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A unified stochastic damage model for concrete based on
multi-scale energy dissipation analysis
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This work proposes a unified damage model for concrete within the framework of stochastic damage mechanics. Based on the
micro-meso stochastic fracture model (MMSF), the nonlinear energy dissipation process of the microspring from nanoscale to
microscale is investigated. In nanoscale, the rate process theory is adopted to describe the crack growth rate; therefore, the
corresponding energy dissipation caused by a representative crack propagation can be obtained. The scale gap from nanoscale to
microscale is bridged by a crack hierarchy model. Thus, the total energy dissipated by all cracks from the nanoscale to the
microscale is gained. It is found that the fracture strain of the microspring can be derived from the above multi-scale energy
dissipation analysis. When energy dissipation is regarded as some microdamage to the microspring, the constitutive law of the
microspring is no longer linearly elastic, as previously assumed. By changing the expression of the damage evolution law from
fracture strain to energy dissipation threshold, the new damage evolution model is derived. The proposed model can not only
replicate the original static model but also extend to cases of rate dependence. By deriving the fracture strain under different
strain rates, the rate sensitivity of concrete materials can be reflected. The model parameters can be conveniently obtained by
identifying them with experimental data. Finally, several numerical examples are presented to verify the proposed model.
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1 Introduction

As a heterogeneous composite, concrete exhibits complex
mechanical behaviors under external forces. In the scope of
continuum damage mechanics (CDM), the thermo-
dynamically consistent continuum damage framework has
been established owing to the efforts of previous work [1‒8].
The main mechanical behaviors, such as strength softening,
stiffness degradation, and the unilateral effect, can be ra-
tionally reflected. However, irreversible thermodynamics
only provides the necessary condition for the damage evo-
lution law through the Clausius-Duhamel inequality. In ad-
dition, concrete is a random medium in nature, and the

microcracks in concrete are randomly distributed. Therefore,
the damage evolution of concrete is bound to have inherent
randomness, which cannot be revealed in the above de-
terministic framework.
Furthermore, the mechanical properties of concrete, like

strength and fracture energy, are sensitive to strain rates
[9,10]. Interestingly, no rate-sensitivity phenomenon is ob-
served for linear elastic materials or materials in the linear
elastic range [11]. This demonstrates the significant asso-
ciation between damage growth and the strain rate effect.
The physical mechanism of rate sensitivity is still ambiguous
[12]. Several theories, including the viscous effect [13,14]
and the inertial effect [15,16], are proposed to explain the
strain rate issue. As a result, dynamic damage models based
on viscous theory [17‒19] and inertial effects [20,21] for
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describing the dynamic properties of concrete have been
developed. Despite some advancements in these models, it is
still unclear how the dynamic properties of concrete relate to
one another. In addition, few studies have considered the
influence of the randomness of concrete.
Research on the random properties of concrete materials

began in the 1980s [22]. The damage variable is defined as
the fracture probability of the fiber bundles, which is es-
sentially a deterministic result. Thereafter, Kandarpa et al.
[23] improved the model by taking into account the corre-
lation between the microsprings. The analytical expressions
of mean and standard deviation for stochastic damage can be
derived. According to the idea of stochastic damage, Li and
his colleagues [24,25] proposed the micro-meso stochastic
fracture model (MMSF) by taking into account two damage
mechanisms (tension and shear). The model assumes that
shear mechanisms are primarily responsible for controlling
concrete failure under compressive stress. The MMSF was
further extended to multi-dimensional cases through energy
equivalent strain [25]. The assumption of random media
[26,27] forms the foundation of the stochastic damage con-
cept. That means the hydrated cement paste, aggregate, and
interfacial transition zone in concrete can be regarded as
single random media. Such a hypothesis has recently been
supported by nano- and microscale experiments [28]. These
progresses related to MMSF provide a unified framework to
reflect the nonlinearity and randomness behaviors of con-
crete simultaneously.
In the MMSF, the constitutive law of the microspring is

assumed to be linear elastic. It means there is no energy
dissipation within the microspring before fracture, which
may be inconsistent with the physical facts. The aim of this
work is to reveal the nonlinear degradation constitutive law
of the microspring during the loading process. Inspired by
the work of Ding and Li [29], the multi-scale nonlinear en-
ergy dissipation process of the microspring is investigated in
this paper. In this study, it was found that the fracture strain
of the microspring corresponds to a certain energy dissipa-
tion limit. Therefore, a new MMSF can be established based
on the energy dissipation analysis. Furthermore, the new
model can be extended to rate-dependent situations by de-
riving the fracture strain under various strain rates. Dynamic
fracture strain serves as the foundation for the relationship
between dynamic properties like strength, elastic modulus,
and fracture energy. In light of these results, a damage model
is presented that can be employed for both static and dynamic
loading. This model can be extended to account for fatigue
loading, which will be developed in the following paper.

