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Artificial intelligence (AI), which has recently gained popularity, is being extensively employed in modern fault diagnostic
research to preserve the reliability and productivity of machines. The effectiveness of AI is influenced by the quality of the
labeled training data. However, in engineering scenarios, available data on mechanical equipment are scarce, and collecting
massive amounts of well-annotated fault data to train AI models is expensive and difficult. In response to the inadequacy of
training samples, a numerical simulation-based partial transfer learning method for machinery fault diagnosis is proposed. First,
a suitable simulation model of critical components in a mechanical system is developed using the finite element method (FEM),
and numerical simulation is performed to acquire FEM simulation samples containing different fault types. Second, several
synthetic simulation samples are generated to form complete source domain training samples using a generative adversarial
network. Subsequently, the partial transfer learning network is trained to extract shared fault characteristics between the
simulation and measured samples in the case of class imbalance. Finally, the resulting model is used to diagnose unknown
samples from real-world mechanical systems in operation. The proposed method is tested on actual fault samples of bearings and
gears obtained from a public dataset and experimental test rig available in our laboratory, achieving average classification
accuracy of 99.54% and 99.64%, respectively. Comparison investigations reveal that the proposed method has superior clas-
sification and generalization ability when detecting faults in real mechanical systems.
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1 Introduction

A wide range of applications for rotating machinery in the
manufacturing industry is available. The critical components
of mechanical systems, such as bearings and gears, in-
evitably develop various faults because of their long-term
operation in a harsh working environment, which can affect
the performance of running equipment and, in severe cases,
result in complete machinery failure [1–5]. Therefore,
identifying mechanical faults is critical to ensure that the
equipment continues to operate normally.
Mechanical intelligent fault diagnosis is gaining mo-

mentum, and deep learning (DL)-based data-driven ap-
proaches are ushering in a broad prospect for engineering
applications because of the strong feature learning ability of
DL [6–8]. Several artificial intelligence (AI) models [9–12]
have recently sprung up, contributing significantly to modern
intelligent fault diagnosis processes. According to ref. [13], a
novel stacked autoencoder (SAE) model with lossless and
nonnegative constraints was proposed to supplement the
traditional SAE, which has higher robustness. In ref. [14], a
transferable convolutional neural network (CNN) was de-
veloped, which was pretrained using source domain samples
and fine-tuned according to specific diagnostic tasks. Xiang
et al. [15] developed a novel scheme for detecting faults in a
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wind turbine, in which a CNN was cascaded to long short-
term memory using an attention mechanism.
However, in engineering scenarios, available data on real-

world mechanical systems are scarce, which cannot meet the
requirements of AI models for several complete labeled
training samples. Moreover, although a few scholars have
researched and proposed unsupervised clustering methods
for unlabeled data, these methods can only gather the same
features and cannot obtain category information. Recently,
the finite element method (FEM) has been gaining increasing
attention in modern fault diagnosis because of the low cost of
obtaining simulation results for reference values. For in-
stance, Mousavi et al. [16] combined the FEM and real intact
states to construct training data and used DL for damage
detection. Seventekidis and Giagopoulos [17] simulated a
structure using the FEM to generate labeled damaged data as
training samples for a hierarchical CNN. Padil et al. [18]
presented a non-probabilistic method to detect vibration
damage and verified it on the numerical and laboratory
model.
In particular, an FEM simulation-based personalized di-

agnosis method (PFEM) was developed, introducing a new
approach to address the issue of training sample shortage
[19–21]. The FEM was applied to construct finite element
simulation analysis models of mechanical systems in the
method, and several fault samples of the corresponding
mechanical system could be obtained by simulation, which
can be adopted as training samples for AI models to com-
pensate for the difficulty in obtaining fault samples in a few
key parts. Numerical simulation provides the possibility of
obtaining various fault samples under any working condi-
tions. However, there are still limitations to this approach,
such as unavoidable discrepancies owing to differences be-
tween the simulation environment, boundary conditions, etc.,
and the actual working environment, which degrades clas-
sification precision [21].
Recently, generative adversarial networks (GANs) [22]

have gained increasing attention because they play a sig-
nificant role in learning the potential features of a dataset and
expanding it. Owing to the generation ability of GANs, many
researchers have used them to solve the insufficient data
problem [23,24], and some scholars have extended GANs to
mechanical fault diagnosis to improve classification accu-
racy. Shao et al. [25] developed a new type of GANmodel, in
which label information was considered to assist in produ-
cing realistic synthesized signals that can be used as aug-
mented data. Luo et al. [26] achieved imbalanced fault
diagnosis by adding conditions to GANs, especially the
discriminator was separated from the trained model as a
classifier for fault classification. In particular, Gao et al.
[27,28] presented an FEM simulation-based GAN method
(GFEM), which was performed on the basis of PFEM, and
used GANs to enlarge samples to obtain improved classifi-

