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In this study, vehicle queuing was investigated at intersections to propose an eco-driving strategy to improve vehicle energy
consumption and traffic efficiency in urban traffic environments. The proposed design approach can be applied to electric
vehicles, and the control framework is categorized into two layers. In the upper layer, the speed of the host vehicle is planned
offline, and in the lower layer, the required control variable acceleration is determined. First, the energy optimization problem of
electric vehicles passing through an intersection was constructed, and the planning vehicle speed was obtained based on the
genetic algorithm (GA). Next, the speed tracking controller and distance tracking controller were designed using sliding mode
control (SMC) to ensure that the vehicle can track the planning speed with safe vehicle spacing. Finally, combined with specific
cases, the energy-saving effect of the proposed method in the single-vehicle scenario, and the presence of manual driving
vehicles in front- and multi-vehicle driving scenarios were studied. The results revealed that the GA-based single-vehicle speed
planning method reduced energy consumption by up to 16% compared with the rule-based speed planning method. Furthermore,
compared with the intelligent driver model (IDM) and adaptive cruise control (ACC) methods, the GA fleet speed planning
method based on V2X communication can reduce average fleet energy consumption by 26% and 24%, respectively, and improve
intersection traffic efficiency. The results of the sensitivity analysis of factors affecting planned speed revealed that vehicles
passing through intersections at a steady speed exhibited superior economic performance. Finally, hardware-in-the-loop (HIL)

testing was performed to verify the effectiveness of the controller under real-time conditions.
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1 Introduction

With the severity of environmental pollution and resource
shortages increasing, green travel is becoming crucial [1].
Electric vehicles are an effective method to reduce carbon
emissions and oil dependency. However, electric vehicles
exhibit the problems of range anxiety. Therefore, saving
energy and increasing the range of electric vehicles has be-
come a critical topic of discussion. In this regard, energy-
optimal adaptive cruise control (EACC) systems are an ef-
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fective solution [2,3] and considerably improve safety [4],
comfort [5] and economy [6]. The rapid development of
advanced driver assistance systems and autonomous driving
can further improve EACC [7,8].

In recent years, numerous studies have focused on sce-
narios such as motorways [9], hillsides [10], urban roads
[11], and intersections [12], to determine the energy-saving
potential for each scenario and increase the public accep-
tance of EACC. In the application scenario, the EACC under
the intersection is highly complex. Most existing EACC
studies integrate vehicle driving energy consumption into the
ACC controller by introducing the economic evaluation
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index [13] and formulating a multi-objective optimization
problem with constraints based on the weight coefficients to
obtain the optimal control variables such as acceleration,
motor, or engine torque [14]. The design of EACC at the
intersection includes the optimization of integer variables
such as traffic behavior decision of crossing the intersection
currently as well as nonlinear factors such as motor energy
consumption. If the problem is transformed into a multi-
objective optimization problem, the problem may involve
considerable calculation. Moreover, complex nonlinear op-
timization algorithms are also required [15].

According to the various objects, intersection research can
be classified into two types [16]. In one method, more ve-
hicles are allowed to pass by optimizing traffic signal timing.
In the other method, parking and idling times are reduced by
optimizing the speed sequence of vehicles in the queue. Most
existing methods for optimizing traffic signal timing are
based on the premise that traffic signal timing can be ad-
justed. In a previous study [14], datasets collected by con-
ventional fixed traffic sensors were used to predict future
traffic conditions. A traffic light dynamic optimization
strategy (DTSTOS) based on various vehicle fuel con-
sumption and dynamic characteristics was used to minimize
total energy consumption and traffic delay [17]. In ref. [18],
traffic light strategies based on fixed-time, adaptive-time,
and reinforcement learning algorithms were compared ex-
perimentally. The results revealed that system performance
improved considerably after using the RMART information-
sharing algorithm. However, applying this system in practice
is difficult because of the complexity of traffic systems.

The optimization of the speed sequence of the vehicle does
not require changing the traffic signal timing. This method is
effective in various intersection scenarios. Studies have re-
vealed that speed planning can reduce the vehicle idling time
and the number of stops, which reduces energy consumption.
In existing studies, speed planning at intersections can be
categorized into rule-based and optimization-based methods.
In the rule-based speed optimization algorithm, the planned
speed is obtained according to the laws of physics to ensure
intersection passing without stopping. Specifically, planning
reduces the overall vehicle energy consumption by reducing
motor idling and travel time. In ref. [11], a rule-based uni-
form speed movement strategy was proposed to use the re-
maining time of the signal light and the distance from the
intersection to plan the speed, which avoids vehicles stop-
ping at the green light. In ref. [19], a dynamic speed planning
algorithm was proposed to maximize the probability that the
traffic light is green when a vehicle approaches an inter-
section. Although the rule-based approach improves energy
consumption, the uniform speed movement planning strat-
egy reduces speed planning flexibility and does not optimize
the speed from the perspective of motor energy consumption.
Unlike rule-based strategies, optimization-based speed
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planning methods are highly flexible and consider numerous
constraints when solving the cost function to obtain an op-
timized vehicle speed sequence. In ref. [20], the Pon-
tryagins’s minimum principle was used to optimize the speed
sequence of connected vehicles, which improves traffic flow.
A multi-stage dynamic planning method was proposed [21]
to optimize vehicle speeds around signalized intersections by
adding additional variables such as the road gradient and
weather conditions, which achieved positive results.
However, most intersection studies focused on the speed
planning and control of the host vehicle and ignore the in-
teraction between the host and surrounding vehicles. For
example, in ref. [22], the fuel saving problem of a single
vehicle passing through multiple signal intersections was
investigated. In this study, a realistic vehicle system dy-
namics model was used to improve fuel economy. In ref.
[23], a multi-objective hierarchical optimization strategy was
proposed for hybrid electric vehicle speed planning and en-
ergy management, which reduces the probability of stopping
at intersections through speed planning of the host vehicle.
An adaptive speed planning method for connected autono-
mous vehicles based on multi-light training deep reinforce-
ment learning was proposed [24]. In ref. [25], V2] and V2V
technologies were used to develop a novel method for speed
control through continuous signal intersections in a con-
nected environment. In this method, connected information
was used to optimize vehicle speed. These studies revealed
that speed planning for a single vehicle can effectively re-
duce vehicle fuel consumption and emissions. However, al-
though the host vehicle can pass the intersection at an
economical speed and obey traffic rules, the vehicle may
affect the driving status of surrounding vehicles. For ex-
ample, when the average planning speed of the controlled
vehicle is too low, the efficiency of intersection traffic can
decrease considerably. Although the interaction of environ-
mental vehicles has been investigated, a study [26] proposed
a novel reinforcement learning method based on ES-DQN.
An intelligent speed control strategy was proposed for un-
certain cut-in scenarios. This result revealed a superior
adaptability and control effect than the conventional ACC
control strategy. To solve the problem of multimodal driving
intention in surrounding vehicles, a multimodal driving in-
tention partially observable Markov decision process (MDI-
POMDP) decision framework [27] was developed to realize
safe and effective behavior decision-making and movement
planning. To improve the performance of vehicle motion
planning, a novel BRAM-ED trajectory prediction frame-
work was proposed [28] to improve prediction accuracy and
provide a basis for motion planning in complex scenarios.
However, most studies have focused on safety performance
and are yet to consider traffic efficiency and economy. Fur-
thermore, intersection speed planning studies are based on
conventional fuel vehicles or hybrid electric vehicles.
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However, in the future, electric powertrains will be devel-
oped, which may result in distinct eco-driving behaviors
because of the distinct characteristics of the powertrain and
control objectives.