2 Deterministic elastoplastic damage framework
2.1 Damage variables

By applying the strain equivalence hypothesis [30], the da-

maged part can be separated from the effective stress space:
= ( ) : , (1)I D

where and are the Cauchy stress tensor and effective
stress tensor, respectively; D is the fourth-order damage
tensor; and I is the fourth-order identity tensor.
Owing to the significant difference between the uniaxial

tensile strength and compressive strength of concrete, the
stress decomposition concept [4,5] is widely adopted in
constitutive modeling [27]:

= + , (2)+

where

= : ,
= : .

(3)
+ +P

P
The expressions of the projection tensors ±P are

H n n n n= ( ) ,

= ,
(4)a

a
a a a a+

=1

3
( ) ( ) ( ) ( )

+

P

P I P

where a and n a( ) are the a-th eigenvalue and eigenvector of
the effective stress tensor , respectively, and H ( ) is the
Heaviside function.
In the meantime, two damage variables d + and d are

introduced, where d + and d correspond to the damage state
related to tensile stress state and compressive stress state,
respectively. The damage tensor is written as

d d= + . (5)+ +D P P

The irreversible thermodynamics suggests that the energy
conjugated force should be taken as the driving force of the
internal variables. Therefore, Helmholtz free energy can be
described as

d d= (1 ) + (1 ) , (6)+
0
+

0

where 0
+ and 0 are the positive and negative parts of the

initial Helmholtz free energy, respectively.
The damage energy release rates Y + and Y are defined as

the energy conjugated forces of the damage variables:

Y d

Y d

= = ,

= = .
(7)

+
+ 0

+

0

The evolution of the damage variables is driven by damage
energy release rates:

d f Y= ( ), (8)d
± ±

where f ( )d denotes to a function.
Considering the irreversible deformation during the un-

loading process, the initial Helmholtz free energies are fur-
ther decomposed into elastic parts and plastic parts:
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= + . (9)e p
0
±

0
±

0
±

The elastic parts read

= 1
2 : = 1

2 : ( ), (10)e e p
0

± ± ±

and the plastic parts read [3]

= : d , (11)p p
0

±

0

±
p

where , e, and pare strain tensor, elastic strain tensor and
plastic strain tensor, respectively.
Wu et al. [5] adopted the Drucker-Prager plastic model for

the compressive plastic Helmholtz free energy p
0 and ne-

glected the tensile plastic Helmholtz free energy p
0

+. The
final expressions for the damage energy release rates are
obtained as follows:

( )Y E= : : , (12)+
0

+
0C

Y I J= + 3 , (13)1 2

where E0 is the elastic modulus; 0C is the compliance tensor;
I1 is the first invariant of the effective stress tensor; J2 is the
second invariant of the deviatoric part of the effective stress
tensor; and the parameter is related to the biaxial strength
increase, usually = 0.12.
By analogy with the classical plastic theory, the Kuhn-

Tucker condition is introduced as the damage evolution
criterion:

d f Y
Y r= ( ) ,   = , (14)d

d
d

± ± ±

±
± ±

F Y r f Y f r

F Y r

0,  ( , ) = ( ) ( ) 0,

( , ) = 0,
(15)d d d d

d d

± ± ± ± ±

± ± ±

where d
± are damage consistency parameters. The thresh-

olds of damage energy release rates r ± are given by [3,5]

{ }r r Y= max , max , (16)
t

±
0
±

[0, ]
±

where r0
± are the initial thresholds.

2.2 Plastic strain model

Since the influence of damage is removed from the effective
stress space, the plastic strain can be solved by applying the
classical plastic theory in the effective stress space.

= : ( ), (17)p
0E

where 0E is the fourth-order stiffness tensor.
By defining the yield function as F and the plastic potential

function as F , the plastic strain in effective stress space is
solved as [3]

F

F

F F

h

= ( , ) ,

= ( , ) ,

( , ) 0, 0, ( , ) = 0,

(18)

p
p

p

p p

where p and are the plastic flow parameter and the
hardening parameter, respectively; h denotes the vectorial
hardening function.
The above effective stress space plasticity provides a rig-

orous framework for the plastic evolution law. In numerical
implementation, assuming the plastic strain increment is
proportional to the elastic strain increment for simplicity, a
simpler empirical plastic model can be derived as

H d f d= ( ) ( ) , (19)p
p

e

where H ( ) is the Heaviside function and f ( )p denotes a
damage related function.
By fitting experimental data, Ren et al. [19] proposed the

form of function f ( )p

f d d( ) = , (20)p p
np

where p and np are fitting parameters.
In the following text, only the compressive plastic strain is

considered, and the tensile plastic strain is ignored.