cation accuracy. However, the generalization ability of
GFEM remains a problem to be solved.
Nevertheless, transfer learning provides hope for enhan-

cing the generalization ability of models [29]. It can learn
domain-invariant features, which means that the model can
achieve good performance, although it is used in domains
with different data distributions [30]. However, the cate-
gories of the collected real-world test samples are not ne-
cessarily the same as those of the training samples.
Therefore, partial transfer learning, as an important branch,
is more suitable for most engineering scenarios, which refers
to the fact that the types of faults in the target domain
(training samples) are only a fraction of those in the source
domain (test samples) [31]. For instance, an importance-
weighted adversarial network (IWAN) was presented in ref.
[32], where an additional discriminator was used to identify
source domain samples outside the common fault class. Li
et al. [33] introduced weighted learning techniques into a
partial transfer learning network to exclude unrelated source
domain samples and aligned the distribution of samples with
the same categories in two domains. Li and Zhang [34]
presented multiple classification modules to fight against the
discriminator to obtain prediction consistency and used
maximum mean discrepancy to reduce distribution dis-
crepancy. Deng et al. [35] designed a novel deep transfer
learning model called double-layer attention-based GAN to
solve the partial transfer learning problem across different
machines. Liu et al. [36] developed a weighted domain dis-
criminator to weight the sample space of the source domain
and aligned it with the target domain. Li et al. [37] proposed
a class-weighted adversarial network for partial domain
adaptation. By assigning class-level weights to the source
categories, the relationship between the source and target
domains can be intuitively presented. In summary, partial
transfer learning can address the weak generalization ability
of models caused by cross-domain asymmetry.
Motivated by the abovementioned studies, a numerical

simulation-based partial transfer learning method for ma-
chinery fault diagnosis is presented to solve the problems of
poor diagnostic precision and weak generalization ability of
GFEM. The key viewpoints of this study are as follows: (1)
Complete simulation samples of different types of faults are
acquired by numerical simulations and further augmented by
GANs to construct adequate training samples. (2) The ap-
plication of the partial transfer learning network can avoid
the problem of negative transfer, resulting from the class
imbalance between training and test samples while mini-
mizing domain shift. (3) The presented idea is an extension
of GFEM, which not only achieves higher fault identification
accuracy but also has stronger generalization ability. Con-
sequently, unknown samples collected from critical compo-
nents such as bearings and gears of real-world operating
mechanical systems can be accurately classified.
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The remainder of this article is constituted as follows.
Theoretical background, including PFEM, GFEM, and the
specific partial transfer learning network structure used in
this article, is detailed in Section 2. In Section 3, the structure
of this idea is presented. In Section 4, experimental in-
vestigations are performed. Conclusions are drawn in Sec-
tion 5.

2 Theoretical background

2.1 Personalized diagnosis method

In actual engineering applications, using physical sensors
directly in some key parts is difficult, thereby resulting in
missing fault samples. Thus, PFEM [20,21] was proposed to
simulate missing fault samples and then complete the types
of fault samples. Responding to the precise diagnosis re-
quirements caused by individual differences in mechanical
equipment under real-world conditions, numerical simula-
tion methods are adopted to develop agreeable FEM models
of mechanical systems to obtain different types of simulation
signals reflecting actual operating conditions. The brief steps
of PFEM can be summarized as follows.
Step 1: Develop an effective FEM model of the critical

components of the mechanical system.
First, an initial FEM model of a mechanical system is

established using ANSYS software [38]. Then, update the
FEM model with the FEM model updating technology [39].
In general, the critical model properties are repeatedly
modified until the cosine similarity between the normal si-
mulation signals and the normal measured signals meets
certain requirements. The threshold is generally set to 0.6
[20,21] in engineering applications. Finally, a normal FEM
model of the critical components of the mechanical system is
established.
Step 2: Perform numerical simulation to acquire the si-

mulation signals.
Predefine the possible fault modes of the mechanical

system and then add faults to the normal FEM model. Nu-
merical simulation is performed on the faulty FEMmodels to
obtain FEM simulation signals comprising multiple types of
faults. Furthermore, the simulation fault samples can be
constructed as training samples for the AI models by pre-
processing.
Step 3: Classify faults using AI models.
Similarly, using preprocessed measured signals, the mea-

sured fault samples can be constructed as test samples for AI
models. The training samples are input into AI models, and
eventually, the fault modes of the test samples are detected.

