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In the presence of external stimuli and electromagnetic radiation (EMR), biological neurons can exhibit different firing patterns
and switch to appropriate firing modes because of intrinsic self-adaption. Coupling to memristive synapses can discern the EMR
effect, and memristive synapses connecting to neurons can be effectively regulated by external physical fields. From a dynamical
viewpoint, the appropriate setting for memristive synapse intensity can trigger changes in neural activities; however, the
biophysical mechanism of adaptive regulation in the memristive biophysical neuron has not been clarified. Herein, a memristor is
used to control a simple neural circuit by generating a memristive current, and an equivalent memristive neuron model is
obtained. A single firing mode can be stabilized in the absence of EMR, while multiple firing modes occur in the neuron under
EMR. The gain of the memristive synaptic current is dependent on the energy flow, and the shunted energy flow in the
memristive channel can control the energy ratio between the electric field and magnetic field. The growth and enhancement of
the memristive synapse depend on the energy flow across the memristive channel. The memristive synapse is enhanced when its
field energy is below the threshold, and it is suppressed when its field energy is above the threshold. These results explain why
and how multiple firing modes are induced and controlled in biological neurons. Furthermore, the self-adaption property of
memristive neurons was also clarified. Thus, the control of energy flow in the memristive synapse can effectively regulate the
membrane potentials, and neural activities can be effectively controlled to select suitable body gaits.
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1 Introduction

memristors are important electric components that have
potential applications in designing artificial neurons for re-
liable neuromorphic computing [1–5]. In circuit im-
plementation [6,7], equivalent components are combined to
mimic the functional characteristics of an ideal memristor;
then, a memristive current is generated to control nonlinear
circuits for developing the coexistence of multiple attractors

and stabilizing multistability [8–10]. When a neural circuit is
activated by a memristor-like element, the memristive
channel is activated to encode the shunted current or couple
the adjacent neural circuit as a memristive synapse [11–15].
As reported in refs. [16,17], memristive synapses can present
similar synaptic plasticity when they are activated to regulate
isolated neurons or connect more neurons in networks. The
coupling channels exhibit practical controllability when the
memristive synapse is used to couple neurons, and syn-
chronous patterns can be effectively controlled [18,19]. Wu
et al. [20] confirmed that a memristive synapse can express
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biophysical functions similar to a chemical synapse, and a
memristive current [21] can be effectively used to estimate
the electromagnetic radiation (EMR) effect in biological
neurons.
From the dynamical aspect, memristor-connected systems

can be updated with some equivalent dynamical systems, in
which the dynamical properties are dependent on the initial
values of memristive variables by involving variable-
dependent gains in the memristive terms, and any changes in
the initial values will induce mode transition in the electrical
activities [22–26]. As a result, the synchronization stability
[27–30] is controlled by the coupling intensity and initials for
memristive variables as well. For example, an EMR can
induce resonance synchronization between memristive neu-
rons without synaptic coupling because external energy can
be encoded and absorbed in the memristive channel.
The most important contribution of connecting a mem-

ristor to a neural circuit is that a similar memristive term is
introduced to approach the EMR effect, which is considered
as additive induced current in the biological neurons because
diffusive intracellular and extracellular ions can induce the
spatial distribution of the electromagnetic field. Herein, a
memristive neuron model is suggested, and the biophysical
importance of memristive current in the Hindmarsh-Rose
neuron, including an additive magnetic flux variable, is ex-
plained [31,32]. Furthermore, a similar memristive term is
added to other neuron models for estimating similar EMR
effects on electrical activities [33–38]. In particular, the ef-
fect of field coupling [39–43] is activated to regulate the
synchronous firing patterns and stability in neural networks.
Field coupling is considered a superposition of magnetic flux
that can effectively control the collective behavior of clus-
tered neurons and even completely suppress synaptic cou-
pling.
In the case of biological neurons, intrinsic controllability