3 Stochastic damage evolution law based on
energy dissipation

3.1 Micro-meso stochastic fracture model

In the above deterministic damage framework, the damage
evolution function f ( )d in eq. (8) has to be determined by
empirical regression or hypothesis. Moreover, the damage
evolution in concrete materials is random in nature, which
cannot be reflected in deterministic models. Based on the
random medium concept, the MMSF idealizes a re-
presentative volume element (RVE) of concrete as a set of
parallel microsprings. As shown in Figure 1, the rigid bars at
both ends ensure that the strain of each microspring is the
same during the loading process. Once the elastic strain of
the microspring exceeds the fracture strain, the microspring
breaks and damage evolves. By considering the fracture
strain of the microspring as a random field, the stochastic
damage evolution law can be obtained as [24,25]

D H x x= ( ( ))d , (21)e

0

1 ± ±

where x( )± is the random field of fracture strain; H ( ) is the
Heaviside function; and x denotes the coordinate in the local
coordinate system of the microspring.
Usually, x( ) is assumed to be a log-normal distributed
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random field and the corresponding normal distributed ran-
dom field Z x x( ) = ln ( ). Assuming the auto-correlation
coefficient function of Z x( ) is expressed as

y y( ) = exp( ), (22)Z

where is the correlation parameter and y x x= 1 2 denotes
the relative distance between two microsprings.
The mean evolution of the damage variable in eq. (21) can

be solved as

µ = ln , (23)D

e

1

and the standard deviation is solved as

V y y y µ= 2 (1 ) ln , ln ( ) d , (24)D

e e

Z D
2

0

1
2

2

where and are the mean value and standard deviation of
Z x( ), respectively; ( )1 and ( )2 are the 1D and 2D cu-
mulative probability functions of the standard normal dis-
tribution, respectively.
It is worth noting that the above model introduces three

model parameters ( , , and ) under uniaxial loading, but
their values will be different in the case of tension and
compression stress states. In the following text, the super-
script “+” indicates tension and “ ” indicates compression.
In the MMSF, the stress-strain relationship of the micro-

spring is assumed to be the elastic-brittle (Figure 2(a)).
Therefore, the stress-strain curves for loading and unloading
are identical, proving that there is no energy loss before the
microspring breaks. However, studies on the fracture me-
chanism of the microspring have revealed that multi-scale
energy dissipation occurs before its fracture [29,31]. The
stress-strain relationship of the microspring may be non-
linear with the energy dissipation process, as shown in Fig-
ure 2(b). Hence, the multi-scale energy dissipation within a
microspring needs to be studied.

3.2 Energy dissipation of microspring in nanoscale

At the nanoscale, the material particles are connected by the
nanoscale adhesion force [32], and the nanocrack tip moves
when the external forces exceed the adhesion force. Con-
sidering a planner nanocrack that grows in a self-similar
manner, the energy dissipation Q caused by crack growth a

is expressed as [31]
GQ = , (25)a a

where is the crack geometrical constant and G a is the en-
ergy release rate in nanoscale.
The atomic arrangements at the crack-tip zone are shown

in Figure 3. The circle represents the atoms, and the lines
between the atoms represent the interatomic forces. These
atoms vibrate at a very high frequency due to thermal acti-
vation and the applied load. The vibration makes the atom
deviate from its equilibrium position. When the external
force is large enough, the distance between the two atoms at
the crack tip exceeds the critical state, resulting in the crack
growing forward. Therefore, crack propagation can be re-
garded as a potential energy barrier-crossing process.
The rate-process theory is adopted to dominate the energy

barrier-crossing process. Rate process theory describes the
behavior of the atomic configuration that results from the
random fluctuation of thermal energy. Before the crack
grows, the stable atomic configuration keeps the potential
energy of the system in the energy valley. For the crack to
expand forward, it first needs an external force to provide
activation energy of size Q0 to reach the activated state and
cross the energy potential barrier, and then the spatial con-
figuration drops with energy to the next energy valley to keep
the system stable. The crack growth rate can be expressed as
[31]
a f= , (26)a

where f is the net energy barrier-crossing rate defined by rate
process theory [33].

f kT
h

Q Q
kT

Q Q
kT

kT
h

Q
kT

Q
kT

= exp / 2 exp + / 2

= 2 exp sinh 2 , (27)

0 0

0

where k, h, and T are the Boltzmann constant, Planck con-

Figure 1 (Color online) Micro-meso stochastic fracture model.