Therefore, in order to solve the problem above, this paper
proposes an intersection EACC design method for electric
vehicles based on hierarchy structure design. The upper layer
is used to plan the speed of the host vehicle offline, and the
lower layer is used to determine the required control variable
acceleration, allowing the main vehicle to better track the
planned speed and ensure driving safety. At the same time, in
order to improve the robustness of the controller, this paper
designs the lower layer controller based on sliding mode
control (SMC) theory and linear matrix inequality (LMI)
theory. The speed tracking controller is used to track the
desired speed, and the distance tracking controller is used to
ensure the safety of the intervehicle distance. The designed
EACC system can realize the switching between the two
controllers according to real-time information such as the
relative distance between the main vehicle and the vehicle in
front, so as to ensure driving safety. Owing to the complexity
of intersection scenarios, planning speed is affected by many
factors, such as signal duration, distance to the intersection,
and initial planning speed. Hence, this paper further analyzes
the sensitivity of the above factors to discuss their impact on
EACC. In addition, in order to further improve the problem
of low intersection traffic efficiency caused by only planning
a single vehicle, this paper also provided an ACC fleet speed
planning method based on V2X communication. Specifi-
cally, ACC vehicles can obtain the status of signal lights near
intersections and the planned speed of vehicles in front and
behind based on V2I and V2V communication. Then, these
vehicles would form a fleet and plan the optimal speed se-
quence for each vehicle for tracking. When all vehicles in the
fleet are traveling at the planned speed, the road capacity can
be fully utilized, thereby improving the overall traffic effi-
ciency of the intersection and reducing the average energy
consumption of the fleet.

2 Modeling

In urban roads, ACC vehicles commonly pass through in-
tersections. Although ACC vehicles can follow the vehicle
immediately in front of them in the intersection, their per-
formance is considerably influenced by the driving style of
the vehicle in front of them. In scenarios in which V2X
communication or computer vision exists, if ACC vehicles
can obtain real-time signal status and its timings and use this
information to plan the target speed, then the effect of the
vehicle in front can be reduced and the ACC vehicle can pass
the intersection at a flexible speed. Figure 1 reveals the
schematic of the energy-optimized control system based on

Sci China Tech Sci

December (2023) Vol.66 No.12

GA optimization at the intersection of intelligent connected
electric vehicles. The modeling is explained below.

2.1 Scene definition

Because a vehicle passing through an intersection is highly
complex, the passing behavior of the vehicle is related to the
number of vehicles ahead and their driving status, the signal
status and its timing, as well as the status of the host vehicle.
Therefore, this study appropriately simplified assumptions to
facilitate research. The following scenarios were defined for
ACC vehicles through intersections.

(1) ACC vehicles passing the intersection under the sce-
nario of no vehicle ahead.

(2) ACC vehicles pass the intersection when manually
driven vehicles are ahead.

(3) Multi-vehicle intersection passing with internet con-
nection status.

Vehicles in the three scenarios can obtain the signal light
status information ahead and the number of vehicles ahead
by V2X.

2.2 Vehicle longitudinal dynamics modeling

The vehicle longitudinal dynamics model depicts the re-
lationship between the vehicle driving state and the control
variable. Eq. (1) presents the transformation relationship
between the motor torque and vehicle speed, and the driving
state of the vehicle can be changed by controlling the torque
of the motor when driving or braking.
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Figure 1 (Color online) Schematic of the energy-optimized control sys-
tem at the intersection of intelligent connected electric vehicles based on
GA optimization.
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where m is the vehicle mass. v is the vehicle speed. T, is the
output torque of the motor. i, is the product of the gear ratio
deceleration device and the final reduction drive. # is the
efficiency of the drive train. r is the wheel radius. F is the

rolling resistance. F,; is the air resistance. F; is the slope
resistance. g is the acceleration of gravity, f is the rolling
resistance coefficient, o is the road slope, C,, is the wind
resistance coefficient, p is the air density, and A4 is the
windward area. The calculation of rolling resistance, air re-
sistance, and slope resistance is shown in egs. (2)—(4).
Furthermore, the torque distribution strategy was adopted
to divide the desired torque into the desired motor torque
and desired hydraulic braking pressure. When the expected
acceleration was less than zero, energy recovery was re-
quired according to the maximum braking torque that can
be provided at the current vehicle speed, and the in-
sufficient braking torque was compensated by hydraulic

braking.

2.3 Motor energy consumption modeling

The vehicle longitudinal dynamics model reveals that the
motor torque control can influence the driving state of the
vehicle. Therefore, to reduce motor energy consumption,
obtaining a suitable motor torque profile is essential so that
the vehicle can drive at the optimal speed. The motor energy
consumption characteristics determined from the experi-
ments can be used to calculate the motor energy consumption
corresponding to the motor output torque. Thus, the motor
energy consumption can be included in the speed planning
algorithm as an evaluation metric. The calculation of motor
energy consumption is presented in eqs. (5) and (6). The
working map of the motor obtained from the experiment is
displayed in Figure 2.

T.n
By= | 20 5)
mnm
9550 1T, < 0),
B = _[0 P,dt, (6)

where 7, is the motor speed. 7, is the motor efficiency. E
is the motor energy consumption. # is the integration duration
variable. P, is the motor power.

2.4 Vehicle traffic decision modeling

The ACC vehicle makes a passing behavior decision at the
intersection when it obtains the real-time signal status,
especially when the signal is green. Therefore, this study
proposed a simple passing behavior decision method. As
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Figure 2 Motor working map.

presented in eq. (7), to obtain the passing decision, the
average vehicle speed required for the vehicle to pass the
intersection within the remaining green light duration is
compared with the current vehicle speed. If the difference
between the required average speed of the vehicle and the
current speed is greater than 0, then the current vehicle
cannot safely drive through the intersection in time with the
average traffic flow speed within the effective remaining
green light duration. At this stage, the passing decision Dec is
equal to 0; otherwise it is equal to 1.

Xy T Xga
, tigp—vncw >0or IL =red,
green_left
Dec = (7
X7 +xgap
" Vyow S 0,
tgreenileﬂ now

where x;; is the distance of the vehicle from the intersection.
Xgqp 18 the length of the intersection. v, is the current ve-

hicle speed. ¢ q 1s the remaining green light duration. 7L

green_le
is the status of the signal light, which can be green, red or

yellow.