2.2 FEM simulation-based GAN method (GFEM)

The feasibility of PFEM has already been confirmed; how-

ever, the diagnosistic accuracy needs to be improved.
Therefore, GFEM [27,28], which combines PFEM and
GANs, was developed to enlarge samples to obtain improved
classification accuracy.
The GAN composition is shown in Figure 1, comprising a

generator (G) and discriminator (D). G generates random
noise z into signals with the same characteristics by learning
the potential statistical characteristics of real signal x. D
distinguishes the generated signal G(z) from x as much as
possible and determines whether G(z) is fake or real. The
overall objective function is represented as follows:
L E D x

E D G z

= max [log ( )]

+ [log(1 ( ( )))], (1)
D D x p x

z p z

~ ( )

~ ( )z

data

L E D G z= min [log(1 ( ( )))]. (2)G G z p z~ ( )z

The training of the two components is alternately per-
formed. The real signals and the signals generated by G are
first passed to D, which then predicts which signals are real
and fake. Next, the predicted results are checked against the
true results, and the binary cross-entropy loss is calculated.
The gradient is backpropagated only through D in this step,
and its parameters are accordingly optimized. While updat-
ing G, the ground truth labels are all labeled as “real” be-
cause G is expected to generate signals as similar as possible
to real ones. Therefore, when G attempts to fool D, the
gradient is backpropagated only through G. The adversarial
training continues until it achieves its Nash equilibrium [40].
The trained GAN can be used to generate many samples that
have statistical characteristics similar to those of the original
ones.
Different from PFEM, the use of a GAN in GFEM can

expand the simulation and measured samples. Moreover, the
discrepancy between the simulation and measured samples
could be suppressed by GAN at a certain level. Thereafter,
complete labeled training fault samples could be constructed
by combining all measured, simulation, and synthetic fault
samples. Eventually, the complete labeled training fault
samples are applied to the AI model, and unknown fault
samples are used for testing to achieve fault diagnosis. These
findings demonstrate that this approach can improve diag-
nostic precision to some extent compared with PFEM.

Figure 1 (Color online) GAN overview.
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2.3 Partial transfer learning network

2.3.1 Transfer learning problem definition
First, some definitions and symbolic representations of
transfer learning are introduced in detail. Let

x y{ , }s s ={ }( )x y,i
s

i
s

i

n

=1
s represent data with labeled information

from the source domain Ds and x{ }t ={ }xi
t

i

n

=1
t data without

labeled information from the target domain Dt. ns and nt
denote the sample sizes inDs andDt, respectively, and Cs and
Ct denote the corresponding label sets, respectively. ps(x) and
pt(x) are different marginal distributions, from which xs and xt

are drawn, respectively. In particular, this study is based on
the assumption that Dt and Ds only share part of the label
space, specifically Ct ∈ Cs. Partial transfer learning is better
suited to real-world diagnostic applications, where xt belongs
to a limited number of categories.

2.3.2 Importance-weighted adversarial network (IWAN)
The architecture of the IWAN is illustrated in Figure 2,
comprising two feature extractors, two domain dis-
criminators, and a health condition classifier. The feature
extractors are denoted by Fs and Ft, which are utilized to
extract the features of the two domain samples, respectively.
The two domain discriminators are denoted as D0 and D1,
and the health condition classifier is represented by C.
In the IWAN, Fs and C are first optimized to extract fea-

tures and accurately classify the source domain samples. The
loss function is expressed as follows:

( )L F C E I C F xmin ( , ) = log ( ) , (3)
F C s s x y p x y

k

K

s, , ~ ( , )
=1s s k y[ = ]

where K represents the fault categories, and I[·] represents an
indicator function. Note that the parameters of Fs, which are
trained in the previous step, are fixed during the formal ad-
versarial training procedure. Next, we maximized the do-
main classification error of D0, expressed as follows:

( )
( )

( )

LD D F F E D F x

E D F x

min ( , , ) = log ( )

+ log 1 ( ) . (4)

D s t x p x s

x p x t

0 0 ~ ( ) 0

~ ( ) 0

s

t

0

Assuming that D0 has achieved convergence to the optimal
value based on the current Ft, the output of D0 can be ex-
pressed as the probability that a sample originates from a
certain domain. Therefore, the activations of D0 can be
adopted to exclude the samples of the source domain that are
more important to the target domain. Let D* represent the
optimum value of D0, and t=F(x) be the extracted feature
obtained after processing by the feature extractor. If D*(t)≈1,
the categories of these samples are unlikely to exist in the
shared label space. In this case, the contribution of these
samples should be minimized so that D0 and Ft can ignore
them to avoid negative transfer. Conversely, if D*(t) is
smaller, it implies that these samples are most probably from
common classes between domains, which should be assigned
greater importance weights. In summary, the importance-
weighting function is expected to be inversely proportional
to D*(t) and can be described as follows:

w t D t p t
p t

( ) = 1 ( ) = 1
( )
( )