Figure 2 (Color online) Stress-strain relationship of the microspring.
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stant, and absolute temperature, respectively.
An important assumption of the rate process theory is
Q kT Q0 [31], so eq. (27) can be linearized as

f Q
h

Q
kTexp . (28)0

Assuming a damage increment d that corresponds to the
crack growth length a, the damage energy dissipation reads
[29]:

Q V Y d= d , (29)d d d

d + d

0

0

where Vd is the damage volume and d 0 denotes the initial
damage state.
The vibration of the nano-particles is at a very high fre-

quency, so the process of bond breaking is very fast. The
damage energy release rate during this process can be re-
garded as a constant. Then eq. (29) becomes

Q V Y . (30)d d d

Damage and fracture are two different descriptions of the
same physical process, so the energy dissipation should be
the same. Hence, we obtain

GQ Q V Y= = . (31)a a d d d

In fact, the number of nanocracks is enormous, and be-
cause the shape, initial length, and propagation distances are
different among them, the representative values can be taken
as a statistical average. The average energy dissipation rate
caused by representative nanocrack growth is obtained as

G Ga Q
h

Q
kT= exp . (32)a a a

0

The corresponding energy dissipation in the representative
damage volume element reads

G
E

a t

V
=

d
, (33)a

t
a

d

0

where the superscript “~” denotes the representative value
after the statistical average.

3.3 Crack hierarchy model

As shown in Figure 4, the development of material cracks is
a multi-level evolutionary process. Initially, the microcracks
were scattered randomly at various points. With the increase
in loads, new microcracks emerge among the existing mi-
crocracks, and some existing microcracks will stop propa-
gating or even close due to stress redistribution. The
microcracks continue to propagate and gradually form lo-
calized zones. Finally, the localized zone forms larger-scale
cracks due to crack coalescence. To bridge the scale gap
between the aforesaid energy dissipation process at the na-
noscale and the microspring at the microscale, a hierarchy
model is introduced here.

Assuming that a representative crack at the larger scale
i + 1 emerges as a result of the propagation and coalescence
of ni cracks at the smaller scale i, then the total number of
cracks from the nanoscale to the microscale is given by

N n n n= , (34)s1 2

where s denotes the different scales, from nanoscale to mi-
croscale.
The crack number on each scale is a function of the relative

crack driving force [31]

n g G
G= , (35)i

i
c

where G denotes the energy release rate of the microspring
and Gi

c denotes the fracture energy at scale i.
By assuming the number of cracks at each scale satisfies

self-similarity, the specific expression of function g( ) can be
inferred as a power law [29,34]:

n G
G= . (36)i

i
c

m

Substituting eq. (36) into eq. (34), the total number of
cracks N becomes

N G
G

G
G

G= =
( )

= , (37)
i

s

i
c

m
sm

i

s
i
c m c

p

=1
=1

Figure 3 (Color online) Energy barrier denoting crack growth.

Figure 4 Crack hierarchy model.
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where ( )G=c
i

s

i
c s

=1

1/ denotes the geometric average of

fracture energy from nanoscale to microscale [35]. Con-
sidering the inherent randomness of concrete, it can be taken
as a random variable.
It is worth noting that although the hierarchical model

proposed in this paper is similar to the model proposed by Le
et al. [31] in the final expression, the two models are es-
sentially different. In Le’s model, it is assumed that the
fracture process zone (FPZ) of the crack tip at the larger scale
i + 1 contains ni cracks at the smaller scale i, and so forth, all
the way down to the nanoscale. Obviously, such a model
assumes that larger-scale cracks occur before smaller-scale
cracks. However, the reality of material failure is that, as
illustrated in Figure 4, larger-scale cracks are created by the
coalescence and propagation of smaller-scale cracks, which
is the key distinction from Le’s model.
The energy release rateG in eq. (37) can be replaced by the

energy release rate in the context of CDM [36]. Then eq. (37)
becomes

N G Y= = , (38)
c

p

c

p

where is a conversion coefficient.
Combining eqs. (33) and (38), the total energy dissipation

rate caused by all cracks from nanoscale to microscale is
obtained as

GE NE
V

Q
h

Q
kT

Y

V
h

Q
kT

Y Y

C Y Y C Y Y

= = exp

= exp

= = , (39)

a
a

d
a c

p

d d

c

p

c

p

c

p

mic
0

2
0 2

2
0

2

where C V
h

Q
kT= expd d

2
0 is a model parameter with unit

J m s1 3 1 and C C= p
0 .

It is vital to point out that the total energy dissipation rate
Emic is within a microspring, and the value of Emic may differ
among microsprings of the MMSF. In addition, the expres-
sion of Emic is applicable to both tensile and compressive
stress states. In the following statement, superscripts “+” and
“ ” are needed to distinguish two cases.