enables the distinct self-adaptive ability to generate the ap-
propriate firing patterns or realize mode selection in neural
activities. For example, the auditory and visual neurons de-
tect acoustic waves and visible lights within specific wave
bands, and the potential mechanism of wave filtering is ex-
plained in refs. [44,45]. Furthermore, a similar scheme for
wave filtering [46] is used to control the firing patterns in
biological neurons. When neurons are excited by external
stimuli from multiple channels, they select the firing mode
induced by an external stimulus with energy density [47,48],
even with noise disturbance. For building artificial neural
circuits, specific electrical components are required to en-
hance the biophysical function and obtain biophysical neu-
rons/sensors. For example, the connection to a photocell can
enhance its sensitivity to perceive external illumination in
the neural circuit [49,50], and the connection to a thermistor
can make the output voltage dependent on the temperature,
obtaining a temperature-sensitive neuron model [51–54]. As

a result, the spatial patterns in the network comprising
thermosensitive neurons [55,56] will be completely con-
trolled by temperature. These electrical components with
specific physical characteristics can be combined to build
hybrid synapses [57–60] for connecting neural circuits,
creating controllable coupling channels.
In the past decades, memristors, including discrete mem-

ristors, have been used to improve the memory properties of
nonlinear circuits, and the dynamics and application of
memristive systems to image encryption have been in-
vestigated [61–64]. Particularly, vibrational resonance [65]
can be induced in memristive neurons and networks. Mem-
ristors show potential application in the design of artificial
synapses for possible neuromorphological calculations [66–
70]. In this study, a memristor is used to control a simple
nonlinear circuit by adding a new branch circuit in parallel,
which captures and shunts the energy among different
electrical components. Energy flow is shunted in the mem-
ristive channel of this circuit, and adaptive laws are proposed
to explain the controllability of the memristive synapse. The
authors suggested that the intensity of the memristive sy-
napse is suppressed when the channel energy is larger than a
certain threshold; thus, the inner electric field energy saved
in the cell membrane (i.e., the capacitor in the neural circuit)
can be maintained at a high proportion in the total field
energy. Therefore, continuous energy absorption from the
external field can control the intrinsic properties of the
memristive channel/synapse, and the memristive neuron
becomes controllable because of its distinct self-adaptive
ability. From a physical viewpoint, energy accommodation
in the memristive channel induces possible shape deforma-
tion, and some inner physical parameters are changed to
synchronously adjust the memristive current. Thus, energy is
further shunted to modify the firing patterns in the neuron
effectively.

2 Model and scheme

A memristor is a specific electrical component that builds a
connection to two physical variables, such as magnetic flux
and charge, and its involvement in nonlinear circuits can
induce the coexistence of attractors and the occurrence of
multistability in dynamics. For some neural circuits, the
creation of an additive memristive channel can introduce a
memristive synapse, and the effect of electromagnetic in-
duction/radiation can be well estimated. From the physical
aspect, energy is shunted in the memristor or memristive
channel when an additive branch circuit is used to connect a
nonlinear memristor-like element. As shown in Figure 1, a
magnetic flux-controlled memristor (MFCM) is connected to
a simple nonlinear circuit (capacitor-coupled inductor and
resistor), and an external voltage source (VS) is used as the
signal source.
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The memristive current in the MFCM shown in Figure 1 is
defined as follows:

