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This paper proposes a comprehensive design scheme for the extremum seeking control (ESC) of the unmanned aerial vehicle
(UAV) close formation flight. The proposed design scheme combines a Newton-Raphson method with an extended Kalman
filter (EKF) to dynamically estimate the optimal position of the following UAV relative to the leading UAV. To reflect the wake
vortex effects reliably, the drag coefficient induced by the wake vortex is considered as a performance function. Then, the
performance function is parameterized by the first-order and second-order terms of its Taylor series expansion. Given the excellent
performance of nonlinear estimation, the EKF is used to estimate the gradient and the Hessian matrix of the parameterized
performance function. The output feedback of the proposed scheme is determined by iterative calculation of the Newton-Raphson
method. Compared with the traditional ESC and the classic ESC, the proposed design scheme avoids the slow continuous time
integration of the gradient. This allows a faster convergence of relative position extremum. Furthermore, the proposed method
can provide a smoother command during the seeking process as the second-order term of the performance function is taken into
account. The convergence analysis of the proposed design scheme is accomplished by showing that the output feedback is a
supermartingale sequence. To improve estimation performance of the EKF, a improved pigeon-inspired optimization (IPIO) is
proposed to automatically tune the noise covariance matrix. Monte Carlo simulations for a three-UAV close formation show that
the proposed design scheme is robust to the initial position of the following UAV.
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1 Introduction

Close formation of unmanned aerial vehicle (UAV) has been
increasingly studied and researched in the field of UAV for-
mations [1–6]. Its potential benefits include enhanced coordi-
nation, reduced radar cross section, improved obstacle avoid-
ance and especially increased energy efficiency. In close for-
mation flight, the following UAV can take advantage of the
upwash of the wake vortex induced by the leading UAV to en-
hance lift and decrease drag [7]. Therefore, saving energy can
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be realized by the following UAV, which has been validated
through theoretical investigation [8,9], observed in wind tun-
nel experiments [10], and substantiated by flight tests [11].
However, the drag reduction achieved by the following UAV
is highly sensitive to the position relative to the leading UAV
(an error of just 10% of the wingspan can reduce the bene-
fits by half) [12]. Furthermore, the meandering of the leading
UAV and random wind turbulence can affect the character-
istics of the wake vortex, which leads to the uncertainty of
the optimal relative position [13, 14]. Therefore, in order to
maintain a consistently high reduction in drag, it is crucial for
the following UAV to continuously locate the optimal relative
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position.

To achieve this control objective, significant efforts have
been made with various control schemes [15–19]. The
model-based open loop control scheme has been proposed to
achieve drag reduction [20–24]. In this strategy, the optimal
relative position is predetermined by conducting an investi-
gation of the wake vortex using the established model. Ad-
ditionally, this predetermined optimal relative position is as-
sumed to be unchanged in close formation flight. Inevitably,
such a scheme can not provide the maximal drag reduction.
This is because its effectiveness is limited by the uncertainty
of the optimal relative position and high sensitivity of the
drag reduction to position. Therefore, it is desirable to de-
velop a model-free adaptive feedback control that can gen-
erate a dynamic estimation of the optimal relative position
during close formation flight. To this end, extremum search
control (ESC) is introduced into the design of the close for-
mation controller. In ref. [25], the traditional ESC was uti-
lized to estimate the optimal relative position dynamically.
Its fundamental concept is to find the extremum points of the
performance function by the process of modulation and de-
modulation. However, the traditional ESC based on modula-
tion and demodulation exhibits slow convergence speed when
estimating the optimal relative position. To improve the con-
vergence speed, ref. [26] takes the classic ESC to perform the
estimation of optimal relative position. In the classic ESC, the
extended Kalman filter (EKF) is used to estimate the gradient
information. While the ESC based on the EKF has been a sig-
nificant improvement in the convergence speed of the optimal
relative position, there are occurrences of highly nonsmooth
behaviour during the convergence. The reason behind this
issue may be that only estimating the gradient can not ade-
quately capture the complex nonlinear dynamics of the wake
vortex model.

Motivated by the unresolved problems aforementioned,
this paper proposes a Newton-Raphson method based ESC
to estimate the optimal relative position Dynamically. Ac-
cording to the Newton-Raphson method, the performance
function is assumed to be approximated by a quadratic func-
tion. This is accomplished by parameterizing the perfor-
mance function using first-order and second-order terms of
a Taylor series expansion. Given the excellent performance
of nonlinear estimation, the EKF is still utilized to estimate
the gradient and Hessian matrix of the parameterized perfor-
mance function [27, 28]. Compared with the traditional and
classic ESC, the proposed scheme avoids the slow continuous
time integration by iterative calculation. This allows a faster
convergence of optimal relative position. Furthermore, the
proposed scheme can provide a smoother convergence as the
second-order term of the performance function is taken into

account. To form a feedback, a continuous horseshoe vor-
tex method with high accuracy is used to establish the wake
vortex model [29]. Additionally, the established wake vor-
tex model is also used to perform the static analysis of opti-
mal relative position and yield powerful insight into the ESC
of the relative position. The drag coefficient induced by the
wake vortex is considered as the performance function.