3.4 Energy dissipation limit of the microspring

Integrating Emic from 0 to time t will give the total energy
dissipated during this time period, denoted as Emic. Ob-
viously, the value of Emic cannot be infinite, and therefore a
maximum value exists. Here, the elastic fracture energy of
the micro-element is adopted as the upper limit. In other

words, the cumulative energy dissipation within a micro-
spring should not exceed the elastic fracture energy; other-
wise, the microspring will break. As a result, the fracture
strain of the microspring can be calculated from this per-
spective.
In one-dimensional loading cases, the energy release rate Y

in eqs. (12) and (13) can be simplified as
Y E= = , (40)+ +

0
+

Y E= (1 ) = (1 ) . (41)e
0

For uniaxial tension, substituting eq. (40) into eq. (39) and
integrating from the start of loading until the microspring
breaks, we obtain

E C Y Y t C
E t

t= d =
( )

d . (42)
t

c

p
t p

c
pmic 0 0

2

0 0
0

+2

The superscript “+” is omitted here. When the strain rate
is a constant, by changing the integral variable from time to
strain, eq. (42) becomes

E C
E C E

p
=

( )
d =

( + 3)
, (43)

p

c
p

p p

c
p

c
mic 0 0

0
+2

0 0
+2 +3c c

c

where is the fracture strain of the microspring, and pc is the
maximum value of p. Since the parameter p now includes the
influence of scale number s, this should evolve with the
damage parameter. Here, a fixed value pc is chosen as the
representative value for simplicity.
According to the aforementioned energy dissipation

threshold, the maximum energy dissipation value during the
entire loading process should be equal to the elastic fracture
energy. Then we have

E C E
p

E E=
( + 3)

= = 1
2 . (44)

p p

c
p

c
mic

0 0
+2 +3

0
2c c

c

Thus, the tensile fracture strain can be derived as

p
C E= ( + 3)

2 . (45)c
p c

p p

0 0
+1

1
+1

c
c c

For uniaxial compression, by substituting eq. (41) into eq.
(39) and integrating the whole elastic energy dissipation
process, we can also obtain the expression of Emic as follows:

E C E
p

= [(1 ) ]
( + 3)

, (46)
p p

e
c
p

c
mic

0 0
+2 +3c c

c

where e denotes the elastic strain rate.
Therefore, the shear fracture strain can be derived as

p
C E

= ( + 3)
2 ((1 ) )

. (47)c
e

p c
p

p

0 0
+1

1
+1

c
c

c

3.5 Damage evolution law of RVE

By changing the fracture strain in the damage evolution
expression to energy dissipation, the new damage evolution
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law becomes

D H E E x

E E x

= ( )d ,

= 1
2 ( ).

(48)0

1
mic

0
2

By introducing eq. (45), the final expression for the tensile
stochastic damage evolution law is written as

D H E E x

E C Y Y t

E E p
C E

= ( )d ,

= d ,

= 1
2

( + 3)
2 .

(49)
t

c

p

p c
p p

0

1
mic

mic 0 0
2

0
0 0

+1

2
+1

c

c
c c

Similarly, the shear stochastic damage evolution law can
be obtained as follows:

D H E E x

E C Y Y t

E E p
C E

= ( )d ,

= d ,

= 1
2

( + 3)
2 [(1 ) ]

.

(50)
t

c

p

e

p c
p

p

0

1
mic

mic 0 0
2

0
0 0

+1

2
+1

c

c
c

c

Different from Ding’s work [29], the fracture strain is gi-
ven from the perspective of energy dissipation, and it is not
necessary to consider fatigue damage energy dissipation and
monotonic damage energy dissipation separately. Besides,
Wang and Li [35] also examined the microspring’s energy
dissipation process, but they failed to determine the fracture
strain that corresponds to the energy dissipation limit. In this
work, eqs. (45) and (47) essentially establish the connection
between fracture strain x( ) and nano-micro comprehensive
fracture energy c.
From this perspective, an alternative expression of the

stochastic damage evolution law can be given. Substituting
eq. (45) into eq. (39) and eliminating c, we obtain the new
expression for Emic:

E p Y
E= ( + 3)

2 . (51)c
p

p pmic

+2

0
+1 +1

c

c c

Then the tensile stochastic damage evolution law in eq.
(49) becomes

D H E E x

E
p Y
E

t

E E

= ( )d ,

=
( + 3)
2

d ,

= 1
2 . 

(52)t c
p

p p

0

1
mic

mic 0

+2

0
+1 +1

0
2

c

c c

Likewise, the alternate expression for the shear stochastic
damage evolution law is written as

[ ]

D H E E x

E
p Y

E
t

E E

= ( )d ,

=
( + 3)

2 (1 )
d ,

= 1
2 .