i q
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where V denotes the output voltage of the nonlinear resistor
(NR), and C represents the capacitance of the capacitor. The
gain (kM) is dependent on the material property of the
memristor, and it can capture energy in an equivalent in-
ductor with N turns as kM = 1/N. VM is the average induced
electromotive force for the memristor and is expressed as
kMV. The physical parameters α and β are independent of the
magnetic flux (ϕ) across the channel. The channel current
along NR shown in Figure 1 is calculated as follows [71]:
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The physical parameters ρ and V0 represent the constant
resistance and cutoff voltage in the current-voltage (i-v)
curve for the NR. The dynamics of the memristive circuits is
calculated by
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The biophysical properties of the membrane, ion channel,
and reverse potential of the neuron can be controlled by some
physical parameters—C, L, E, RS, and R. By controlling the
external voltage source (VS), the excitability can be adjusted,
and the neural activities can be effectively regulated. ϕext
represents the external EMR. For better dynamical analysis,
a couple of dimensionless coefficients and variables are
defined as follows:
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Additionally, the dynamics of a memristive neuron model
under EMR are expressed as follows:
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where the variables x, y, and φ represent the membrane po-
tential, channel current, and dimensionless magnetic flux,
respectively. The normalized parameters a, b, c, and ξ can be
controlled in the memristive neuron. The equivalent trans-
membrane current (us) can arise from a photocurrent or
piezoelectric current and it can be adjusted to effectively
control the memristive neuron. When EMR is applied, the
isolated neuron will present various firing modes. Particu-
larly, the coexistence of multiple firing modes can be in-
duced because of the induction current across the memristive
channel. The control mechanism of the self-adaptive ability
of the memristive neuron is elucidated by discussing the
energy in the electrical components (EC for the capacitor, EL
for the inductor, and EM for the memristor). Energy release
controls the firing states in the memristive neuron.
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Thus, the dimensionless energy (H) of the memristive
neuron can be effectively used to measure the physical
characteristics of the memristive circuit controlled by energy
flow.
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The last two terms in eq. (7) represent the consumed and
saved energy in the memristive synapse. The third term of H
can be considered as the Joule heat within one time unit in
the memristor, and the last term defines the memristive field
energy. Most electrical components can store field energy
with certain saturation values, and continuous energy injec-
tion will induce energy overflow/release. The reliability of
the Hamilton function in eq. (7) can be confirmed and ex-
pressed using the Helmholtz theorem [72,73] (see Appen-
dix). The activation of self-adaption in the memristive
synapse means that its parameters can be adjusted under
special physical conditions. In the presence of continuous
energy accommodation and injection, shape deformation in

Figure 1 Schematic diagram of the memristive circuit coupled by a
memristor (M). E is a constant voltage source.
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media occurs, and some corresponding parameters are ex-
pressed as follows:
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where the threshold (λ) controls the parameter shift during
energy accommodation when the energy level in the mem-
ristive synapse is beyond the threshold ratio. The positive
parameter (σ) can effectively increase the gain (kM) for the
memristive synapse and synaptic current. The field energy in
the memristive synapse can have a negative value because
the membrane potential can be negative, indicating that the
memristive synapse behaves as an energy source to inject
energy into other channels. Thus, the absolute value symbol
|*| is applied to calculate the energy proportion of the neuron.
As described in eq. (8), parameter shift results from the

media deformation due to energy absorption, and energy
flow is shunted in different types/channels. To discern the
energy dependence on firing patterns, the energy proportions
(p1, p2, p3) in different channels are calculated as follows:
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where absolute value calculation is applied to determine the
energy proportion of the memristive synapse because its

energy defined in eq. (7) can be negative during the change
of membrane potential. Thus, p3 can have values higher than
1 when neural activities are regulated.

3 Results and discussion

In this section, the fourth-order Runge-Kutta algorithm is
applied to determine the exact numerical solutions with time
step h = 0.01, and the parameters in eq. (5) are assigned the
following values: a = 0.7, b = 0.4, c = 1.0, and ξ = 0.175. The
external stimulus is selected with us = 1 + cosωτ = 1 +
cos2πkMτ, α′ = 0.1, and β′ = 0.01 for most cases. The mem-
ristive gain (kM) is adjusted to trigger different firing patterns,
as shown in Figure 2.
The results confirmed that four different firing modes, i.e.,

periodic, bursting, chaotic, and spiking activities, can be
produced in the memristive neuron, indicating that the
memristive channel can control mode selection in neural
activities by controlling the memristive current and excit-
ability of the neuron. A single firing mode is modulated to
show multiple modes in neural activities at a high EMR
intensity. Bifurcation analysis was conducted to predict the
occurrence of chaotic patterns in memristive neurons, as
shown in Figure 3.
The bifurcation analysis revealed that memristive mod-

ulation can induce distinct mode transition in the firing
mode, and the memristive current can effectively control
neural activities. The energy characteristics of each type of