2.5 Vehicle tracking modeling

Typically, the scenario of an ACC vehicle passing through an
intersection is highly complex because timely intersection
crossing under signal constraints as well as safety to avoid
collision with other vehicles are necessary. When the ACC
vehicle is in cruise mode, the vehicle simply tracks the de-
sired vehicle speed output by the speed planning module. At
this stage, the state variables of the controller are the dif-
ference between the actual speed and the expected velocity
and host vehicle acceleration, and the control input is the
expected acceleration. The tracking model is presented as
follows:
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where v, is the difference between the desired speed and the
actual speed. a,, is the acceleration of the host vehicle. a . is
the desired acceleration. a,,; is the rate of change at the de-
sired speed. When in cruise mode, the specific meaning is the
rate of change of the planned speed obtained by the genetic
algorithm (GA), and when it is in the following mode, the
specific meaning is the rate of change of the speed of the
preceding vehicle. Here 7 is the hysteresis constant, and is
used to simulate the delay caused by the response of sensors
and actuators. An accurate hysteresis constant can effectively
improve the effectiveness of the controller in transient and
steady-state control.

When the workshop distance between the ACC vehicle
and the front vehicle is less than the minimum safe workshop
distance, the host vehicle should switch to the following
mode to ensure the safe workshop distance. At this stage, the
state variables of the controller are the relative distances
between the host vehicle and the vehicle in front, the dif-
ference between the host vehicle speed and the front vehicle
speed, and the host vehicle acceleration. Furthermore, the
control input is the expected acceleration. The tracking
model is as follows:

X rel 01 _tf X el 0 0
v.rel = 0 0 71 Vrel + (I ades + 1 apZ’ (9)
a I 00 7? a T 0

where ? is the fixed headway. x,, is the distance between the

rel

host vehicle and the preceding vehicle. a ,, is the acceleration
of the preceding vehicle.

3 Speed planning and control

In urban traffic, ACC vehicles generally use the set cruise
speed or the vehicle speed ahead as the target speed to track
and follow. Although the ACC vehicle follows the preceding
vehicle smoothly, the performance of the ACC vehicle is
affected by the driving style of the vehicle driver in the front.
Especially in intersection scenarios, the passing performance
and economy of ACC vehicle is considerably influenced by
the preceding vehicle’s driving strategy through the inter-
section. This subsection proposed a speed planning method
for intersection scenarios to reduce the effect of the pre-
ceding driving styles of the ACC vehicle and improve its
performance through intersections as follows.

(1) Crossing intersections safely and quickly under the
constraints of the signals.

(2) Reducing the probability of ACC vehicles stopping and
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waiting at red lights as well as the energy consumption
caused by idling motors.

(3) Improving the economy of ACC vehicles through in-
tersections by improving the operating point of motors.

3.1 Speed planning method

3.1.1 Rule-based speed planning method

To reduce the number of vehicle stops at intersections, the
rule-based speed planning method can be used to solve the
calculation for the target vehicle speed based on the law of
uniform variable speed motion after obtaining real-time
signal status, timing, and passing decision information. To
compare the energy consumption corresponding to various
speed curves, the vehicle should accelerate or decelerate
again to the initial speed after passing the intersection. The
speed planning method based on rules is described as fol-
lows: Rule 1 refers to the fact that the host vehicle first
moved at a uniform variable speed motion and subsequently
at a constant speed to pass the intersection. Finally, after
crossing the intersection, a uniform variable speed motion is
used to reach the initial speed. Rule 2 refers to the fact that
the host vehicle crosses the intersection at a uniform variable
motion within the traffic light duration, and subsequently
reaches the initial speed at a uniform variable motion. The
rule-based planning speed design is as follows:

Vinic T al, <1,
| Vinit +at, 6, S Sty
Viule — _ (10)
v a0l oy
init h (tplanmng_ ti n), lim = ¢ ™= “planning >
(atin= V(@11 2a(Vini i Xeonstraint))) a<0
= ? (11)
(i (@15 2a(V initl i ™ Xeonstraint))) 2>0
a b} = Yy
| Xt X, Dec =1,
Xconstraint D _ (12)
Xrps ec = 0,
tgreen_left’ Dec = 1’
tlim = tgreen_left + tyellow + tred’ TL = green and Dec = 0’
tred leofts TL =red and Dec = 0,
(13)
where v, is the planning speed based on rules. v, is the

initial planning speed. ¢, is the duration of uniformly variable
speed motion, which is related to the desired acceleration. ¢,

is the duration of signal restraint. # 5 18 the remaining

green_le

green light duration. ¢,y .4 1s the remaining red-light dura-

red_le

tion. ¢ is the maximum duration of the yellow light. ¢

red

is the

yellow
is the maximum duration of the red light. x

constraint



Pan CF, et al. Sci China Tech Sci

intersection distance constraint. Here a is the desirable ac-
celeration, and a € [a,,;,,a,,,]- Specifically, when Dec = 1,
ifv gaps
the intersection with the current speed at a constant speed

within the effective remaining green light duration, and the
maximum and minimum accelerations are as follows:

nitlgreen_ left > X7 T Xgqp» then the vehicle can drive through

Ao = 0, @iy = 2(X 7 F X g0 ~ Vinieliim) / ti.. Otherwise, A o
is the maximum acceleration of the vehicle, and a ;, does not
change. If Dec = 0, then a,, = 2(xX;; — Viily) / Loy and a in
is the maximum vehicle deceleration.

Although the rule-based speed planning method allows
vehicles to cross the intersection with minimal stopping
probability, the uniform speed strategy reduces planning
flexibility. Moreover, the rule-based planning algorithm
produces sudden speed changes during the transition be-
tween uniform and uniformly variable speeds, which is not
conducive for improving vehicle comfort. The rule-based
approach does not consider optimization from the perspec-
tive of motor energy consumption. The approach has some
limitations in terms of improving the economy.

3.1.2 Optimization-based planning method

This study proposed an optimization-based approach to plan
the vehicle speed. The model was solved by using motor
torque as the optimization variable, motor energy con-
sumption as the objective function, signal constraints, motor
external characteristics, and intersection speed limit as con-
straints, to obtain the most economical motor torque se-
quence of ACC vehicle when passing through the
intersection. Next, based on the vehicle system dynamics, the
optimal speed sequence for planning can be obtained through
calculation. The GA is an optimization algorithm based on
natural selection and genetic mechanisms that can be used to
iteratively update the optimized sequence, which increases
the ability of global optimization. Therefore, the GA was to
solve the constructed speed planning problem. Figure 3
displays the GA flowchart.

The use process of GA includes determining the fitness
function and solving space, initializing the sequence and
coding, selecting cross-mutations, and determining the
iterative stopping conditions. The fitness function can use the
objective function after linear or power scale transformation.
The solution space refers to all feasible solutions that satisfy
constraints and generally should consider equation con-
straints, inequality constraints, linear constraints, and non-
linear constraints. In case the fitness function of the GA is the
motor energy consumption, the sequence to be optimized is
the motor torque sequence within the speed planning time,
and the optimization problem is presented in eq. (14). The
signal light constraints Cons;; in intersection traffic scenar-
ios are as follows:
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Figure 3 Genetic algorithm (GA) flowchart.