(53)
t e

c
p

p p

0

1
mic

mic 0

+2

0
+1 +1

0
2

c

c c

In contrast to eq. (21), eqs. (52) and (53) essentially pro-
vide a fracture process for the microspring.
The nonlinear constitutive law of the microspring can be

derived if the dissipated energy is interpreted as some sort of
microdamage to the microspring.

( )d E= 1 , (54)e
micro 0

where the rate of the microdamage dmicro is expressed as

d E
E= . (55)micro

mic

For uniaxial tension, eq. (55) becomes

d p= ( + 3) . (56)c
p

micro

+2c

Similarly, the microdamage rate for uniaxial compression
is obtained as follows:

d p= ( + 3)(1 ) . (57)
e

c
e p

micro

+2c

3.6 Rate-dependent extension

The mechanical behavior of concrete materials is well re-
cognized as being sensitive to strain rate. Dynamic loads
such as impacts and earthquakes will cause a higher strain
rate in engineering structures. The proposed model is not
intended to provide a substitute for the original micro-meso
stochastic fracture model but to provide a unified framework
for other loading cases. Since the derivations in eqs. (42) and
(43) are valid for different loading rates, the rate-dependent
model can be established by deriving the fracture strain un-
der different loading rates.
According to eq. (45) or eq. (47), the dynamic fracture

strain is expressed as

E
E= , (58)d

s

s

d

d
s

p c d

c s

p
p0,

0,

1
+1 ,

,

+1c

c

c

where the subscripts d and s represent dynamic and static
properties, respectively.
Eq. (58) demonstrates that the strain rate, dynamic elastic

modulus, and dynamic fracture energy are the three com-
ponents that define the dynamic fracture strain.

4 Parameter analysis

In addition to the three parameters in the original MMSF,
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which can be identified by the least-squares criterion, a new
parameter, pc, is introduced in the proposed model. The
parameter analysis is given here.
Monotonic loading with a strain rate of 1×10–5/s is con-

sidered here. A numerical sample including 1000 discrete
microsprings is given based on the stochastic harmonic
function method [37]. For ease of analysis, the microsprings
in the sample are arranged in ascending order of fracture
strain. The elastic modulus E0=3.5×10

4 N/mm2. The three
parameters characterizing the tensile fracture strain for C50
concrete were provided by Zeng [38] through inverse iden-
tification with 132 experimental stress-strain data:

= 4.8696+ , = 0.5828+ and = 62+ .
Figure 5(a) gives the same monotonic stress-strain curves

with different pc
+ values. It seems that the curves are in-

sensitive to pc
+. Because under monotonic loading cases, the

damage evolution law in eq. (52) only concerns whether the
maximum value of Emic exceeds E , not the evolution process
of Emic. However, if we take into account other loading types,
including cyclic loading, the evolution of Emic becomes
crucial. The energy dissipation process of a typical micro-
spring is plotted in Figure 5(b) with different pc

+. Obviously,
it has an influence on the evolution process of Emic, which
plays a key role in cyclic loading.
In fact, the energy dissipation process can be roughly di-

vided into two stages. The first stage consumes a very small
amount of energy. It moves to the second stage when the
external load reaches a certain level. Energy dissipation

starts to rise tremendously. As pc
+ increases, the energy

dissipation of the first stage decreases relatively, but the
second stage rises faster in order to reach the same fracture
point. Figure 5(c) depicts the microdamage evolution of a
typical microspring, which exhibits the same characteristics
as energy dissipation. Therefore, the stress-strain curve of the
microspring is approximately linear in the first stage, and as
the microdamage evolves, the stress eventually declines to
zero (Figure 5(d)). With increasing pc

+, the microspring’s
constitutive law tends to resemble the linear elastic con-
stitutive law assumed by the original model. In other words,
the original model can be seen as a linearization of the
proposed model.
Additionally, after gaining the dynamic properties of

concrete, the impact of parameter pc
+ on the dynamic in-

crease factor (DIF) of strength is investigated, and the results
are depicted in Figure 6. The quasi-static strain rate is set to
1×10–5/s. It is found that pc

+ governs the rising speed of DIF;
hence, the relevant experimental data can be used to identify
the parameter pc

+. In the following analysis, p = 20c
+ and

p = 25c are adopted in the numerical calculation.