Figure 2 (Color online) Firing patterns for membrane potential are calculated by applying kM = 0, 0.008, 0.03, 0.07. (a) Periodic firing; (b) bursting;
(c) chaotic firing; (d) spiking pattern.
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firing mode in an isolated neuron are determined, and the
energy values of neurons exhibiting different patterns are
estimated, as shown in Figure 4.
As shown in Figure 4a, the neuron exhibits a periodic

pattern without memristive driving in the absence of the
memristive current. In bursting neurons, the energy propor-
tion for the memristive channel is small and negative energy
occurs intermittently. In chaotic neurons, the memristive
channel maintains a low energy proportion. In spiking neu-
rons, energy is shunted in the memristive channel to maintain
a high energy proportion for the capacitive and inductive
channels. Furthermore, external EMR with a noisy type
(Gaussian white noise with intensityD, zero average <φext> =
0, <φext(τ) φext(τ′)>= 2Dδ(τ − τ′), and δ(*) denoting the Dirac-
δ function) is considered, and the gain for the memristive
channel is fixed at kM = 0.008. Then, the energy and mem-

brane potential are calculated by applying different EMR
intensities, as shown in Figure 5.
With further increases in the EMR intensity, the firing

mode (bursting patterns) and energy value of the memristive
neuron considerably change because of distinct changes in
the memristive current and excitability. Importantly, bursting
patterns are regulated to achieve multiple firing modes when
the memristive synapse continues to capture energy at a high
EMR intensity. The case of another gain, kM = 0.03, is illu-
strated in Figure 6.
It is confirmed that chaotic patterns can be suppressed, in

Figure 6, and the Hamilton energy in the memristive neuron
is considerably increased when the EMR intensity is further
increased. Indeed, more field energy is injected and absorbed
in the neuron. Chaotic neurons often have a low Hamilton
energy, and the occurrence of spiking will keep higher en-

Figure 3 (Color online) Bifurcation diagram obtained by detecting the (a) membrane potential and (b) interspike interval with different gains (kM). xpeak
represents the peak value in the sampled time series for membrane potentials.

Figure 4 (Color online) Evolution of the Hamilton energy and memristive energy ratio of a memristive neuron. (a), (e) Periodic neuron, kM = 0;
(b), (f) bursting neuron, kM =0.008; (c), (g) chaotic neuron, kM =0.03; (d), (h) spiking neuron, kM = 0.07.
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ergy in the neuron, as a result, the enhancement of EMR will
induce detectable mode transition in the memristive neuron.
That is, the activation of memristive neurons can enhance the
energy-keeping capability, and energy is released to adap-
tively regulate the neural activities.
According to eq. (7), the Hamilton energy contains three

parts, i.e., the electric field energy (HC), magnetic field

energy (HL), and channel energy (magnetic field energy,HM),
in the memristive channel. The memristive synapse can ea-
sily detect the effect of external stimuli. Thus, energy growth
in the memristive channel, when the memristive neuron is
controlled to achieve different firing patterns, needs to be
investigated (Figure 7).
Figure 7 indicates that higher value for the memristive gain

Figure 5 (Color online) (a)–(c) Sampled membrane potential x at D = 20, 60, 100 and kM = 0.008; (d)–(f) evolution of energy function H at noise intensity
D = 20, 60, 100 and kM = 0.008. Noisy EMR is activated on the neuron at τ = 300 time units.

Figure 6 (Color online) (a)–(c) Sampled membrane potential x at noise intensity D = 20, 60, 100 and kM = 0.03; (d)–(f) evolution of energy function H at
noise intensity D = 20, 60, 100 and kM = 0.03. Noisy EMR is activated on the neuron at τ = 300 time units.
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(kM) can increase the energy value of the memristive synapse.
Thus, energy flow in the memristive neuron is shunted to
slow down the firing patterns, and neural activities are
completely controlled. According to eq. (9), the energy
proportion is determined, as shown in Figure 8.
The neural activities exhibit distinct periodic oscillation in

the absence of energy shunting from memristive synapse.
With the increase in the memristive gain value, the mem-
ristive current is enhanced, and the energy proportion (p3) is
beyond 1 for the spiking neuron because the memristive
channel presents a negative value for channel energy. In
chaotic neurons, all of the energy proportions change within
0–1, and the average value of magnetic field energy is lower
than that of the electric field energy. In periodic and spiking
neurons, the magnetic field energy often exhibits a higher
value compared to the electric field energy.
From the physical viewpoint, continuous absorption of