7 = argmin(Y) T, (0m (i, ),
T =
dv _Tim

st mg =2 F -F -F,
n = 30vi,
m nr
14
nm :f(Tm’nm)’ ( )
(ATm)mm < ATm < (ATm)max’

0 <v(i) < Vi
Ay < A(0) < Ay,
Consyy,

where T™ is the optimal torque sequence, that can be calcu-
lated to obtain the planning vehicle speed. The variation of
motor efficiency with torque and speed can be acquired from
the motor efficiency graph. Here AT, is the variation of

motor torque. (A7,) . and (A7)  are the minimum and

maximum magnitude of the motor torque variation, respec-
tively. v, is the maximum speed limit at the intersection.
Furthermore, a,,, a;,, are the minimum and maximum
constraints of vehicle acceleration, respectively. Cons; is the
signal constraints at intersections, defined differently in
different scenarios, as shown in eqs. (15)—(17).

(1) When the signal is green and Dec = 1.

Consy =

_Ff_F;ir_F; drdt >xTL+xgap’

J'lplanmng J‘ Iplanning L[ M

0 0 m r

Vend = Vinit*

(15)
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(2) When the signal is green and Dec = 0.

Consy =
tplanning tplanning 1 T;nitrl
.[0 ~[0 Z[T_Ff_@ir_l;;]dtdt>XTL+xgap,
Him [ lim 1 T;r}tr]
j j ~F~F,,~F|dtdt > x;, —n(L,+L,)flag,
r
Vend = Vinit*

(16)
(3) When the signal is red, we have the following:

Consp =

Hlim * lim "
[ —[ i Fff;m]drdr<xnn(L1+L2ﬂag,

J‘tplanning.l‘tplanning 1 Tmltrl
0 0 m v

Vend

FmeF;]dtdt > Xy T Xgaps

= Vinit>

7

where flag is the logical judgment, if there is a car ahead, its
value is 1, otherwise it is 0. n is the number of preceding
vehicles. v, is the initial vehicle speed. v,,, is the planning

init
end speed. ¢, is the duration of the constraint, and iy, 18
the planning duration.

Although the optimization of the speed trajectory from a
single vehicle perspective in the described non-networked
state can improve the driving economy and efficiency of the
single vehicle, the planned speed may reduce the ride com-
fort or may even affect the average efficiency of the entire
roadway because the method ignores the interaction between
other traffic vehicles and this vehicle. In connected scenar-
ios, because vehicles based on V2X communication can in-
teract with other vehicles and road test units, forming a fleet
and passing through intersections in time is easy. In this
section, the centralized controller at the intersection is the
object of study, and the vehicles that cross the intersection
are queued according to the information on each vehicle’s
driving status at the intersection and the current signal status
that is obtained by V2I. Therefore, the optimal speed se-
quence for each vehicle to track can be planned. Tables 1 and
2 present the two scenarios of a networked fleet speeding up
through an intersection at a green light and slowing down
through an intersection at a red light.

When the light is green, the centralized controller of the
road test unit first determines whether each vehicle joins the
fleet according to the passing policy in eq. (7), and only
vehicles with a passing decision of 1 can form a fleet and
drive through the intersection within the remaining green
light duration. The serial number of the vehicle at the head of
the fleet is 1, and the serial number of the vehicle at the tail is
n. The objective function and constraint conditions of the
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Table 1 [Initial state of each networked vehicle accelerating to cross the
intersection

Initial distance from

Vehicle serial number . .
intersection (m)

Initial speed (m/s)

1 30 10
2 60 6
3 100 10
4 140 12
5 170 10
6 200 12

Table 2 Initial state of each networked vehicles decelerating to cross the
intersection

Initial distance from

Vehicle serial number . .
intersection (m)

Initial speed (m/s)

1 50 6
2 80 6
3 110 6
4 150 10
5 180 12

problem to be optimized are the same as eq. (14), and next,
the signal light constraint Cons,;; is designed. The cen-
tralized controller first performs speed planning for the ve-
hicles at the rear of the queue, and its signal light constraint
Consy;, 1s presented in eq. (18). Thus, the planning speed
should pass the intersection in time before the end of the
green light. Next, based on the planned speed g(7;”) of the
vehicle i the centralized controller starts speed planning for
the vehicle 7 — 1. Vehicle i — 1 signal light constraint Cons
is presents in eq. (19), which indicates planning vehicle
speed g(7;_,) should make the workshop distance between
vehicle i —1 and vehicle i between the maximum desired
workshop and the minimum desired workshop distances.
According to the process, speed planning is performed for
each vehicle in the fleet in turn, and the planned speed is sent
to each vehicle based on V2I.

Iplannin, Iplannin, l T i
Consyy, = J‘Opl gJ‘ b g_[M ~ F— F— F |dede

0 m r
> X7 tast T Xgaps (18)
Xges min i < COnsyy,
_ J'O’planning[ (T )- g( *)]dt—i_xmlt l
< Xges_max i> (19)

where T}, is the torque sequence to be optimized for the rear
vehicle n. x;; ., is the distance from the trailing vehicle to
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the intersection. Xy, i, ; is the minimum expected distance
between vehicle i and vehicle i — 1. x4 .y ; 1S the maximum

expected distance between vehicle i and vehicle i — 1. x; ;, ; is

init_i
the initial distance between vehicle i and vehicle i — 1. The
integrated object in eqs. (18) and (19) represent vehicle ac-
celeration and velocity, respectively, so their integration
times differ considerably.

When the light is red, the centralized controller first de-
termines the length of the fleet, and then performs speed
planning for lead vehicle 1. At this time, the signal constraint
is presented in eq. (20), which reveals that the planning speed
ensure its driving displacement does not cross the stop line
before the end of the red light and drive through the inter-
section before the end of the green light. A margin d, should
exist for other vehicles in the fleet to drive through the in-
tersection in time. Next, based on the planned speed g(7,") of
vehicle i, the centralized controller starts to plan the speed for
vehicle i + 1. The signal light constraint Cons; of vehicle
i+1 is presented in eq. (21). Similarly, the planning speed
g(T.,)) should ensure the distance between vehicle i + 1 and
vehicle i between the maximum expected vehicle distance
and the minimum expected vehicle distance. A margin d,
should exit to ensure that vehicles behind have sufficient
space to drive through the intersection.

tim (fim 1 [ TE 7
.[0 .[0 ;[ r F,—F,— F|dtdt <xg o,
COnSTLl = .[tplanning.[ Iplanning i[ T()lt” _
0 0 m r

F_‘/'_F;ir_F;]dtdt

> Xpp o T Xgap T dg,

(20)
Xdes min i+ S L:planmng[g (o)~ g(Tz *)]dt
T Xinit 41 < Xdes_max i+1>
Consy, = -[Otplanning-[otplanning %[ T;i[” ~ Fy— Ey— F|dtde
> Xqp ;T Xgey T
21