5 Model verification

5.1 Uniaxial tension

As mentioned before, the stochastic damage evolution laws
defined by eqs. (21) and (52) are identical. The above-

Figure 5 (Color online) (a) Stress-strain of the RVE; (b) energy dissipation process of a typical microspring; (c) microdamage evolution of a typical
microspring; (d) stress-strain curve of a typical microspring.
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mentioned numerical tension sample is presented here for
verification. With a strain rate of 1×10–5/s and p = 20c

+ , the
stress-strain curve and damage evolution of this sample are
shown in Figure 7(a) and (b). The results calculated by eqs.
(21) and (52) are displayed in the legend as MMSF- and

EMMSF- mic, respectively. It can be found that, for monotonic
loading, the two damage evolution laws give the same re-
sults.
Despite the two formulas’ consistency in damage evolu-

tion at the RVE level, the latter can provide more details on
the microdamage process of the microspring. In Figure 8(a),
the energy dissipation processes of all microsprings are
presented. All the microsprings’ energy dissipation pro-
cesses are actually similar under monotonic loading, only
with different fracture strains. Based on the previously de-
fined microdamage, the stress-strain curves for three mi-
crosprings with fracture strains at 4.9×10–5, 1.3×10–4, and
2.6×10–4, respectively, are depicted in Figure 8(b)–(d). Ob-
viously, the stress-strain relationship is no longer elastic-
brittle as assumed previously but has nonlinear properties
with the development of microdamage. The tensile strength
of this sample is around 2.4 MPa; some microsprings with
small fracture strains will break before reaching the tensile
strength (Figure 8(b)). In contrast, those microsprings with
greater fracture strains will bear greater stress due to stress
redistribution, as shown in Figure 8(c) and (d).

5.2 Uniaxial compression

The parameters defining shear fracture strains for C50 con-
crete are identified as = 7.5668, = 0.2546 and = 84
[38]. The stochastic harmonic function method is also em-
ployed to provide a numerical sample with 1000 discrete
microsprings. The plastic model parameters in the example
are set as follows: = 2.5p , n = 0.2p . With strain rate

=1×10–5/s, Figure 9 displays the damage evolution curves
and the stress-strain curves. MMSF- and EMMSF- mic in the
legend stand for the damage evolution law defined by eqs.
(21) and (53). It is proven that the results of the two methods
are consistent under monotonic loading. Since plastic strain
is taken into account in monotonic compressive loading,
each incremental step requires a modification to the elastic
strain rate.
Figure 10(a) illustrates how the strain and its components

in this sample develop as loading time increases. It can be
seen that the elastic strain dominates at the beginning of the
loading process, while the plastic strain takes over as the
loading progresses. In Figure 10(b) [39–41], the shifting
trend of plastic strain is in good agreement with the experi-
mental data. c in Figure 10(b) denotes the strain corre-
sponding to the peak stress. It is proven that the empirical
plastic model in eq. (19) can well describe the irreversible
deformation of concrete during compression.
Figure 11(a) shows the energy dissipation processes for all

the microsprings. According to the energy dissipation pro-
cess, the related microdamage can be obtained. Three typical
microsprings with different fracture strains are selected to
draw the corresponding stress-strain curves in Figure 11(b)–
(d). The main mechanical behavior of the microspring is
consistent with uniaxial tension. However, it is important to
note that elastic deformation engages in the above-defined
energy dissipation whereas plastic deformation does not;
hence, the horizontal coordinates in Figure 11 indicate the
elastic strain.

5.3 Rate dependent examples

The proposed model can be employed in dynamic loading

Figure 6 (Color online) Influence of parameter pc on strength DIF.

Figure 7 (Color online) (a) Stress-strain curve; (b) damage evolution.
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Figure 8 (Color online) (a) Energy dissipation process of all microsprings; (b) stress-strain curve of 30th microspring; (c) stress-strain curve of 500th
microspring; (d) stress-strain curve of 900th microspring.

Figure 9 (Color online) (a) Stress-strain curve; (b) damage evolution.

Figure 10 (Color online) (a) Variation of strain and its components; (b) empirical plastic model.
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cases, while the original model is only suitable for static
ones. According to eq. (58), the fracture strain of the mi-
crospring increases with the increase in strain rate, which
leads to an increase in material strength. As stated by eq.
(58), the dynamic fracture strain is determined by the dy-
namic mechanical properties of concrete. Hence, it is es-
sential to ascertain how the strain rate affects the dynamic
mechanical properties of concrete. As illustrated in Figure 12
[42–45], test data fitting yields dynamic properties such as
dynamic elastic modulus and dynamic fracture energy.
The fitting curve is a power-law type that reads

( )aDIF = + 1, (59)b
s
b

where a and b are fitting parameters, and the static strain rate
=s 1×10–5/s.