external energy can change the physical properties of the
memristor; furthermore, the gain of the memristive channel
will be adjusted, as expressed in eq. (8), from a low kM value
of 0.001 at τ = 0. That is, the propagated energy in the
memristive synapse will adjust the energy flow in other
channels and electrical components, and the activation of
EMR will inject more energy into the neuron. For simplicity,
the EMR is imposed at τ = 0, and the memristive channel/
synapse is synchronously regulated. The mode transition in
neural activities is plotted in Figures 9 and 10.
At a low EMR intensity at D = 10, λ = 0 means that the

gain of the memristive synapse continuously increases, and
the memristive regulation is further enhanced to change the
bursting intervals. Furthermore, the gain of the memristive
synapse continuously increases without reaching saturation
when the bursting patterns are regulated by the memristive
current. On the other hand, when the threshold for growth in
the memristive channel is high, the gain of the memristive
synapse will slightly shift close to the constant value, in-
dicating that the shunted energy in the memristive channel
can be lower than the total energy value of neurons. Other-
wise, the gain of the memristive synapse will rapidly in-
crease. The extensive numerical results confirmed that the
gain (kM) of the memristive synapse continuously increases
until it reaches a certain saturation value. That is, the growth
of the memristive gain becomes intermittent because energy
flow across the memristive channel is switched with the
firing modes.
A low EMR intensity induces regular firing patterns than

multiple modes in the firing patterns; however, the mem-
ristive synapse can effectively control the bursting patterns.
When the threshold (λ) has a high value, the memristive
channel can activate its growth only when high energy is
shunted in the memristive channel. Otherwise, the memris-
tive current cannot effectively hinder external stimuli (us),
and the excitability and firing patterns are mainly controlled
by external stimuli. Furthermore, the EMR is enhanced, and
the self-adaptive ability of the memristive synapse is esti-
mated, as shown in Figure 10.

Figure 7 (Color online) Energy evolution in the memristive channel. For (a) kM = 0 (periodic neuron); (b) kM = 0.008 (bursting neuron); (c) kM = 0.03
(chaotic neuron); (d) kM = 0.07 (spiking neuron). The parameters are fixed at a = 0.7, b = 0.4, c = 1.0, ξ = 0.175, and the external stimulus is selected with us =
1 + cos2πkMτ.
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When a neuron is exposed to a high-intensity EMR, the
memristive channel can capture more energy, and the
modulation of the memristive current will be considerably
enhanced. The neural activities also exhibit multiple modes.
As shown in Figure 10, at a low threshold in eq. (8) with zero
value for λ, the memristive synapse controls the neural ac-
tivities effectively by activating a strong memristive current.
By applying a high threshold for λ, the gain of the memristive
synapse will increase when its inner energy has a high pro-
portion of the total energy (H). After a transient period, the
memristive gain (kM) will reach a saturation value and neural
activities are suppressed to a quiescent state. The higher the
value of threshold (λ), the higher the saturation value of the
memristive gain (kM). Particularly, the Hamilton energy (H)
has a negative value when EMR is imposed on the neuron
because the memristive channel captures more energy and
becomes a continuous energy source with a negative value,
which has a higher absolute value than the energy saved in
other channels. When the EMR intensity is further increased,
the memristive neuron will present multiple modes of elec-

trical activities, and stable energy absorption will induce a
change in energy flow along the memristive channel. When
the energy value is beyond a certain threshold, the memris-
tive synapse has to shape its profile, and some controllable
parameters are adjusted to shunt the energy flow. As a result,
the self-adaption property enables controllability under ex-
ternal energy injection. Thus, the memristive neuron exhibits
more flexibility and reliability in signal processing and in-
formation encoding. Particularly, the memristive synapse
under the proposed adaptive criterion enables controllability
in multiple modes in neural activities.
As mentioned previously, the frequency of the external

stimulus is relative to the memristive gain (kM) because
realistic external forcing signals are often filtered and en-
coded by the media. That is, the equivalent transmembrane
current (us) will maintain a certain frequency band; thus, the
gain (kM) is introduced to the forcing current (us). For better
contrast, us = 1 + cos2πfτ is imposed, and the appropriate
memristive gain (kM) is selected to investigate the developed
patterns, as shown in Figure 11.