It has been widely recognized that tuning the free parame-
ters of the noise covariance matrix plays a crucial role in im-
proving the estimation performance of the EKF [30]. By op-
timizing the free parameters, the EKF can adapt more effec-
tively to the dynamic characteristics of the wake vortex model
and the uncertainties in the wake vortex measurements. Due
to the limitation of knowledge and experience, the manual
tuning method for free parameters is generally not only ex-
cessively time-intensive, but also considerably difficult to ac-
quire the optimal parameter combination. Different from the
manual tuning method, the evolutionary algorithm has been
proven to be feasible and effective for automatic tuning of the
free parameters [31, 32]. However, basic evolutionary algo-
rithms, such as particle swarm optimization (PSO) [33, 34],
genetic algorithms (GA) [35], and pigeon-inspired optimiza-
tion (PIO) [36] are generally suitable for single-modal op-
timization problems with a limited number of optimization
parameters [37, 38]. Due to the requirement of estimating
the gradient and Hessian matrix in our proposed Newton-
Raphson method based ESC, the number of optimization
parameters in the EKF is significantly increased. Further-
more, the highly nonlinear characteristic of the wake vor-
tex model gives rise to a multi-modal optimization problem.
For multi-variable and multi-modal characteristics of the pro-
posed Newton-Raphson method based ESC, therefore, an im-
proved PIO (IPIO) is co-proposed to escape local optima and
enable a more global search. The IPIO can effectively handle
the complex nonlinear relationship between the free parame-
ters of the EKF and the performance of the proposed Newton-
Raphson method based ESC. As a result, it has the potential
to enhance the performance.

The main contributions of this paper are summarized as
follows.

(1) A Newton-Raphson method based ESC is proposed to
estimate the optimal relative position of UAV close forma-
tion dynamically.

(2) A continuous horseshoe vortex method with high accu-
racy is used to establish the wake vortex model.

(3) The EKF is used to estimate the gradient and the Hes-
sian matrix.

(4) The IPIO is co-proposed to automatically tune the free
parameters of the EKF.
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2 Aerodynamic modeling

The aerodynamics of multiple UAVs in a close formation
flight is much more complex compared with the aerodynam-
ics in free formation flight because of aerodynamic interac-
tions. As illustrated in Figure 1, the wake vortex generated by
a leading UAV induces the regions of downwash and upwash
behind its wings. A following UAV can utilize the upwash
of the induced velocity to reduce its induced drag at the fixed
lift, which is the mechanism of the drag reduction in close
formation flight. To quantitatively describe the reduction of
the induced drag, the wake vortex of the leading UAV is mod-
eled firstly by only considering the wing. Then, the primary
effects of the wake vortex on the following UAV are evalu-
ated by transforming the induced velocity into the induced
drag coefficient.

2.1 Wake vortex model

Considering both accuracy of estimation and the effective-
ness of calculation for the real-time application, a continuous
horseshoe vortex method is utilized to develop the wake vor-
tex model of the leading UAV [29]. As shown in Figure 2, the
wake vortex can be modeled as an infinite number of semi-
infinite horseshoe vortices that are continuously distributed.
Based on the structural characteristics of the horseshoe vor-
tex, the wake vortex can be divided into a bound vortex and
a free-trailing vortex. The bound vortex is attached to the
wing surface and its filaments align with the quarter-chord
line. On the other hand, the free-trailing vortex separates
from the wing surface and its filaments extend downstream
to infinity in parallel with the velocity vector of the leading
UAV.

For an approximately rectangular wing, the lift of a lead-
ing UAV can be considered to exhibit an elliptical distribution
along the quarter-chord line. Accordingly, the circulation dis-
tribution surrounding the wing is assumed to be

Γ(yc) = Γ0

√
1 −

(
2yc

b

)2

, − b/2 6 yc 6 b/2, (1)

where yc is the lateral coordinate of the point on the quarter-
chord line; Γ0 = 2V∞S CL/(bπ) denotes the circulation at the
wing root with V∞ being the magnitude of the free-airflow
velocity, S and b being the area and span of the wing, and CL

representing the lift coefficient.
In accordance with the continuous horseshoe vortex

method, the magnitude of the wake velocity induced by the
wake vortex is determined by evaluating the induced velocity
of the single straight vortex filament along the quarter-chord
line. Therefore, the magnitude of the wake velocity at an ar-
bitrary point P(x, y, z) is formulated as follows:

Figure 1 (Color online) UAVs close formation flight.

Figure 2 (Color online) Composition of the wake vortex.
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·
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y−yc√
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− y+yc√
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VbZB
=

∫ 0

−b/2
κ · µ · Γ(yc)x

4π(x2 + z2)

·
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y−yc√
x2+(y−yc)2+z2

− y+yc√
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)
· dyc,

(2)



V fYB
=

∫ b/2

−b/2
κ · µ · Γ(yc)z

4π[(y − yc)2 + z2 + r2
c ]

·
(
1 − x√

x2+(y−yc)2+z2

)
· dyc,

V fZB
=

∫ b/2

−b/2
κ · µ · Γ(yc)(y − yc)

4π[(y − yc)2 + z2 + r2
c ]

·
(
1 − x√

x2+(y−yc)2+z2

)
· dyc,

(3)

where V fYB
and V fZB

are induced by the free-trailing vortex
on the YB-axis and ZB-axis, respectively; VbXB

and VbZB
are
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induced by the bound vortex on the XB-axis and ZB-axis,
respectively; rc is the core radius of the free-trailing vortex
aimed to resolve any potential issues of singularity; κ repre-
sents the rate of decay on the strength of the wake vortex; µ
denotes the interaction coefficient of filaments. The wake ve-
locity of the point P is defined as VB = [VXB ,VYB ,VZB ], where
VXB ,VYB , and VZB are the velocity components on the XB, YB,
and ZB axes, respectively. Therefore, VXB = VbXB

,VYB = V fYB
,

and VZB = VbZB
+ V fZB

. Note that VXB , VYB , and VZB are com-
monly called the backwash, sidewash, and upwash velocity,
respectively.