+ 1
. (5)

s

t

*

From eq. (5), a small D*(t) value implies that the category
of the sample likely belongs to the common part and then
w t( ) increases. Note that the density ratio between the source
and target characteristics also influences the weighting
function, further validating its effectiveness, as the source
domain samples outside the boundary are assigned low
weights.
To acquire the relative importance according to Fs and

current Ft, the weights are normalized to obtain w t( ). The
resulting weights are then assigned to the source domain
features such that the common category of source domain
features can be given larger weights, whereas unrelated
features are given smaller weights. The weighting function is
defined as a function of D0; therefore, the results generated

Figure 2 (Color online) Composition of the IWAN.
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by the adversarial game between Ft and D0 cannot reduce the
Jensen-Shannon divergence between the two densities if the
weights are applied to the same domain discriminator. Based
on this situation, this problem is solved by applying a second
domain discriminator D1 to compare the two domain fea-
tures. Confusing the different domain features by maximiz-
ing the loss of D1 allows Ft to learn domain-invariant
features.
Moreover, the entropy minimization principle [41] is used

to restrain Ft. Consequently, the third optimization object can
be described as follows:

( )

( )

( )
( )

L C D F F E H C F x

E w t D F x

E D F x

minmax ( , , , ) = ( ( ))

+ ( ( )log ( )

+ log 1 ( ) , (6)

F D w s t x p x t

x p x s

x p x t

1 ~ ( )

~ ( ) 1

~ ( ) 1

t t

s

t

1

where γ and λ denote tradeoff parameters and H(·) represents
the information entropy function. Fs and C are optimized in
advance using the source domain samples and are not up-
dated in the subsequent training process. In the formal
training phase, D0, D1, and Ft are simultaneously optimized.
D0 is only used to obtain the relevance weights of the source
domain samples based on Fs and current Ft, whereasD1 plays
an adversarial game with Ft to update Ft. Notably, the ad-
versarial game between Ft and D1 is resolved using the
gradient reversal layer (GRL) [42].

3 The presented method structure

Inspired by previous research [20,21,27,28], a numerical
simulation-based partial transfer learning method for me-
chanical fault diagnosis is proposed to classify unknown
samples collected from real-world engineering applications.
Figure 3 shows the specific procedure of the proposed
method, which comprises the following three stages.
Stage 1: Create the FEM model to acquire FEM simula-

tion fault samples.
At this point, FEM is used to construct a consensual si-

mulation model of critical components in a mechanical
system, and numerical simulation is performed to acquire
FEM simulation samples comprising different types of
faults. The problem of the shortage of complete labeled
training fault samples can be solved.
Stage 2: Obtain complete source domain training samples.
Taking the original FEM simulation samples as a template,

a GAN is used to generate a significant number of synthetic
simulation samples to enlarge the sample size and reduce the
discrepancy between the two types of samples to some ex-
tent. Thereafter, all synthetic simulation and FEM simulation
fault samples are finally added together to construct com-
plete source domain training samples. In addition, the dataset
has been expanded, which is beneficial for training the
model.
Stage 3: Train IWAN to identify faults in the mechanical

system.
In practice, collected real-world test samples may not share

the same label space as training samples. Therefore, IWAN is
adopted for partial transfer learning based on the above-
mentioned situation to prevent negative transfer. Specifi-
cally, IWAN is applied to the constructed complete source
domain samples and is further used to identify unknown
target domain samples collected from real-world mechanical
systems in operation.

4 Experimental investigations

In this section, experimental investigations are performed
based on bearing and gearbox datasets to verify the effec-
tiveness of the proposed method. All data processing is
performed on a PC with an NVIDIA GPU GeForce GTX
1050Ti, CPU Core i7-9700 3 GHz, 32 GB RAM, Tensorflow
2.3, MATLAB 2018, and Cuda 10.1.