Figure 8 (Color online) Evolution of energy proportion in the memristive neuron. (a) kM = 0 (periodic neuron); (b) kM = 0.008 (bursting neuron); (c) kM =
0.03 (chaotic neuron); (d) kM = 0.07 (spiking neuron). The parameters are fixed at a = 0.7, b = 0.4, c = 1.0, and ξ = 0.175, and the external stimulus is selected
with us = 1 + cos2πkMτ. The inset figures are enlarged versions.
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By applying a higher gain to the memristive synapse, the
bursting neuron is suppressed to achieve distinct periodic
oscillation in the neural activities, and the firing mode is
effectively suppressed. According to eq. (8), energy flow in
the memristive channel can control the energy shunting and
firing modes. The capacitor and inductor can also capture
energy from the external electric and magnetic fields. Thus,
continuous energy absorption from the capacitive and in-
ductive fields can also induce a certain shape deformation,
which is expressed using parameter shift in eq. (10).
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That is, continuous energy injection and absorption into
the capacitive and inductive channels can enhance energy
shunting and exchange between different channels. Fur-
thermore, the memristive channel may share more energy
and possible shape deformation can be induced. As shown in
Figure 12, external radiation is applied to inject energy into

the neuron, and the firing patterns are plotted to estimate the
effects of shape deformation and parameter shift.
As shown in Figure 12, any changes in p1 and p2 can adjust

the energy proportion (p3), and then the memristive channel
is shaped to adjust its gain (kM). In a long transient period, the
memristive synapse current will stabilize the firing patterns.
Theoretically, the memristive gain can be increased to a
certain saturation value, and neural activities can be sup-
pressed. The energy flow is shunted to adjacent neurons in
the neural network and functional regions of the nervous
system. Thus, the memristive channel increases its gain in-
termittently rather than rapidly reaching saturation value to
terminate the firing activities in the neuron. Moreover, en-
ergy flow can be controlled by enhancing the memristive
synapse function, and synchronous bursting among neurons
can be blocked to prevent seizures.
In realistic materials, the media may present diamagnetic

or paramagnetic properties under an external magnetic field.
For biological neurons, the media may exhibit different
biophysical properties under EMR. As shown in Figure 1, the
memristive channel shunts current from the external voltage
source and the memristive current is mapped into the di-
mensionless form kM(α + βφ2)x, and the gain (kM) is

Figure 9 (Color online) (a)–(c) Sampled membrane potential x; (d)–(f) evolution of energy function H; (g)–(i) growth of the gain (kM) of the memristive
synapse under EMR. EMR is activated on the neuron at τ = 0 time unit, and the parameters are fixed at noise intensity D = 10, a = 0.7, b = 0.4, c = 1.0, ξ =
0.175, σ = 0.001, and λ = 0.0, 0.1, 0.4.

3147Wu F Q, et al. Sci China Tech Sci November (2023) Vol.66 No.11



considered to be a positive value that further increases with
energy flow under EMR. Excitability is mainly controlled by
the external stimulus (us). In the presence of EMR, con-
tinuous energy injection will make the memristive synapse
shunt energy as the signal source and it is effective to keep
against the excitation from us. Thus, from the dynamical
aspect, the gain (kM) of the memristive synapse can decrease
its positive initial value. For simplicity, our scheme is im-
plemented on a simple neural circuit by incorporating a
memristor in an additive branch circuit to generate a mem-
ristive current that matches the effect of electromagnetic
induction (EMI). The field energy is accurately defined and
is consistent with the equivalent form obtained using the
Helmholtz theorem. A similar scheme can be used for the
biophysical neuron models considering more physical effects
under EMR.
In the past decades, extensive studies have been conducted

to understand the adaptive function in biological neurons by
explaining the synaptic plasticity, controllability of ion
channels, and functional regulation of astrocytes in synaptic
connections in neural networks [41,74–77]. In particular,
appropriate terms such as memristive current are introduced
into the neuron models to estimate the effects of EMI and
EMR, and the functional role of energy flow is discussed.