2.2 Induced drag coefficient

If flying in the upwash region, a following UAV can experi-
ence forward tilt in its lift vector owing to the change of the
local angle of attack caused by the upwash as demonstrated
in Figure 3. Let ∆α represent the change of the local angle of
attack at arbitrary point on the quarter-chord line of the fol-
lowing UAV, which can be calculated by ∆α = −(VZB/V∞).
Let L denotes the fixed lift and L′ represents the effective
lift under the change of the local angle of attack. Using the
statistical average strategy, the induced lift coefficient is de-
termined by

∆CL =
1
N

 N∑
i=1

CLα∆αi

 , (4)

where N represents the number of statistical points, CLα is the
lift-curve slope, ∆αi is the change of the local angle of attack
at the i-th statistical point. Eventually, the induced drag co-
efficient is estimated according to the induced lift coefficient.
This can be formulated as

∆CD =
(CL + ∆CL)2 −C2

L

πe0AR
, (5)

where CL is the lift coefficient, e0 is the Oswald efficiency
number, AR denotes the aspect ratio that can be calculated by
AR = b2/S .
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Figure 3 (Color online) Principle of the induced drag.

3 Newton-Raphson method based ESC

In this section, the Newton-Raphson method based ESC is
proposed to to dynamically estimate the optimal position rel-
ative to the leading UAV. The following UAV is then com-
manded toward this relative position. The entire design
scheme is demonstrated in Figure 4. In the proposed design
scheme, the Newton-Raphson method is utilized to estimate
the coordinates of the extremum of the performance function.
Given the iterative nature of the Newton-Raphson method,
the gradient and Hessian of the performance function is es-
timated using the EKF. Finally, the convergence of the pro-
posed Newton-Raphson method based ESC is analyzed.

3.1 Extremum location estimation

According to published work, the induced drag coefficient is
mainly determined by the lateral and vertical relative separa-
tions between the leading and following UAV, respectively.
Furthermore, the induced drag coefficient with respect to
these two variables exhibits a unimodal behavior. There-
fore, the induced drag coefficient is considered as the perfor-
mance function f (x) for the extremum seeking. The Newton-
Raphson method is used to estimate the extremum position of
the performance function. In accordance with the Newton-
Raphson method, the f (x) is assumed to be approximated by
a quadratic function at any point. Then, it is parameterized
using first-order and second-order terms of its Taylor series
expansion.

Considering any arbitrary point around a particular point
xk, the performance function is formulated as

f (x) ≈ f (xk) + gT
k (x − xk) +

1
2

(x − xk)THk(x − xk), (6)

where x = [y, z]T is the relative position inputs that y and z are
the lateral and vertical respectively, gk and Hk are the gradi-
ent and Hessian at xk respectively. For notational simplicity,
the origin of the coordinate system can be shifted to the point
xk by redefining the above equation with respect to distance
between xk and any other point. This can be written as

∆ fk = gT
k∆xk +

1
2
∆xT

k Hk∆xk, (7)

where ∆ fk = f (x) − f (xk) and ∆xk = x − xk. At extremum
coordinate system, the extremum point of the equation can be
found by making the derivative equal to zero with respect to
∆xk. Perform

∂∆ fk
∂∆xk

= gk + Hk∆xk = 0. (8)

By solving this equation, one can derive

∆xk = −H−1
k gk. (9)
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P

Figure 4 (Color online) Framework of Newton-Raphson method based ESC.

Then, the extremum coordinate of the performance function
is found by using ∆xk = x − xk. Defining the estimated
extremum position as xk+1, the above process is repeated as

xk+1 = xk − γH−1
k gk (10)

until a sufficiently precise value is reached. In the iterative
equation, γ is the step size. This is done to ensure that the
Wolfe conditions are satisfied at each step.

3.2 Gradient and Hessian estimation

In proposed design scheme, the estimation of the gradient
and Hessian of the performance function is recognized as a
crucial component that directly influences convergence speed
and accuracy. To minimize the estimation variance and ac-
celerate convergence, the EKF is considered to estimate the
gradient and Hessian.

The gradient and Hessian at the relative position input
xk = (yk, zk) are denoted as gk = [g1k , g2k ]

T and Hk =

diag([H11k ,H22k ]), respectively. Since the gradient of the per-
formance function has significant change in the neighborhood
of the extremum position, the components associated with the
coupling terms of Hk have been excluded to prevent potential
oscillatory convergence. Then, eq. (7) can be reformulated in
a more understandable form as

∆ fk =
[
∆yk ∆zk

1
2
∆y2

k
1
2
∆z2

k

]


g1k

g2k

H11k

H22k


, (11)

where ∆yk = yk − yk−1 and ∆zk = zk − zk−1. Clearly, the
gradient and Hessian of the performance function are defined
as the states of the EKF, namely sk = [g1k , g2k ,H11k ,H22k ]

T.
Furthermore, these states are assumed to remain constant in
a deterministic sense. To ensure observability, a minimum of
four measurements at different time instants are required to
satisfy that the rank of the observability Gramian is equal to
the rank of the output matrix. This can be written as

rank (F) = rank

 Mk

Mk Ik

 = rank (Mk) , (12)

where F is the observability Gramian matrix, Ik and Mk

are the state-transition and measurement matrix, respectively.
Note that Ik is identity matrix. The difference of a measure x
between at iteration k and k−n is defined as ∆xk,n = xk− xk−n

with n = 1, 2, . . . ,N. Thus, the recursive state and measure-
ment equations of the EKF are constructed as

sk+1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

︸       ︷︷       ︸
Ik

sk + ωk,
(13)

∆ fk+1 =


∆yk,1 ∆zk,1

1
2∆y2

k,1
1
2∆z2

k,1

∆yk,2 ∆zk,2
1
2∆y2

k,2
1
2∆z2

k,2
...