Figure 3 (Color online) Procedure of the presented method.
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4.1 Experiment setup

4.1.1 Gearbox dataset
To evaluate the practicability of the proposed method, a gear
fault dataset collected from our laboratory’s gearbox ex-
perimental test bench is used for analysis, as depicted in
Figure 4, where the various components of the test bench
have been labeled. In particular, an ECON AVANT MI-7016
16-channel vibration signal acquisition instrument is used to
acquire vibration signals, and the model of the acceleration
sensor is AI002 with a sensitivity of 2.005 mV/ms−2. A
driving gear with 55 teeth, a driven gear with 75 teeth, and 4
cylindrical roller bearings and shafts constitute the gear
transmission system. The driving shaft rotates at 1474 r/min,
and signals from an accelerator sensor mounted at the drive
end of the driving shaft are collected at 5120 Hz sampling
frequency.
The gear faults are shown in Figure 5(a)–(d), which in-

clude driving gear tooth crack (TCF), driven gear tooth break
(TBF), driving gear tooth break (GBF), and driving gear
tooth spalling (TSF), respectively. For experimental in-
vestigations, six gear health conditions are considered: TCF,
TSF, GBF, compound fault of TSF and TBF (TSBF), com-
pound fault of GBF and TBF (GTBF), and normal (N).

4.1.2 Bearing dataset
The public bearing dataset from Case Western Reserve
University (CWRU) [43] is used to further validate the
generalizability of the developed idea. Signals acquired at a
sampling frequency of 12000 Hz from accelerometers
mounted at the drive-end bearing rotated at a load of 0 are
used in the experimental investigations. Six fault types are
considered: inner race fault (named IF07 and IF21), ball fault
(named BF07 and BF21), and outer race fault (named OF07
and OF21), where 07 and 21 indicate that the fault severity
degrees are 0.007 and 0.021 inches, respectively.

4.2 Design of fault diagnosis experiments

To address the issue of class mismatch in the training and test
samples for practical applications, four groups of experi-
ments are designed on the gear and bearing datasets, pre-
sented in Tables 1 and 2 below. Taking the task T2 for
instance, the target domain fault samples belong to four
types: TSF, GBF, TSBF, and GTBF. The source domain
samples comprise synthetic and FEM simulation fault sam-
ples.

4.3 FEM model construction

4.3.1 Construct the FEM model of the gearbox
Complete simulation fault samples comprising different
types of faults can be obtained from the FEM models of
faulty gears. Specifically, the FEM model of the gearbox is
developed using the ANSYS software. To improve the effi-
ciency of the simulation calculation, the transmission en-
closure is reasonably simplified to several bearing seats and

Figure 4 (Color online) Gearbox experimental test rig.

Figure 5 (Color online) Types of gear faults. (a) TCF; (b) TSF; (c) TBF;
(d) GBF.

Table 1 Fault diagnosis experiments on the gearbox dataset

Tasks Source domain Target domain

T1

N, TCF, TSF, GBF,
TSBF, GTBF

TCF, TSF, GBF, TSBF, GTBF

T2 TSF, GBF, TSBF, GTBF

T3 TCF, GBF, GTBF

T4 TSF, TSBF

Table 2 Fault diagnosis experiments on CWRU bearing dataset

Tasks Source domain Target domain

T5

IF07, OF07, BF07,
IF21, OF21, BF21

IF07, OF07, BF07, IF21, OF21

T6 IF07, OF07, BF07, OF21

T7 IF07, OF07, OF21

T8 BF07, OF21
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the properties of the stiffness and damping are simulated
using contact pairs.
More specifically, the element of SOLID164 is applied to

create the meshing of the gear body, and SHELL163 is
employed to produce the meshing of the surface driving shaft
to apply the rotating loading. In the simulation modeling,
referring to the actual material parameters, all components
are defined as linear elastic materials, the specific parameters
of which can be found in Table 3. In addition, several contact
pairs are created in the gearbox model, comprising four pairs
on the shaft and bearing seats and one pair between the two
gears. All degrees of freedom (DOF) on the outer surface of
the four bearing seats are limited in accordance with the
actual working conditions.
The model updating technology in ref. [44] is used in the

procedure of optimizing the normal FEM model to make the
FEM model correspond more closely to the experimental
gearbox. According to the modulation mechanism of the
vibration response of the gearbox, signals are processed by
bandpass filtering to effectively extract model parameter
information such as gear meshing stiffness and damping.
Specific bandpass filtering processing details can be found in
ref. [21]. In addition, the reliability of the FEM model is
verified by contrasting the similarity of the simulation and
actual signals using cosine similarity in the time domain
[45]. According to the main boundary conditions determined
in ref. [21], the FEM model is created. The updated para-
meters are listed in Table 3, and the FEM meshing of the
normal gears is depicted in Figure 6(a). The final calculated
cosine similarity value is 0.742, which indicates that the
developed FEM model is reliable.
Subsequently, by adding several faults, as shown in Figure

6(b)–(f), to the developed FEM model, different types of
FEM simulation vibration signals can be generated through
numerical simulation. TSF, GBF, and GTBF faults are ran-
domly selected as examples, and the time-domain spectro-
grams of the simulation and corresponding actual signals are
depicted in Figure 7. The two signals are well matched,
which again demonstrates the reliability of the FEM model.