When the optimal motor torque sequence is obtained by
the GA, the most economical planning speed for ACC ve-
hicles through the intersection can be obtained through cal-
culation. Because air resistance is positively correlated with
vehicle speed, and the speed at the intersection is generally
not too high due to the speed limit, this study ignored air
resistance when planning the speed in the intersection sce-
nario, that is, £;, is 0. The velocity planning time iS 7;},ine

and discretization time interval be 7. Therefore, the motor

torque atthe n = ¢ / T, time points should be optimized,

planning
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the speed of the vehicle at the initial moment of planning is
v,- According to eq. (1), the vehicle speed at the first torque
T, to be optimized is as follows:

%Tl* gf cosa — gsina

V= Vet T (22)

Based on v,, the speed at the second torque 7, to be optimized
can be calculated as follows:

vy = vt | B+ 2T - 2 (gf cosa + gsina)]n. (23)

For the same reason, the vehicle speed under other torques
to be optimized 7" can be calculated, so the vehicle speed
vector at each time can be expressed as follows:

L

=

mr 0 0 T

Vi Vo . . 1
/i

\% % Me LM 0 T.

2

= _0 +| mr mr .2 T,

N N : : : :

n 0 . . . T
Lne Ny L Ly nl,n
mr mr mroomr|

—gf cosa — gsina

T. (24)

N

—2(gf cosa + gsina)

—n(gf cosa + gsina) |
nx

3.2 Intelligent driver model

To verify the effectiveness of the fleet speed planning
method based on V2X communication, the energy con-
sumption corresponding to the optimized vehicle speed is
compared with the energy consumption under the IDM to
verify the effectiveness of the connected fleet speed planning
method in reducing the average energy consumption of the
entire fleet. The established IDM is as follows:

VAV,

Sren(Vi AVY) = S Vil 5= (25)
Vv, AV
S (Vi AV)) = 8 T vyt + ﬁﬁéc’ (26)
v ) (S Av) )
adesifollow = Ay 1- [ﬁ] - [%‘:I] > (27)
O (8o Vi AV,) ?
_ _ i _ ref2\V h> 2
Ages 72~ % max [Vlim] [ s, +gap ] > (28)

adesiTL’ ifsignal(sc) = 0>

apmi(Se v, Av) = 2 (29)
ot *2‘;" 5, signal(s,) = 1,

c
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a1ppa(Se v, AV)

adesffollow? signal(sc) =0 and front = O,
Ades_11> signal(s,) = 0 and front = 1,
- Ades follow? Signal(sc) =1 and front = 0, (30)
2
A, signal(s,) = 1 and front = 1,

where ap, and ap,,, are the expected acceleration of the
fleet leader and other vehicles in the fleet, respectively. s ., is
the desired vehicle spacing for the first vehicle in the fleet.
S.p 18 the desired vehicle spacing for other vehicles in the
fleet. Av, is the difference between the vehicle at the head of
the fleet and the speed limit on the road. Av, is the relative
speed between the other vehicles in the fleet and the vehicle
in front. s, is the minimum parking spacing. a, is the
comfortable deceleration value and is set to 1. Furthermore, ¢
is the relationship between the reduction of acceleration and
the speed v,. s, is the distance between the host vehicle and
the intersection. s, is the distance between the host vehicle
and the vehicle in front. signal(s,) is the status of the traffic
light at the current distance s,, where 0 is green and 1 is red.
front indicates whether the vehicle in front has currently
driven through the intersection, where 0 indicates that it has
not driven through the intersection, and 1 indicates that it has
already driven through the intersection.

3.3 Controller design

The controller design of this study includes the speed-
tracking and distance-tracking controllers. The speed-track-
ing controller is used to make the host vehicle track the
planned speed, introduced in the last section. When the
planned speed conflicts with the preceding vehicle speed,
resulting in a sharp reduction of intervehicle distance, the
distance controller intervenes to make the host vehicle track
the desired intervehicle distance to ensure safety.

First, based on the exponential reaching law and variable
speed reaching law, the sliding mode control (SMC) with
compound reaching law was designed as the speed tracking
controller. At this stage, the state variables of the controller
are the difference between the actual speed and the expected
velocity and the host vehicle acceleration, and the control
input is the expected acceleration. Exponential reaching law
and variable speed reaching law are as follows:

s =—¢-sgn(s)—gqs, 31
§ = —¢lx|,sgn(s). (32)
The sliding mode function is as follows:

s(k) = C(R(k) = x(k)). (33)

According to eq. (33), the control law can be gained:
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u(k) = (CB) (CR(k+1) = CAx(k)=s(k+1)). (34)

When the exponential reaching law is selected, the sliding
mode function in discrete state is as follows:

s(k+ 1) = I[—e - sgn(s(k)) — gs (k)] +s(k). (35)

When the variable speed reaching law is selected, the
sliding mode function in discrete state is as follows:

s(k+1) = ~Tel(k)]sgn(s(k)) +s(k). (36)

Therefore, the desired acceleration output by the speed
tracking controller based on the composite reaching law is as
follows:

a4es(k) = (CB) (CR(k+1) = CAx—s(k)—ds(k)), (37)
—Tsgn(s(k)) —qTs(k), sat(k) > sat .
—eT sgn(s(k))sat(k), sat(k) < sat

where  5at(k) = |(ey ges(6) ~ vk))| +[(@) 4es) —,(6))
sat;, is the threshold of reaching law switching.
Furthermore, the SMC based on linear matrix inequality is

ds(k) = { (3%)

min >

E

designed as the distance tracking controller. Here, s = B, TPx

is the sliding mode function. The state variables of the
controller are the relative distance between the host vehicle
and the vehicle in front, the difference between the host
vehicle speed and the front vehicle speed, and the host ve-
hicle acceleration, and the control input is the expected ac-
celeration. The equivalent control term and robust control
term can be obtained from the equivalent control principle,
as shown in eqs. (39) and (40).

ug, =—(B,"PB) BPA (1), (39)

u, =—(B,"PB) |IB"PB|6,+ e Jsen(s). (40)

where ¢, is the upper bound of perturbation term, and &, > 0.
In order to make u = u,, +u, meet the stability conditions,
the matrix P is further designed. Rewrite the control law as
u =—Kx+v, where v=Kx+u,, +u, Lyapunov function is
chosen as v = x" Px. By substituting the state equation and
control law, it can be obtained as follows:
V =2x"P% =2x"PAx+2x"PB,y
=x"(P4 +4"P)+2x"PB,y, (41
where 4 = A4,— B,K. Due to u can make s = B, Px =0,
V < 0 can be satisfied only by satisfying the following for-
mula.
P4 +A4A"P<0. (42)
Multiply both sides of the above formula by P ' and make
X=pP"
(A4,—B,K)X+X(4,—B,K)" <0, (43)
Make KX = L to linearization eq. (43).
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A,X—B,L+Xc"-L'B,"<0, (44)

where L and X can be calculated according to Matlab LMI
toolbox. Then P = X . Furthermore, the desired acceleration
of the distance controller can be obtained by substituting P
into the control law u.

a4, = ~(B,"PB) BTPAx(1)

=1

~(B,"PB,) [1B"PBI0,+ zofsgn(s). (45)

4 Simulation and performance comparison

In this section, the superiority of the proposed speed plan-
ning algorithm is verified by setting several specific sce-
narios, and the sensitivity analysis is performed on three
factors, namely initial speed, remaining duration of traffic
lights, and distance from the intersection, which influence
speed planning at intersections. Finally, hardware-in-the-
loop (HIL) tests were conducted to verify the effectiveness of
the sliding mode controller under real-time conditions.