...
...

...

∆yk,n ∆zk,n
1
2∆y2

k,n
1
2∆z2

k,n

︸                               ︷︷                               ︸
Mk

sk+1 + νk+1,
(14)
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where ωk and νk+1 represent the process noise and the mea-
surement noise, respectively. Generally, they are assumed
to be independent normally distributed Gaussian white noise
with covariance matrices Q = diag([Q11,Q22,Q33,Q44]) and
R = diag([R11,R22, · · · ,Rnn]), respectively. It is worth noting
that the process noise and measurement noise here essentially
reflect the confidence level of the model and measurement,
respectively.

Based on the established state-transition and measurement
equations, the estimation ĝk and Ĥk of gk and Hk are calcu-
lated by the EKF algorithm. Substituting these two estima-
tions into eq. (15), the actual command input to the following
UAV is obtained by

xk+1 = xk − γĤ−1
k ĝk. (15)

Remark 1 The number of measurement differences,
namely the size of N, largely determines the EKF’s toler-
ance to measurement noise. However, a too-large N may slow
convergence. Therefore, it is value should fully consider the
noise tolerance and convergence speed.

3.3 Convergence analysis

The convergence of the proposed Newton-Raphson method
based ESC is analyzed in this subsection. Before proceeding
to the formal analysis, the lemma on the EKF of the proposed
design scheme is introduced.

Lemma 1 Consider the designed dynamical system
eqs. (13) and (14)

sk+1 = Ik sk + ωk, (16a)

∆ fk+1 = Mk sk+1 + νk+1. (16b)

If the system is uniformly completely observable and uni-
formly completely controllable, and if the initial value of er-
ror covariance matrix P0 > 0, then Pk is uniformly bounded
for all k > N .

Proof. The proof of the lemma was previously published
in ref. [39] and is omitted here for brevity.

The convergence analysis will be stated below. To show
convergence, the sequence f (xk) will be proven to be a su-
permartingale. Furthermore, convergence analysis will also
show that search behavior will not longer occur once the sys-
tem reaches an area around the extremum of the performance
function, which is partly determined by the error covariance
bound of the EKF. The main results are formally presented in
the following theorem.

Theorem 1 Consider the proposed Newton-Raphson
method based ESC. The control system will converge to a
neighbourhood of the extremum position, if KTHk K+2KT <

0 for ek = 0 or ĝT
k (KTHk K+2KT) ĝ+tr(Hk KPk KTHT

k ) < 0 for

ek , 0, where Pk = diag([Pk11 ,Pk22 ]) is the error covariance
of the gradient estimation, K is the gain for gradient estima-
tion, ek is the estimation error for the gradient, tr(·) represents
the trace of matrix.
Proof. The proof is completed by validating that the se-
quence generated by f (xk) is a supermartingale. Thus, the
mathematical expectation of the extremum searching process
needs to be proven to satisfy

• E[ f (xk)] < ∞, k > 0,

• E[ f (xk+1)|Fk] < f (xk), k > 0,
(17)

where Fk is the completion of theσ-field in probability space
generated by the measurement history for f (x) and x up to
step k. The first item is guaranteed by definition of the per-
formance function. The second item will be confirmed in the
following.

First, only the gradient of the performance function es-
timated by the EKF is considered to generate the iterative
scheme, namely

xk+1 = xk + K ĝk, (18)

where ĝk is an estimation of the true value gk. The error be-
tween ĝk and gk is defined as ek = gk− ĝk. Then, the iterative
scheme based on the true value of the gradient is given by

xk+1 = xk + K( ĝk + ek). (19)

Furthermore, the iterative scheme assumes that f (xk) is ap-
proximated by a quadratic function as defined in eq. (6)

f (x) − f (xk) ≈ gT
k (x − xk) +

1
2

(x − xk)THk(x − xk). (20)

By substituting x = xk+1, one can derive

f (xk+1) − f (xk)

=( ĝk + ek)TKT ĝk +
1
2

( ĝk + ek)TKTHk K( ĝk + ek)

= ĝT
k KT ĝk + eT

k KT ĝk +
1
2

( ĝk + ek)TKTHk K( ĝk + ek)

= ĝT
k KT ĝk + eT

k KT ĝk +
1
2

ĝT
k KTHk K ĝk +

1
2

eT
k KTHk Kek

=
1
2

ĝT
k (KTHk K + 2KT) ĝk +

1
2

eT
k KTHk Kek + eT

k KT ĝk.

(21)

For the case of ek = 0, the control system will converge if

KTHk K + 2KT < 0. (22)

In this case, the condition for convergence does not involve
ĝk. When ek , 0, ĝk gets entangled in the condition of con-
vergence. Calculating the conditional expectation yields

E[ f (xk+1) − f (xk)|Fk] =
1
2

ĝT
k (KTHk K + 2KT) ĝk

+
1
2

tr(HKPk KTHT).
(23)
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According to the previous assumption of normal distribution
for the error, one can gain E[eT

k ĝk |Fk] = 0 and E[eT
k ek |Fk] =

Pk. In the second case, therefore, the condition for conver-
gence is

ĝT
k (KTHk K + 2KT) ĝk + tr(Hk KPk KTHT

k ) < 0. (24)

This completes the proof.