4.3.2 Construct the bearing FEM model
A three-dimensional FEM model is also created by the
ANSYS software based on the geometric dimensional
parameters of the SKF6250 bearing from the CWRU. Note
that the bearing seat and shaft are also included in the
modeling, considering the actual working conditions. The
FEM model is shown in Figure 8(a).
Similar to the modeling of gears, SOLID164 and

SHELL163 are also used to create a simulation model. All
elements are defined as linear elastic materials, and the
material parameter setting is the same as that for the gear
transmission system. The inner ring and shaft synchronously
rotate, and the bearing seat is fixedly connected to the
bearing outer ring and has restricted DOF at all nodes on the
outer surface. Contact pairs are constructed between the
rollers and inner and outer rings. The static friction coeffi-
cient is set to 0.32, and the dynamic friction coefficient is set
to 0.16, according to ref. [27]. In the procedure of updating
the normal simulation model, the model updating technology
previously described is also used to determine the main
boundary conditions. Repeatedly update the parameters such
as gravity, eccentric load, and inner preload and obtain the
corresponding simulation signals, and then calculate the

Table 3 Gearbox FEM model parameter list

Parameters Value

Material density 7860 kg/m³

Elastic modulus 2.06×1011 Pa

Poisson’s ratio 0.3

Friction coefficient 0.08

Bearing synthetic damping ratio 0.09

Bearing comprehensive contact stiffness 0.16

Gear contact damping ratio 0.005

Gear meshing stiffness 0.15

Figure 6 (Color online) Gearbox FEM model and fault types. (a) Gear-
box model; (b) TCF; (c) TSF; (d) GBF; (e) TSBF; (f) GTBF.

Figure 7 (Color online) Time-domain spectrograms of simulation and
corresponding actual signals of gears. (a) TSF; (b) GBF; (c) GTBF.
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cosine similarity until the result satisfies the condition. The
essential properties of the updated bearing FEM model are
provided in Table 4, according to ref. [20]. The associated
cosine similarity value is 0.618, exceeding the threshold
value.
Figure 8(b)–(d) shows the FEM and geometry of faults of

different types added to the normal FEM model. Fault FEM
simulation vibration samples can be obtained by performing
a numerical calculation from the model with the relative
fault. To visually display the simulation and measured sig-
nals, the time-domain waveforms of IF07, OF07, and BF07
are shown in Figure 9. A slight difference can be found
between the two signals but within a reasonable range.

4.4 Obtain complete source domain training samples

The discrepancy between the numerical simulation and
measured samples is inescapable. To further reduce the dif-
ference and enlarge FEM simulation fault samples, a GAN is
used to generate several synthetic simulation samples. In this
study, the FEM simulation fault samples are used as real
samples in the GAN and the random noise is sampled from a
uniform distribution (z~u(−1,1)). The specific structure and
parameters of G and D are listed in Table 5, where BN de-
notes the batch normalization layer. Thereafter, complete
source domain training samples can be constructed by
combining synthetic simulation fault samples and the origi-
nal FEM simulation samples.
The frequency spectra of the simulation signals for the

gears and bearing are shown in Figures 10 and 11, including
the simulation signals obtained by the FEM and synthetic
simulation signals generated from the original FEM signal.
To further judge the degree of matching of frequency char-
acteristics, only the frequency spectrum with a specific range
of frequency values is displayed in the figures. The fault
frequency characteristic of the synthetic simulation signal

Figure 8 (Color online) Bearing FEM model and fault types. (a) Bearing
model; (b) IF; (c) OF; (d) BF.

Table 4 Gearbox FEM model parameter list

Contact
parameters Value Load parameters Value

Normal contact
stiffness factor 0.12 Gravity load of

shaft 495 N

Dynamic friction
factor 0.16 Eccentric load 0.1 MPa

Static friction
factor 0.32 Inner rotating

speed 1797 r/min

Viscous damping
factor 0.02 Inner preload 1 MPa

Figure 9 (Color online) Time-domain spectrograms of simulation and
corresponding actual signals of bearing. (a) IF07; (b) OF07; (c) BF07.