4.1 Simulation parameter design

In this study, an electric vehicle produced by an enterprise is
used as the research object, and the motor used is a perma-
nent magnet brushless DC motor. The relevant structural
parameters and simulation parameter settings are presented
in Table 3.

4.2 Analysis of simulation results

4.2.1 Crossing the intersection when there is no vehicle is
in front of the host vehicle

Scene definition: The host vehicle was driven at the speed of
12 m/s, 200 m away from the intersection and no vehicle was
ahead. Table 4 presents the traffic light state information.
The period of traffic light is 38 s including red light for 20 s,
green light for 15 s, and yellow light for 3 s.

Case 1: The traffic light now is red, and the remaining time
is 20 s. Therefore, the host vehicle should slow down to
avoid stopping at the intersection. The rule-based speed
planning method used to determine the vehicle’s selectable
deceleration was [—3,—0.2]. The speed corresponding to the
two critical accelerations selected was the rule-based plan-
ning speed. The method of planning the vehicle speed with a
critical acceleration of —0.2 m/s” is Rule 1, and the method of
planning the vehicle speed with a critical acceleration of
—3 m/s” is Rule 2. As in the displacement curve in Figure 4(a),
when the host vehicle tracks the planned speed, it cannot
exceed the stop line before the end of the red light and can
pass the intersection smoothly at a green light. As displayed
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Table 3 Simulation parameter design

Parameter name Value Unit
Vehicle quality 775 kg
Rolling resistance coefficient 0.01117 -
Air resistance coefficient 0.25 -
Windward area 2.04 m’
Gear ratio 6.515 -
Tire radius 0.252 m
Transmission efficiency 0.95 -
Fixed time headway 1 s
Minimum parking distance 5 m
Intersection distance (x, ) 20 m
Approaching velocity (¢) 4 -
Convergence coefficient (g) 4 -
upper bound of perturbation term (5,) 3 -
Initial approaching velocity (g, o) 2 -
Maximum speed limit Vi) 20 m/s
Minimum acceleration limit (@) -3 m/s’
Maximum acceleration limit (ay,,) 2 m/s*
Table 4 Traffic light status
Traffic light Remaining duration Unit
Red 20 s
Green 15 s
Yellow 3 s

in the speed curve in Figure 4(b), both rule-based and opti-
mization-based planning of the vehicle speed enables the
host vehicle to maintain a certain speed through the inter-
section.

Case 2: The traffic light is green, and the remaining
duration is 15 s. Therefore, the host vehicle should first ac-
celerate to pass the intersection within the green light time.
Based on the constraints of the signal length and the distance
from the intersection and initial speed, the acceleration range
of the vehicle was determined to be [0.35,2.0]. Similarly, the
method of planning the vehicle speed with maximum ac-
celeration to plan the speed was stipulated to be Rule 1, and
the method of planning the vehicle speed with minimum
acceleration to plan the speed was Rule 2. As displayed in
Figure 4(c) and (d), both rule-based and optimization-based
methods can pass intersections in time within the green light
time when the host vehicle tracks the planned speed.

Table 5 presents the energy consumption performance of
various speed planning methods in scenarios of Cases 1 and
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Figure 4 (Color online) Displacement and velocity curves of various speed planning methods in Cases 1 and 2. (a) Displacement curve of Case 1; (b)
velocity curve of Case 1; (c) displacement curve of Case 2; (d) velocity curve of Case 2.

2. The table reveals that the method of GA in Case 1 is close
to the energy consumption of Rule 1, but is more energy
efficient compared with the method of Rule 2. Figure 4(a)
and (b) and Figure 5(a) reveal that the primary cause of the
similarity in energy consumption between the GA method
and the Rule 1 method is the planning speeds of the two
methods are similar and the torque performance is similar.
Therefore, the difference in energy consumption between the
two is not obvious. Compared with the Rule 2 method, the
torque diagram of Figure 5(a) reveals that the primary reason
for the lower energy consumption of the GA method is that it
avoids the emergency braking caused by sharp deceleration,
which reduces the energy lost to overcome hydraulic braking
resistance. In Case 2, Table 5 reveals that the GA method
resulted in a considerable reduction in energy consumption
and improved fuel economy by nearly 16% compared with
that in the Rule 2-based method. The torque diagram of
Figure 5(b) reveals that the primary reason for the reduction
of energy consumption compared with the planning speed of

Table 5 Energy consumption comparison of Cases 1 and 2

Example scenario GA Rule 1 Rule 2 Unit
Case 1 0.0309 0.0305 0.0341 kW h/km
Case 2 0.0426 0.0455 0.0510 kW h/km

Rule 1 is that the GA method reduces the peak torque output
of the motor, which reduces the high power consumption
caused by the peak torque. Compared with the Rule 2
method, the primary reason for the reduction of energy

D
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Figure 5 (Color online) The motor torque using different planning
methods. (a) Case 1; (b) Case 2.
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consumption of the GA method is that it has a shorter time to
maintain the positive torque output, and the braking torque
required when braking is small. Therefore, the hydraulic
brake compensation is less, the energy recovery efficiency is
higher, and the energy consumption performance is better.

4.2.2 Crossing the intersection when vehicles are in front
of the host vehicle

Scene definition: Two manual vehicles are going through the
intersection in front of the host vehicle. For the red light,
because human drivers generally slow down and wait for the
traffic light to turn green, modifying the displacement con-
straints when planning the speed is critical to avoid a colli-
sion between the host vehicle and the front vehicle.

Case 3: The host vehicle is driving at a speed of 10 m/s and
is 200 m away from the intersection. At this time, the traffic
light is red, and the remaining time is 15s. Two manual
vehicles ahead are about to cross the intersection. As dis-
played in Figure 6(a) and (b), when the host vehicle tracks
the planned speed, the vehicle can ensure a safe distance
from the vehicle in front of it, decelerate to a speed of 1 m/s
before the traffic light turns green to avoid collision, and can
pass the intersection in time after the light turns green.
However, the simulation reveals that the vehicle-to-vehicle
distance between the host vehicle and the vehicle in front is
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£
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o
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8
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large at some time, and it crosses the intersection in the last
second of the green light. Although these behaviors could
make the host vehicle perform economically, from the per-
spective of the whole traffic flow, it reduces road traffic
efficiency and increases the average travel time. Therefore,
only considering the optimization of a single vehicle is not
necessarily conducive to improving road traffic efficiency.