Remark 2 The significance of the convergence condition
for ek , 0 is not readily found in the above form. By assum-
ing Hk is positive definite and setting the gain K = −H−1

k ,
one can find

E[ f (xk+1) − f (xk)|Fk] =
1
2

tr[Hk(− ĝk ĝT
k + Pk)HT

k ]. (25)

This condition implies that the covariance of the gradient es-
timation must be greater than the covariance of the error for
continuous convergence, which has a very intuitive sense. If
this requirement is not met, the control system will not con-
tinue to converge in a direction. Meanwhile, this also indi-
cates that the convergence boundary of the control system
around the extremum is defined by Pk.

4 Noise covariance optimization via the IPIO

The noise covariance matrices Q and R are the parameters
of the EKF to be tuned based on the noise characteristics of
the system. They are used to control the confidence level of
the model and measurement. Their values directly influence
dynamic performance and estimation accuracy of the EKF.
However, obtaining optimal parameters is a challenging task
due to the strong correlation among them, especially for large
systems. To take into account all parameters together, their
tuning is defined as a optimization problem. To address the
potential multimodality, the IPIO algorithm is proposed to
optimize the parameters.

4.1 Basic PIO algorithm

The basic PIO algorithm consists of two operators, namely
the map and compass operator and the landmark operator.
The combination of the two operators can enhance search ca-
pabilities for finding the global optimum. Assuming an op-
timization problem of Dp-dimension, there are Np pigeons
available to conduct the search. The position and velocity
of the i-th pigeon are denoted by Xp

i = [xp
i1
, xp

i2
, ..., xp

iDp
] and

Vp
i = [vp

i1
, vp

i2
, ..., vp

iDp
], respectively. Their values will be up-

dated in each iteration.
Map and compass operator In the map and compass op-

erator, the new position and velocity of the pigeon i at the t-th
iteration are determined using the following formula

Vp
i (t) = Vp

i (t − 1)e−λt + rand · (Xp
gbest − Xp

i (t − 1)), (26a)

Xp
i (t) = Xp

i (t − 1) + Vp
i (t), (26b)

where superscript p denotes the abbreviations of the pigeon,
λ is the map and compass factor; rand represents a random
number with rand∈ [0, 1]; Xp

gbest denotes the current global
optimal position, which can be acquired by evaluating the fit-
ness values of all pigeon positions.

Landmark operator In the landmark operator, the pigeon
with the poor fitness value will be discarded. This makes the
number of pigeons decrease by a half during each iteration
and accelerate the convergence. The position center of the
remaining pigeons is considered as the global optimal posi-
tion. Therefore, the remaining pigeons will update their po-
sitions by moving towards this position center, which can be
formulated as

Np(t) =
Np(t − 1)

2
,

Xp
c (t) =

∑Np(t)
i=1 Xp

i (t − 1)fit(Xp
i (t − 1))∑Np(t)

i=1 fit(Xp
i (t − 1))

, (27a)

Xp
i (t) = Xp

i (t − 1) + rand · (Xp
c (t) − Xp

i (t − 1)), (27b)

where Xp
c is the position center of remaining pigeons. It

should be noted that fit(Xp
i (t − 1)) = 1/fit(Xp

i (t − 1)), where
fit(·) denotes the fitness function.

4.2 Improvement strategy

In the map and compass operator of the basic PIO, the map
and compass factor λ is responsible for maintaining a balance
between global exploration and local exploitation. If it is rela-
tively large, it will strengthen the global exploration, whereas
a relatively small value can enhance the local exploitation.
However, a constant λ is always employed in the map and
compass operator of the basic PIO. As a result, the contribu-
tion of λ to balancing global exploration and local exploita-
tion has not been fully realized. Therefore, the sine-powered
chaos is utilized to dynamically adjust it with iteration. This
adjustment strategy can be written asλ(t) = τ(t) · sin(πλ(t − 1)),

τ(t) = τmax − t · (τmax − τmin)/tmax,
(28)

where τ is the control parameter defined within the range of
(0, 1); τmax and τmin are predetermined as the upper and lower
bounds, respectively; tmax denotes the maximum number of
iterations. The chaotic characteristic of λ is gradually dimin-
ished as the iterations proceed. This implies that the dynamic
adjustment strategy maintains the benefits of both traversal
and randomness of the chaotic weight during the initial iter-
ations, which encourages the pigeons to perform a extensive
global exploration. In the subsequent iterations, the pigeons
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converge towards the global optimal position and the reduced
flight velocity allows for a more fine search.

Moreover, in the map and compass operator of the ba-
sic PIO, the new positions of pigeons are calculated only by
adding the previous position Xp

i (t − 1) and the current veloc-
ity Vp

i (t). This may lead to a conservative balance between
global exploration and local exploitation only although dy-
namically adjusting λ. Taking the relationship between posi-
tion and velocity into consideration [40], the improved posi-
tion update formula is given as follows:

Xp
i (t) =ωp

i (t − 1) · Xp
i (t − 1) + (1 − ωp

i (t − 1)) · Vp
i (t)

+ rand · σp
i (t − 1) · Xp

gbest, (29)

where ωp
i represents the dynamic weights associated with

both position and velocity, σp
i is the acceleration coeffi-

cient. They are calculated by ωp
i (t − 1) = σp

i (t − 1) =
efit(Xp

i (t−1))/fit(t−1)

(1+e−fit(Xp
i (t−1))/fit(t−1))t−1

, where fit(t − 1) denotes the mean fitness

value of all pigeons at the iteration of (t − 1). It should be
noted that the basic PIO improved by the proposed two im-
provement strategies is referred to as IPIO for brevity.