Most biological neurons are flexible, and continuous energy
accommodation may induce shape deformation accom-
panied by certain changes in physical parameters, including
membrane capacitance, ion channel conductance, and re-
verse potential. As a result, some normalized parameters in
the neuron model will change under continuous injection of
energy flow. From the physical viewpoint, shape deforma-
tion in the capacitor or induction coil will change their en-
ergy storage and physical parameters in the presence of the
electromagnetic field. The intrinsic parameters of the bio-
logical media will change under energy radiation, and this
characteristic can be described by parameter shifts in the
theoretical models. Our scheme aims to explain the physical
mechanism of self-adaption in neurons under energy flow.
The appropriate regulation of energy will control the firing
mode in a single neuron and ensure cooperation between
more neurons in the network. For further guidance, please
refer to recent review papers and references therein [78,79].

4 Conclusions

Herein, a memristor-coupled neural circuit is proposed, and
the memristive channel is used to estimate the effect of

Figure 10 (Color online) (a)–(c) Sampled membrane potential x; (d)–(f) evolution of energy function H; (g)–(i) growth of the gain (kM) of the memristive
synapse under EMR. Noisy EMR is activated on the neuron at τ = 0 time units, and noise intensity D = 50, a = 0.7, b = 0.4, c = 1.0, ξ = 0.175, σ = 0.001, and λ
= 0.0, 0.9, 1.0.
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electromagnetic induction in biological neurons during the
diffusive propagation of intracellular and extracellular ions.

A memristive neuron model is obtained to discern the effects
of EMI and EMR, and the equivalent energy function for

Figure 12 (Color online) Firing patterns, Hamilton energy, and memristive gain (kM) in the presence of noisy radiation. (a)–(c) kM controlled by p1;
(d)–(f) kM controlled by p2; (g)–(i) kM controlled by p3. Setting D = 10, a = 0.7, b = 0.4, c = 1.0, ξ = 0.175, σ = 0.001, and λ = 0.1.

Figure 11 (Color online) Evolution of membrane potential under different memristive currents and external stimuli. (a) f = 0.1, kM = 0.01; (b) f = 0.01, kM =
0.01; (c) f = 0.04, kM = 0.01; (d) f = 0.06, kM = 0.01; (e) f = 0.1, kM = 0.15; (f) f = 0.01, kM = 0.15; (g) f = 0.04, kM = 0.15; (h) f = 0.06, kM = 0.15; (i) f = 0.1, kM =
1; (j) f = 0.01, kM = 1; (k) f = 0.04, kM = 1; (l) f = 0.06, kM = 1.
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isolated memristive neurons is confirmed in two ways. For
the memristive neural circuit excited by an MFCM, the
memristive channel consumes Joule heat and stores magnetic
field energy. For the charge-controlled memristor, the
memristive channel stores electric field energy and con-
sumes Joule heat. When the EMR is enhanced, the mem-
ristive channel captures and absorbs more energy. As a
result, the intrinsic physical properties are changed by
adaptively adjusting the normalized parameters because of
the strong magnetization resulting from EMR. We proposed
an adaptive growth criterion for the normalized parameters in
the memristive channel when more energy from the magnetic
field is accumulated to induce shape deformation in the
component. The membrane potential and Hamilton energy
were calculated to reveal the mode transition and shift in
energy when the memristive synapse is enhanced. Our

results provide insights into the biophysical mechanism of
adaptive growth and regulation in the memristive synapse. It
also suggests that energy injection can be an effective way to
control the neural activities of a single neuron and collective
activities in neural networks. Moreover, this scheme can be
effectively used to solve similar problems in a biophysical
neuron excited by a noisy electric field [80]. For more gui-
dance in this field, please refer to the suggestions and com-
ments in a recent review [81].

Appendix

According to the Helmholtz theorem, the memristive neuron
can be expressed in vector form as follows:
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