Case 4: The host vehicle is driving at a speed of 12 m/s and
is 200 m away from the intersection. The traffic light is
green, and the remaining time is 5 s. Two manual vehicles
ahead are about to cross the intersection. Therefore, the
planned speed should ensure the host vehicle does not exceed
the stop line before the next green light starts. As displayed
in the displacement curve in Figure 6(c), the host vehicle can
maintain a safe vehicle-to-vehicle distance from the vehicle
in front and pass the intersection in time for the next green
light. As depicted in the curve of vehicle-to-vehicle distance
between the host vehicle and the preceding one in Figure 6(d),
the distance reaches the preset threshold of 25 m at 13.6 s. If
the controlled vehicle continues to track the planned speed, it
may collide because the distance between vehicles is too
small. Therefore, the speed controller is switched to the
distance controller at this time, and the distance between
vehicles starts to track the expected distance between ve-
hicles determined by the constant headway.
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Figure 6 (Color online) Displacement and velocity curves in the scenario of vehicles ahead. (a) Displacement curve of Case 3; (b) velocity curve of Case 3;

(c) displacement curve of Case 4; (d) intervehicle distance curve of Case 4.
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4.2.3  Sensitivity analysis
The analysis revealed that factors affecting the performance
of the planned speed include the initial speed, traffic light
status, and its timing as well as the distance to the intersec-
tion. The analysis only verifies the superiority of the speed
planning method based on the optimization and the effec-
tiveness of the designed controller in some specific scenar-
ios. The sensitivity of these factors affecting the speed
optimization was analyzed to provide guidance for energy
optimization speed planning at intersections.

(1) Sensitivity of the initial speed

The host vehicle is 200 m away from the intersection, and
the current traffic light is green with 15 s remaining. The
traffic decision is 1, which reveals that the host vehicle
should pass through the intersection within 15 s. The en-
ergy consumption curve under various initial planning
speeds is presented in Figure 7(a). When the initial plan-
ning speed is in the range of 12.5 to 15 m/s, the energy
consumption per kilometer is the lowest. As displayed in

(@)
0.09
0.08 | 0.07680
T

0.07 + 0.06361

0.06 | 0.05576
0.05
0.04
0.03
0.02
0.01

0.04800 0.04828 0.05149 i

Energy consumption (kW h/km)

5 1S 10 12.5 15 17.5 20

Velocity (m/s)

(b)
0.07

0.06 | 0.05667
-
0.05

0.04
0.03 |0.02730 002791 0.02759 0.02801

0.04184 0.04.

0.02
0.01

Energy consumption (kW h/km)

25 50 75 100 125 150 175 200
Initial distance to intersection (m)
(c)

0.07
0.06235
0.06 | [

0.05
0.04
0.03 |
0.02
0.01

0.04281
Ly gre——
0.03449 ¢ 03266

Energy consumption (kW h/km)

10 1 12 13 14 15 16 17
Left time (s)

Figure 7 (Color online) Energy consumption performance under various
influencing factors. (a) Initial speed sensitivity; (b) initial distance to in-
tersection sensitivity; (c) remain traffic light duration sensitivity.
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Figure 8(a) and (b), when the planning speed is 12.5 to
15 m/s, the host vehicle can maintain a stable speed
through the intersection.

(2) Sensitivity of the distance to the intersection

The host vehicle drives at the intersection at the speed of
10 m/s, and the current traffic light is green with 15 s re-
maining. The traffic decision is 1, which reveals that the host
vehicle should pass through the intersection within 15 s. The
curve of energy consumption under various distances to the
intersection is displayed in Figure 7(b). When the distance is
less than 100 m, the energy consumption of the planned
speed is positive and energy consumption between various
distances does not differ considerably. However, when the
distance exceeds 100 m, the energy consumption increases
considerably. As displayed in Figure 8(c) and (d), when the
distance between the host vehicle and the intersection is less
than 100 m, the host vehicle can pass the intersection at an
average speed or with appropriate deceleration, whereas
when the distance is more than 100 m, the vehicle should
accelerate through the intersection within the time of green
light. Therefore, vehicle speed planning in advance based on
V2X information can reduce the probability of vehicle idling
at the red light and improve vehicle economy and traffic
efficiency.

(3) Sensitivity of remain traffic light duration

The host vehicle travels at the speed of 12 m/s, 150 m away
from the intersection and the traffic light is green. The traffic
decision is 1, which reveals that it should pass through the
intersection within the time of the green light. The remaining
green light time is set from 10 to 17 s. As displayed in Figure
7(c), with the remaining green light duration increases, the
energy consumption decreases. Figure 8(e) and (f) reveal
that the trend of the planned speed gradually changes from
first accelerating and subsequently decelerating to deceler-
ating first and subsequently accelerating. This result is con-
sistent with the sensitivity analysis of the other two factors.
Thus, keeping the host vehicle driving at a stable speed to
cross the intersection is conducive to reducing its energy
consumption.

4.2.4 Speed planning for the vehicle fleet with networking
In Parts A and B, the speed trajectory is optimized from the
perspective of the optimal economic performance of a single
vehicle to improve the driving performance in various sce-
narios. The results revealed that although the economic
performance of the single vehicle improved, the planning
speed may cause excessive distance between the host vehicle
and the vehicle in front, which reduces the efficiency of
intersection traffic and increases the average energy con-
sumption of the fleet. Therefore, the speed planning method
of the GA fleet based on V2X communication should be
studied further to coordinate and control each vehicle from
the perspective of the vehicle platoon.
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Figure 8 Displacement and velocity curves under various sensitivity factors. (a) Displacement of initial speed sensitivity; (b) velocity of initial speed
sensitivity; (c) displacement of initial distance to intersection sensitivity; (d) velocity of initial distance to intersection sensitivity; (e) displacement of remain
traffic light duration sensitivity; (f) velocity of remain traffic light duration sensitivity.

Case 5: The traffic light is green, and the remaining time is
15 s. As displayed in the displacement curve in Figure 9(a),
when taking the speed planning method for the GA fleet, six
vehicles at various distances from the intersection can form a
vehicle platoon and pass the intersection in time. The inter-
vehicle distance between each vehicle is small but safe.
Therefore, more vehicles can cross the intersection at a time.
As displayed in the speed curve in Figure 9(b), each vehicle
in the fleet composed of six vehicles can accelerate appro-
priately through the intersection in time and can eventually
tend to traverse at the same speed to realize smooth fol-
lowing.

Case 6: The traffic light is red, and the remaining time is
15 s. The simulation result under the red light is displayed in
Figure 9(c) and (d). All vehicles in the fleet can decelerate
appropriately at the end of the red light to ensure that they do
not cross the stop line and maintain a safe intervehicle dis-
tance, and after the green light starts, they can accelerate to
go through the intersection in time. Similarly, the final speed
of the fleet tends to be the speed of the first vehicle in the
platoon.