Table 5 Specific structures of the GAN

Module Layer Number of channels/
size/stride/activation

G

Dense 150*64/1/*/*

BN /

Activation LeakyReLu

Reshape /

Deconvolution 16/(3,1)/2/*

BN /

Activation LeakyReLu

Deconvolution 8/(3,1)/2/*

BN /

Activation LeakyReLu

Deconvolution 1/(3,1)/2/Tanh

BN /

Activation LeakyReLu

D

Reshape /

Convolution 8/(3,1)/2/*

Activation LeakyReLu

Convolution 16/(3,1)/2/*

Activation LeakyReLu

Flatten /

Dense 1/1/*/Sigmoid
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matches to that of the FEM simulation signal.

4.5 Fault diagnosis based on IWAN

In this section, the detection of designated fault diagnostic
tasks is performed. In the case of the gearbox dataset, the
complete source domain training samples are formed by
1200 (200×6) fault samples, with 250 data points in each
sample. Correspondingly, the unlabeled measured samples
are considered as the target domain, and 80 fault samples
with 250 data points are available for each class. For the
CWRU bearing dataset, the source domain comprises 1800
(300×6) fault samples with the length of each sample equal
to 400 and the target domain sample size for each category is
300 of the equivalent length. Considering task T6, for in-
stance, 1200 (300×4) fault samples in the target domain are
observed.
The details of the IWAN parameters are set, as described

below. Ft is achieved using several convolutional, pooling,
and fully connected layers, and C, D0, and D1 are composed

of fully connected layers. Their specific constructions are
listed in Table 6, where GAP represents the global average
pooling layer and GRL is the gradient reversal layer. The
Adam optimization algorithm [46] is used to update the
IWAN model, where the learning rates of Ft, C, D0, and D1

are defined as 1×10−3, 5×10−4, 5×10−4, and 5×10−4, respec-
tively. The parameters and are defined as 1 for simplicity
[34]. The batch size is set as 32. Note that half of each batch
comprises the complete source domain fault samples, and the
second half comprises the target domain fault samples.

4.6 Experimental results and discussion

In this study, PFEM [21], FEM simulation-based GAN
method (GFEM) [27], and unsupervised clustering method
(UCM) [47] are implemented for comparison. Specifically,
in PFEM, the source domain training samples comprise only
240 (40×6) and 180 (30×6) FEM simulation fault samples
for the gear and bearing datasets, respectively. In addition, a
CNN is adopted as the classifier for PFEM and GFEM. In the
UCM, DCGAN is used to extract features [47] from un-
labeled measured samples in the target domain and then
perform clustering using the k-means clustering algorithm.

4.6.1 Experimental results analysis of gearbox dataset
The experimental results obtained from the four gearbox
diagnosis tasks are presented in Table 7. Note that the ef-
fectiveness of the UCM can be analyzed using the following
indicators: adjusted rand index (ARI), normalized mutual
information (NMI), and purity. The test accuracy obtained on
Dt is used to evaluate the performance of other methods.
Comparing these results, the proposed method has the best

Figure 10 (Color online) Frequency spectra of simulation signals for
gears. (a) TSF; (b) GBF; (c) GTBF.

Figure 11 (Color online) Frequency spectra of simulation signals for
bearing. (a) IF07; (b) OF07; (c) BF07.

Table 6 Specific structures of IWAN

Module Layer Number of channels/size/stride/
activation

Ft

Convolution 8/(5,1)/2/ReLu

Max Pooling /

Convolution 16/(5,1)/2/ReLu

Convolution 32/(5,1)/2/ReLu

Convolution 64/(5,1)/2/ReLu

Convolution 128/(5,1)/2/ReLu

Convolution 256/(5,1)/2/ReLu

GAP /

Dense 32/1/*/*

C
Dense 32/1/*/ReLu

Dense 6/1/*/Softmax

D0
Dense 32/1/*/ReLu

Dense 1/1/*/Sigmoid

D1

GRL /

Dense 32/1/*/ReLu

Dense 1/1/*/Sigmoid
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classification performance in the different tasks, with an
average diagnostic accuracy of 99.64%. More specifically,
the average accuracy of PFEM and GFEM is lower than that
of the proposed method by 7.96% and 4.64%, respectively.
However, the average classification accuracy of GFEM is
higher than that of PFEM, proving that the adoption of a
GAN can compensate for the discrepancy between the FEM
simulation and measured fault samples. Furthermore, the use
of IWAN in the proposed method solves the generalization
ability of GFEM and can obtain more satisfactory classifi-
cation results. For the UCM, the value of each evaluation
metric is close to 1, indicating that the unsupervised results
are satisfactory. However, labeled information cannot be
obtained from the UCM; thus, using the FEM to obtain la-
beled training samples is necessary.
To show the generalization capacity of the proposed idea,

t-SNE [48] is employed for feature visualization. Consider-

ing fault diagnosis experiment T2 as an illustration, the
features obtained using PFEM, GFEM, and the proposed
method are visualized in Figure 12. From Figure 12(a) and
(b), the features of different domains generated using PFEM
and GFEM are not well separated. As shown in Figure 12(c),
the proposed method can aggregate the characteristics of the
same class from different domains, and some distance be-
tween samples with different types of categories is observed,
which is beneficial to the classification outcome. In sum-
mary, these results certify that the proposed method has sa-
tisfactory classification accuracy and generalization ability.