Remark 3 In the landmark operator of the basic PIO, all
pigeons are directed towards the position center, resulting in a
clear movement direction for each individual pigeon. There-
fore, there is little potential room for improvement accord-
ing to the functioning mechanism of the landmark operator.
Given this fact, the IPIO will continue to utilize the landmark
operator of the basic PIO.

4.3 Fitness function

During the parameter tuning process, the optimization objec-
tive is to minimize the state estimation error covariance. Fur-
thermore, different weights are assigned to the estimation er-
rors based on the importance of the estimated states. Hence,
the fitness function is formulated as

J(Nk) =
Nk∑

k=1

(ωg1 P11(k) + ωg2 P22(k)

+ ωH11 P33(k) + ωH22 P44(k))∆h, (30)

where P11, P22, P33 and P44 are the state estimation error co-
variance; ωg1 , ωg2 , ωH11 and ωH22 are the weight coefficients;
∆h is the sample time; Nk is the number of samples that can
be calculated by Nk = t/∆h with t being running time of sim-
ulation system. Note that the formulated fitness function con-
tains two essential factors: ”time” and ”error”, which enable
the evaluation of both the dynamic and steady-state perfor-
mance of the EKF. This ensures the the response speed and
the steady-state accuracy of the proposed Newton-Raphson

method based ESC simultaneously. Furthermore, the formu-
lated fitness function emphasizes accumulation of error co-
variance throughout the entire estimation process, which can
effectively mitigate the impact of the large initial error covari-
ance.

4.4 Optimization procedure

The optimization procedure of the IPIO for the EKF mainly
includes two parts: Initialization of position and velocity and
execution of iterative operators. The purpose of initialization
is to increase the diversity of the pigeons and avoid prema-
ture convergence. The iterative operators are used to perform
the global exploration and local exploitation. The detailed
optimization procedure is summarized as follows.

Step 1 Input the parameters of the IPIO, define the search
space and set the boundaries.

Step 2 Initialize the state of each pigeon randomly in the
search space, including the position and its associated veloc-
ity.

Step 3 Drive ESC simulation system using the param-
eters from Step 2 and calculate the fitness value. Evaluate
the results of all pigeons and find the current global optimal
value.

Step 4 Execute the iteration by the map and compass op-
erator and the landmark operator of the IPIO independently.

Step 5 Check the stop criterion. If the maximum itera-
tions is reached, output the global optimal value and stop the
algorithm. Otherwise, go to Step 4.

Furthermore, the pseudocode of the above steps is given in
Algorithm 1. It provides an instructional frame on how these
steps can be implemented.

5 Simulation results and analysis

In this section, the simulation verification is carried out for
a leading-following UAV close formation based on the F-16
aircraft model developed by ref. [41]. This will serve two
main purposes. The first is to analyze the location of the op-
timal relative position for the following UAV in close forma-
tion flight, which is accomplished by examining the strength
variations of the wake vortex with the relative position to the
leading UAV. The second purpose is to validate the conver-
gence performance of the proposed Newton-Raphson method
based ESC optimized via IPIO. To demonstrate the advan-
tages, the proposed design is compared with the traditional
ESC based on modulation and demodulation [25] and the
class ESC based on the EKF [26]. For the sake of fairness,
the parameters of these two comparison controllers are also
obtained by using the IPIO.
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In the simulation, the leading UAV is assumed to be always
under a level and straight stable flight with the velocity of 152
m/s at the attack angles of 4.5◦. At the beginning of close for-
mation, the flight velocity and attitude of the following UAV
are considered to be the same as those of the the leading UAV.
Under the position command generated by the proposed ESC
scheme, the following UAV flies towards the optimal relative
position autonomously using the autopilot. Note that the au-
topilot is assumed to be able to accurately track the given the
position command. Therefore, the influence of the position
tracking error is not considered when analyzing the conver-
gence performance of the extremum seeking controller.

5.1 Location analysis of the optimal relative position

The magnitude of the free-airflow velocity is equal to that
of the leading UAV velocity without considering the wind
speed, i.e., V∞ = 152 m/s. Other parameters required for

modeling the wake vortex are set to CL = 0.2134, CLα =

0.0489, µ = 1.6, e0 = 0.95, b = 9.144 m, S = 27.8709 m2.
According to the continuous horseshoe vortex method, the

strength of the wake vortex can be characterized as a posi-
tional function relative to the leading UAV. The variation of
the dimensionless induced wake velocity field with the lon-
gitudinal position is illustrated in Figure 5. It is evident that
the magnitude of the induced wake velocity field experiences
a notable reduction as the longitudinal position undergoes
negative increments. Furthermore, the intensity diminishes
almost to zero when x < −10b, which indicates the com-
plete disappearance of the wake vortex effect. Therefore, the
downstream longitudinal relative position should not exceed
10b if the following UAV intends to use the wake vortex ef-
fect of the leading UAV to decrease the drag. The location of
the optimal relative position relative is denoted as (xS , yS , zS ).
Considering the minimum safe separation between the UAVs
and maximizing the wake vortex effect, the longitudinal rela-
tive location is set to xS = −3b. For this reason, the variation
of the induced lift and drag coefficient of the following UAV
with the lateral and vertical separation relative to the leading
UAV is investigated at xS = −3b. The results are demon-
strated in Figure 6. The points of maximum induced lift and
minimum induced drag coefficient can be clearly observed
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Figure 5 Sectional views of dimensionless velocity field induced by the
wake vortex at different longitudinal positions.
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Figure 6 Variation of the induced coefficient with lateral and vertical posi-
tion (x = −3b).