To illustrate the effectiveness of the GA fleet planning
method based on V2X communication, this study compared
the energy consumption of the GA fleet with the energy
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Figure 9 Displacement and velocity curves of connected fleet using the GA planning method. (a) Displacement curve of Case 5; (b) velocity curve of Case

5; (c) displacement curve of Case 6; (d) velocity curve of Case 6.

consumption of the IDM fleet [6] and the ACC fleet [29].
Figure 10(a) and (b) displays the displacement curve of the
IDM fleet in Cases 5 and 6. Figure 10(c) and (d) displays the
displacement curve of the ACC fleet that only plans the
speed of the front vehicle in Cases 5 and 6 scenarios. In the
green light acceleration through the intersection scenario, as
shown in Figure 10(a), because the last vehicle of the IDM
model fleet could not pass the intersection during the re-
maining green light time, the high-power consumption when
stationary increased, which extended the average travel time.
Figure 10(c) reveals that similar to the IDM the ACC fleet
should maintain a large safety car spacing, resulting in the
last vehicle not being able to accelerate through the inter-
section in time for the remaining green light time, the high-
power consumption during stationary increases and extends
the average travel time. In the red-light deceleration scenario
through the intersection, as displayed in Figure 10(b), because
the first vehicle of the IDM fleet cannot pass the intersection
in time, all vehicles in the fleet should stop and wait for the
red light before passing, which considerably increases high
power consumption when the fleet is stationary and starting.
As displayed in Figure 10(d), because of the speed planning
of the first vehicle, although the ACC fleet can ensure that all
vehicles can pass through the intersection without stopping,
the following speed of the rear car is always affected by the

speed of the vehicle in front. Therefore, optimal energy
consumption cannot be guaranteed. The average energy
consumption performance of the fleet through the intersec-
tion using different fleet speed planning methods is presented
in Table 6. The results revealed that using motor energy
consumption as a cost function of the connected fleet speed
planning algorithm can plan a suitable speed curve for each
vehicle to maintain a small safe distance, which improves
traffic efficiency and reduces average fleet energy con-
sumption. The results revealed that the GA fleet planning
method based on network connection reduced the average
fleet energy consumption by 26% compared with the IDM-
based method in the green light acceleration scenario.
Compared with the ACC fleet, which only plans the speed of
the vehicle in front, the average fleet energy consumption is
reduced by 24%. In the red-light scenario, the GA fleet
planning method based on network connection reduces the
average fleet energy consumption by 15% compared with the
IDM-based method, and the average energy consumption is
reduced by 7.6% compared with the ACC fleet that only
plans the speed of the vehicle in the front.

4.2.5 Hard-ware in the loop
To evaluate the response characteristics of the proposed
controller and verify its effectiveness under real-time con-
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Figure 10 Displacement curve of the IDM and ACC fleet crossing the intersection. (a) Displacement of the IDM fleet under Case 5; (b) displacement of the
IDM fleet under Case 6; (c) displacement of the ACC fleet under Case 5; (d) displacement of the ACC fleet under Case 6.

Table 6 Comparison of average energy consumption of the fleet crossing the intersection

Method The green light accelerates through the intersection  The red light decelerates through the intersection Unit
GA energy consumption 0.0679 0.0816 kW h/km
IDM energy consumption 0.0918 0.0961 kW h/km
ACC energy consumption 0.0895 0.0883 kW h/km

ditions, the HIL test was performed to consider commu-
nication and computing resource allocation in practice. The
platform developed for HIL includes ECU rapid prototype
development based on D2P and simulation model con-
struction based on the NI real-time simulator provided by
the test cabinet. As presented in Figure 11, MotoHawk was
used to develop the proposed controller, which was sub-
sequently converted to the C code and written into the ECU.
The selected ECU was ECU-565-128, and Motorola
MPC565 was used as the processor. NI PXIe-8135 supplied
by the HCU HIL system was used as the processor of NI
real-time simulator. CAN communication between ECU
and test cabinet was performed according to the configured
DBC file for exchanging information. Because offline op-
timization and online control were used, the real-time nat-
ure of GA is not involved when performing HIL experiments

and is only used to verify the effectiveness and real-time
performance of the controller. Figure 12 displays the ex-
perimental results obtained from the human-machine inter-
face software. Compared with the results of the simulation
shown in Figure 6(c) and (d), the result of HIL in Figure 12(a)
and (b) reveals that the distance tracking controller and speed
tracking controller can be switched smoothly according to
the real-time driving environment under real-time condi-
tions. Compared with the results of the simulation in Figure 9
detailing the scenario of crossing the intersection with ve-
hicle fleet speed planning, the results of HIL in Figure 12(c)
and (d) reveal that although a certain fluctuation occurs in the
vehicle speed, the proposed speed tracking controller can
make each vehicle keep the safe intervehicle distance from
the vehicle in front or behind and cross the intersection in
time.
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HIL results. (a) HIL displacement tracking curve of slowing down to cross the intersection at the red light. (b) HIL speed tracking curve of

slowing down to cross the intersection at the red light. (c) HIL displacement curve under Case 5. (d) HIL displacement curve under Case 6.

5 Conclusions

In this study, the EACC design under the intersection sce-
nario was investigated. By introducing speed planning, an
ACC vehicle can safely cross the intersection at an eco-
nomical speed to satisfy traffic light constraints. The simu-
lation results under various scenarios revealed that although
the tracking of the planned speed can reduce the effect of the
driving style of the front vehicle on the host vehicle to obtain
the local optimal economic performance, the intervehicle

distance may be too large or small and time required to cross
the intersection may be too large and too switched between
speed controller and distance controller. Therefore, this study
proposed a speed planning method for vehicle platoons
based on V2X communication. By planning the speed of
each vehicle in the fleet according to a certain order and
considering the intervehicle distance as the constraint, effi-
cient coordinated control of the vehicles in the fleet can be
achieved. The simulation results revealed that vehicles can
travel in a platoon with smaller and safer vehicle spacing,
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which can improve road traffic efficiency and the average
energy consumption of the fleet. The conclusions of this
study are as follows.

(1) The speed planning method comparison between rule-
based and GA-based revealed that the GA-based method can
obtain superior energy consumption performance because
the motor energy consumption is considered as the loss
function, which can reduce the output motor torque peak and
maintain a stable torque output.

(2) Based on V2X communication, the GA speed planning
for each vehicle from the perspective of the vehicle platoon
can obtain the global optimal speed profile. The flexible and
variable vehicle intervehicle distance enables more vehicles
to pass through the intersection in time to improve the traffic
efficiency of the road and the average energy consumption of
the fleet.

(3) Sensitivity analysis of the initial speed, the remaining
traffic light duration, and the distance to the intersection
reveals that the optimal economic performance can be ob-
tained when the vehicle can maintain a uniform speed to
cross the intersection. A large acceleration and deceleration
could reduce the economic performance of the vehicle.

Effectively modeling the decision-making behavior of
joining or leaving a fleet and planning vehicle speeds in a
V2X environment under mixed traffic flows are critical to-
pics of research in the future.

This work was supported by the National Natural Science Foundation of
China (Grant No. 52272367).
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