4.6.2 Experimental results analysis of bearing dataset
The classification results for the four experiments of the
bearing dataset are presented in Table 8. The test accuracy of
the proposed method in the four diagnostic tasks is 99.33%,
99.17%, 100%, and 99.67%, respectively. Compared with
the other methods, the mean diagnosis precision of the pro-
posed method is 99.54%, which is higher than that of PFEM
and GFEM, which are 91.89% and 96.41% respectively. The
average accuracy of PFEM is over 90%, which confirms that
the simulation signals obtained by numerical simulations can
replace the measured signals collected from real-world op-
erating mechanical systems to some degree. Moreover, the
improvement effect of the IWAN on the generalization
ability is again reflected by comparing it with GFEM. Si-
milar to the gearbox dataset, the clustering effect of the UCM
on the bearing dataset is also excellent; however, the problem

Table 7 Experimental results for gearbox diagnosis tasks

Task
PFEM
(%)

GFEM
(%) UCM Proposed

(%)

Dt Dt ARI NMI Purity Dt

T1 90.49 93.00 0.947 0.951 0.973 100

T2 91.87 96.88 0.979 0.970 0.988 99.38

T3 92.50 94.16 0.982 0.974 0.996 99.17

T4 91.84 94.99 0.985 0.977 0.998 100

Avg 91.68 94.76 0.973 0.968 0.989 99.64

Figure 12 (Color online) Feature visualization for gears. (a) PFEM; (b) GFEM; (c) proposed.
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of not being able to obtain category information remains
unresolved.
The features of the bearing samples are also displayed by t-

SNE to explore the effect of the proposed method in reducing
distribution differences. The features acquired by PFEM,
GFEM, and the proposed method in the fault diagnosis task
T6, which is randomly chosen, are visualized in Figure 13.
As shown in Figure 13(a), the features of a few types of faults
of different domains are not stacked together, which shows
that differences in the distribution between the two domains
are still present. Figure 13(b) shows that the feature dis-
tribution between the two domains is closer than that of
PFEM because of the use of a GAN. The proposed method
has stronger generalization and classification capabilities
than GFEM, as evidenced by the fact that the features of
Figure 13(c) are more concentrated than those of
Figure 13(b).

5 Conclusion

To improve the classification precision and generalization
ability of GFEM, numerical simulation-based partial transfer
learning is developed to classify unknown samples collected
from critical components such as bearings and gears of real-
world operating mechanical systems. Unlike GFEM, the
adoption of partial transfer learning will learn common
features from simulation samples and further classify un-
known measured samples. Experimental investigations on
bearings and gears with faults demonstrate that the proposed
method can identify faults accurately and has a strong gen-
eralization ability. Compared with PFEM, GFEM, and the
UCM, the essential contributions of this article can be
summarized in the following sections: (1) Considering the
scarcity of labeled training samples available in engineering
practice, this study uses numerical simulation to obtain si-
mulation signals of various fault categories. Sufficient
numbers of samples are further expanded using a GAN. (2)
Through the adversarial training process and weighting op-
eration of the IWAN, the proposed method learns the com-
mon characteristics of the simulation and measured samples
and reduces the data distribution difference, improving
classification accuracy. This method holds the promise of
promoting the successful application of FEM and DLmodels
to intelligent fault diagnosis in real-world mechanical sys-
tems in operation. To better align with the data situation in
engineering practice, an open set domain adaptation study,

Table 8 Experimental results for bearing diagnosis tasks

Task
PFEM
(%)

GFEM
(%) UCM Proposed

(%)

Dt Dt ARI NMI Purity Dt

T5 92.71 96.77 0.985 0.973 0.986 99.33

T6 91.53 97.55 0.984 0.969 0.993 99.17

T7 91.33 95.33 1.0 1.0 1.0 100

T8 92.00 95.99 1.0 1.0 1.0 99.67

Avg 91.89 96.41 0.992 0.986 0.995 99.54

Figure 13 (Color online) Feature visualization for bearing. (a) PFEM; (b) GFEM; (c) proposed.
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where some additional faults occur on testing machines that
do not belong to the source domain classes, will be explored
in the future.
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