The static tensile fracture energy c s, =150 N/m yields
a1=0.4159 and b1=0.6023. However, due to a lack of test
data, it is questionable how the shear fracture energy would
vary as the strain rate increased. In the following analysis,
the shear fracture energy parameters are inversely identified
using the DIF of compression strength, yielding the values
a2=0.0025 and b2=0.8029. The parameters for dynamic
elastic modulus are identical for both tension and shear
mechanisms, yielding a3=0.5808 and b3=0.1435.
Numerical simulations under uniaxial loading cases are

performed here. For uniaxial tension, 50 C50 samples are
used to calculate the stress-strain curve for each of the three
strain rates: =1 1×10–5/s, =2 1×10–4/s, and =3 1×10–2/s.
The simulated results are displayed in Figure 13 along with
the experimental data. Model-Mean and Model-Std in the

Figure 11 (Color online) (a) Energy dissipation process of all springs; (b) stress-strain curve of 30th microspring; (c) stress-strain curve of 500th
microspring; (d) stress-strain curve of 900th microspring.

Figure 12 (Color online) Dynamic properties of concrete. (a) Tensile fracture energy; (b) elastic modulus.
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legend stand for the mean and standard deviation of the
stress-strain curve calculated by the proposed model.
Exp-Mean and Exp-Std denote the mean and standard de-
viation of the experimental data. The experimental data were
gathered from Gao et al. [46]. As can be observed, the ex-
perimental data and model results for various strain rates
agree well.
A sample is selected for detailed analysis. Figure 14(a)

depicts the stress-strain relationship of this sample. Due to
the fact that the fracture strain of the microspring is larger at
a higher strain rate, the tensile strength increases as the strain
rate increases. Figure 14(b)‒(d) illustrate a typical micro-
spring’s energy dissipation process, microdamage evolution,
and stress-strain relationship, respectively. It is found that the

mechanical properties of the microspring change accordingly
with the strain rate.
Likewise, 50 samples are generated for uniaxial com-

pression using the stochastic harmonic function approach.
Figure 15 presents the stress-strain curves under three dif-
ferent strain rates. The experiment data were collected from
Zeng [38]. As can be observed, the stress-strain curve’s mean
value and standard deviation predicted by the proposed
model agree with the experimental results under various
strain rates.
A specific sample is chosen to gain more detailed in-

formation. The stress-strain curves in Figure 16(a) demon-
strate that the proposed model can accurately capture the
increase in compressive strength under dynamic load. The

Figure 13 (Color online) Stress-strain curves for various strain rates under uniaxial tension. (a) =1
1×10–5/s; (b) =2

1×10–4/s; (c) =3
1×10–2/s.

Figure 14 (Color online) (a) Stress-strain of a typical sample; (b) energy dissipation process of a typical microspring; (c) microdamage evolution of a
typical microspring; (d) stress-strain curve of a typical microspring.
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energy dissipation process of a typical microspring in Figure
16(b) verifies that the higher strain rate leads to a larger
fracture strain, which allows the microdamage evolution of
the microspring to delay (Figure 16(c)). Therefore, the
strength of the microspring increases at a higher strain rate
(Figure 16(d)).
The DIF of the strength is investigated and contrasted with

the experimental data in order to clarify the scope of appli-
cation. For each strain rate, 20 samples are calculated, and
the quasi-static rate is set at 1×10–5/s. The results are shown
in Figure 17 [47–58]. At strain rates ranging from 1×10–7/s to
1×102/s, it is found that the model results and the experi-
mental data are in good agreement.

6 Conclusions

A unified damage model is proposed in this work by taking
into account the multi-scale energy dissipation process of the
microspring in the micro-meso stochastic model. The crack
growth velocity is described using rate process theory at the
nanoscale within one microspring. The crack hierarchy
model is then employed to determine the crack number from
the nanoscale to the microscale. Consequently, the stochastic
damage evolution law is expressed by the energy dissipation
threshold instead of fracture strain. The proposed model can
be extended to include rate dependence by identifying frac-
ture strains at different strain rates. Numerical examples are

Figure 15 (Color online) Stress-strain curves for various strain rates under uniaxial compression. (a) =1
1×10–5/s; (b) =2

1×10–4/s; (c) =3
3.5×10–2/s.

Figure 16 (Color online) (a) Stress-strain of a typical sample; (b) energy dissipation process of a typical microspring; (c) microdamage evolution of a
typical microspring; (d) stress-strain curve of a typical microspring.
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provided to demonstrate the effectiveness of the proposed
model. Several concluding remarks could be summarized as
follows.
(1) Using the elastic strain energy as an upper bound and

incorporating the energy dissipation process, the fracture
strain of the microspring in the MMSF can be derived.
(2) With the help of the derived fracture strain, the damage

evolution law based on the energy dissipation threshold is
consistent with the damage evolution law based on fracture
strain in the original MMSF.
(3) The model can be extended to rate-dependent cases by

deriving the dynamic fracture strain according to the dy-
namic properties of concrete.
(4) The proposed model can take into account the micro-

damage prior to fracture of the microspring, laying the
foundation for extending the model to fatigue loading cases.

This work was supported by the National Natural Science Foundation of
China (Grant No. 51538010).
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