basic properties.
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