and appear at the same location. This just validates the rel-
evant conclusion that the increase of induced lift promotes
the decrease of the induced drag [29]. Therefore, the lateral
and vertical relative location of the optimal relative position
are set to yS = ±0.85b and zS = 0.25b, respectively. The
extremum seeking controller is required to find the optimal
relative position location and converge to the optimal relative
position eventually. Note that it can also be seen from the
figure that the location of the optimal relative position is very
close to the area where the induced drag coefficient increases,
which indicates that the controller may transfer to this area if
it can not converge stably near the optimal relative position.
This will make UAV close formation lose the original signif-
icance of reducing drag.

5.2 Parameters optimization of the EKF using IPIO

To balance noise tolerance and convergence speed, the differ-
ence number of the measurement matrix is set to N = 10, i.e.,
the measurement matrix is composed of 10 time delay row
vectors. The step size is set to γ = 0.0004. The extremum
seeking controller start at (y, z) = (2.4b, 0.6b) and (y, z) =
(2.6b, 0.7b) to verify the robustness of optimization algo-
rithms to the initial values. Through difference calculation of
the performance function, the initial states of the EKF is ap-
proximately s0 = [0.2624, 0.1368,−0.0342, 0.0327]T × 10−4

with the initial covariance matrix of 10−6 × I4. The pertur-
bation signals are set as 0.003bsin(30t) and 0.003bcos(30t).
The weight coefficients of the fitness function are set to
ωg1 = ωg2 = 100 and ωH11 = ωH22 = 1. The search
space is determined as the set of pairs (Q, R), subject to

Q ∈ [1, 10] × [10−4, 10−0] and R ∈ [1, 10] × [10−9, 10−7].
Note that this is also the domain that can make the extremum
search controller get stability. To verify the competence of
the IPIO, the genetic algorithm (GA) [35], the basic PIO [36]
and particle swarm optimization (PSO) [33] are introduced to
serve as the comparison algorithms. The maximum number
of iteration for all algorithms is set to 15 with the population
size of 32. Other parameters are listed in Table 1. Each op-
timization algorithm was run repeatedly for 10 times and the
optimization result with the smallest fitness value is selected
to represent the optimization performance.

From the output curve of the performance function, the
convergence process of the the proposed ESC by using the
IPIO is reflected in Figure 7. It can be clearly reflected from
t = 0 that the pigeons are randomly distributed in the search
space and the positions of most pigeons are worse. With the
iteration, most pigeons converge towards the global optimal
position. When t = 8, the IPIO basically stops global explo-
ration and starts local exploitation. However, an unexpected
result has occurred at t = 12. Compared with other pigeons’
position, the convergence speed of the performance function
at the global optimal position is slowest. This may be caused
by the high measurement confidence level of the EKF. On the
other hand, if the pigeons make the state-transition model get
high confidence level, this will accelerate the convergence but
also lead to large estimation error. From t = 14, while the SC-
PIO performs local exploitation, a small number of pigeons
jump out of the global optimal position to avoid falling into
local optimum. Through the continued search of the land-
mark operator, the global optimal position further evolves to
a lower fitness value as demonstrated in t = 20. As pre-
viously analyzed, the optimization algorithm is required to
find the optimal balance of the confidence level between the
state-transition model and measurement of the EKF so as to
accelerate the convergence and reduce the fitness value.

The comparison results of four optimization algorithms are
shown in Figure 8. From the optimization results, the GA has

Table 1 Parameters of each optimization algorithm

Algorithm Parameter Description Value

GA [35]
pc Crossover probability 0.9

pm Mutation probability 0.1

PSO [33]

ω Inertia weight 0.4

c1 Self learning factor 2

c2 Group learning factor 2

PIO [36]

SCPIO

t1max

Maximum iteration

of operator 1
12

t2max

Maximum iteration

of operator 2
3

λ Map and compass factor 0.4

[τmin, τmax] Control parameter [0.4, 0.6]
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Figure 7 Evolutionary process of the global optimal position of the IPIO reflected by the output curve of the performance function.
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Figure 8 Comparison of four optimization algorithms for the different
initial position (x = 2.4b, y = 0.6b and x = 2.6b, y = 0.7b ).

the weakest optimization ability to tuning the parameters of
the EKF in the proposed ESC. This implies that the GA may
have weak capabilities in handling multi-modal optimization
problems. Compared to the PSO, the basic PIO exhibits a
relatively lower convergence accuracy but faster convergence
speed. This is also the reason why the PIO algorithm was

chosen for improvement and subsequent utilization in this pa-
per. From the trajectory curves of the following UAV, further-
more, it can be clearly seen that the proposed IPIO algorithm
has good robustness to the initial values. This is mainly at-
tributed to the introduced improvements, which effectively
balance global exploration and local exploitation.

5.3 Validation of convergence performance

The convergence speed and accuracy are important aspects
in evaluating the control performance of a extremum seeking
controller. A total of three extremum seeking controllers are
used for comparison, i.e., the traditional ESC based on mod-
ulation and demodulation, the class ESC based on the EKF
and the proposed Newton-Raphson method based ESC. The
high-pass filter cutoff frequency and integral gain of the tra-
ditional ESC are 5 rad/s and 106, respectively. The integral
gain of the class ESC is 3×104 and other parameters are iden-
tical with those of the proposed ESC. Note that the reason
why these two controllers have high gain is that the ampli-
tude change of the performance function is smaller after the
system is perturbed. It should be noted that the class ESC
uses EKF to only estimate the gradient of the performance
function and the command is obtained by integrating the gra-
dient. The proposed ESC not only performs gradient estima-
tion but also estimates the Hessian matrix and the command
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is iteratively acquired by Newton-Raphson method.
The convergence performance of three extremum seeking

controllers is demonstrated in Figure 9. It can be seen that
three extremum seeking controllers have the identical con-
vergence accuracy. However, there is a significant difference
in terms of convergence speed. The traditional ESC has the
slowest convergence speed. This may be caused by the con-
tinuous time integration of the small demodulation signal.
Increasing the integral gain will accelerate convergence, but
this can lead to a large steady-state oscillation. Compared
with the class ESC based on the EKF, the proposed ESC pro-
duces a slightly slower convergence. This indicates that the
introduction of Hessian matrix will increase the confidence
level of measurement, which reduces the convergence speed.
Further observation, the forms of output curves under the ex-
tremum seeking controllers by using the traditional and class
EKF are almost identical. If the output lateral and vertical
separation in the form of approximate step are used as the
reference command of the following UAV, this may cause se-
vere oscillation to the underdamped UAV system. On the
contrary, the output form of the proposed extremum seeking
controllers is close to the quadratic function curve owing to
the introduction of Hessian matrix. This form of reference
command is conducive to non-overshoot tracking of the fol-
lowing UAV.

The estimation output and error variance of the pro-
posed ESC and the classic ESC are illustrated in Figures 10
and 11, respectively. The classic ESC generates a tran-
sient pulse at around t = 5.5 s for the gradient estima-
tion, which is also the reason why the output curves of the

Time (s)

Time (s) Time (s)

V
e
rt

ic
a
l 
s
e
p
a
ra

ti
o
n
 (
b
)

L
a
te

ra
l 
s
e

p
a
ra

ti
o
n
 (
b
)

In
d
u
c
e
d
 d

ra
g
 c

o
e
ff
ic

ie
n
t

Figure 9 Convergence performance of three extremum seeking controllers.

Figure 10 Estimation output of the proposed ESC and the classic ESC.

Figure 11 Estimation variance of the proposed ESC and the classic ESC.

extremum seeking controller are approximate to the step
form. Because of the the addition of Hessian matrix estima-
tion, the gradient estimation of the proposed ESC does not
change dramatically near the convergence position. Accord-
ing to the error variance of estimation states, one can con-
clude that the proposed ESC has higher estimation accuracy
than the classical ESC. However, the proposed ESC shows a
large estimation error for the Hessian matrix, which leads to
a lower confidence level for the state transition. Conversely,
this further confirms that the introduction of Hessian matrix
will increase the confidence level of measurement.

To further explore the convergence behavior of the pro-
posed extremum seeking controller, a Monte Carlo analysis
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was performed where the initial position of the following
UAV was randomly selected for a three-UAV close formation.
The following UAV 1 is initialized to the left of the leading
UAV and the following UAV 2 is placed on the right. The
UAV 1 and UAV 2 both fly in the wake vortex of the leading
UAV that is flying straight and level. Their flight paths are
depicted in Figure 12. Obviously, the convergence behavior
of the proposed extremum seeking controller is independent
of the initial position of the following UAV.

6 Conclusion

In this paper, a comprehensive design scheme for the ESC
of UAV close formation has been developed to achieve max-
imum drag reduction. The method mainly includes four as-
pects of design. To form a feedback, a continuous horse-
shoe vortex method with high accuracy is employed to model
the wake vortex. The Newton-Raphson iterative method is
designed as the output feedback of ESC. The EKF is used
to estimate the gradient and the Hessian matrix of the pa-
rameterized performance function. The IPIO is applied to
automatically tune the noise covariance matrix of the EKF.
Simulation results indicate that the proposed scheme allows
a faster convergence of relative position extremum. Further-
more, the proposed scheme can provide a smoother command
during the seeking process. Finally, Monte Carlo analysis for
a three-UAV close formation shows that the proposed design
scheme is robust to the initial position of the following UAV.
It is necessary to clarify that the proposed Newton-Raphson
method based ESC was validated based on the assumption of
an ideal autopilot. Therefore, the current simulation valida-
tion may not fully consider the physical characteristics and
constraints of real fixed-wing UAVs, which could lead to the
potential limitations in the convergence performance of the
controller. Due to the nonlinearity and complexity deriving
from the physical characteristics and constraints, the extreme
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Figure 12 Convergence behavior resulting from a set of random initial
positions.

seeking process may require a larger number of iterative steps
to achieve convergence. Furthermore, the lack of considera-
tion for the quality of sensor data may result in error accumu-
lation during the search process. Consequently, the controller
may fail to converge precisely to the global optimal position.
In future work, we aim to incorporate the physical character-
istics and constraints of real fixed-wing UAVs into the design
of close formation ESC. The aerodynamic characteristics, dy-
namic properties, and inertia coupling, etc., will be carefully
taken into consideration. Moreover, the influence of sensor
errors on the design of the ESC will be further explored.
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