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The modern complicated manufacturing industry and smart manufacturing tendency have imposed new requirements on the
scheduling method, such as self-regulation and self-learning capabilities. While traditional scheduling methods cannot meet
these needs due to their rigidity. Self-learning is an inherent ability of reinforcement learning (RL) algorithm inhered from its
continuous learning and trial-and-error characteristics. Self-regulation of scheduling could be enabled by the emerging digital
twin (DT) technology because of its virtual-real mapping and mutual control characteristics. This paper proposed a DT-enabled
adaptive scheduling based on the improved proximal policy optimization RL algorithm, which was called explicit exploration
and asynchronous update proximal policy optimization algorithm (E2APPO). Firstly, the DT-enabled scheduling system fra-
mework was designed to enhance the interaction between the virtual and the physical job shops, strengthening the self-regulation
of the scheduling model. Secondly, an innovative action selection strategy and an asynchronous update mechanism were
proposed to improve the optimization algorithm to strengthen the self-learning ability of the scheduling model. Lastly, the
proposed scheduling model was extensively tested in comparison with heuristic and meta-heuristic algorithms, such as well-
known scheduling rules and genetic algorithms, as well as other existing scheduling methods based on reinforcement learning.
The comparisons have proved both the effectiveness and advancement of the proposed DT-enabled adaptive scheduling strategy.
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1 Introduction

As production environments have become more complex
and variable, new requirements are put forward for produc-
tion management, especially for allocating limited resources.
An optimized allocation of limited resources demands an
adaptive scheduling strategy, which is capable of self-
learning and self-regulation. The job shop scheduling pro-
blem (JSSP) has attracted extensive research in engineering
and academic fields. JSSP is a combinatorial optimization

problem, which is usually solved by precise and approximate
algorithms.
Precise algorithms are mainly based on operational re-

search methods, including mathematical programming [1],
lagrangian relaxation technique [2], branch and bound [3],
etc. These methods can obtain theoretically optimal solu-
tions, and are suitable for small or simple scheduling pro-
blems. But they do not apply to practical production due to
their over-accurate modeling, rigidity, and massive calcula-
tion for complex problems.
Approximate algorithms are also widely employed in

scheduling, such as priority rules and meta-heuristic algo-
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rithms. Priority rules with their rapid response are more
applicable to specific scheduling scenarios. They tend to be
ineffective when the resources in the task pool change. As for
the meta-heuristic algorithms applied to scheduling, there are
many swarm intelligence algorithms based on characteristics
of biological population performance, e.g., genetic algorithm
[4,5], particle swarm optimization [6], ant colony algorithm
[7], artificial bee colony algorithms [8,9], the novel heuristic
electromagnetism-like mechanism algorithm [10], and gray
wolf algorithm [11]. Meta-heuristic algorithms solve specific
problems and perform well through knowledge of relevant
behaviors, functions, rules, and mechanisms in biological,
physical, chemical, and artistic. However, they involve a
long time to recalculate when conditions change.
These above optimization algorithms are unable to adapt to

new environments through self-updating. When the pro-
duction state changes, especially the scheduling scale, the
scheduling strategy needs to be recalculated. The self-
learning of scheduling becomes feasible with the emergence
of reinforcement learning (RL), an optimization algorithm
that simulates continuous interaction and learning between
the agent and the environment [12]. Through continuous
trial-and-error and experience accumulation, the optimal
scheduling strategy will be generated with self-learning
ability and strong generalization characteristics. The self-
regulation ability depends on the awareness of the dis-
crepancy between the real-time processing state and the
predicted one. The key to self-regulation is how to obtain
real-time resource information in the physical job shop and
feed it back to the virtual scheduling, which is difficult to
realize in traditional manufacturing. But the emerging digital
twin (DT) technology makes the self-adjustment of sche-
duling possible through the virtual-real mutual interaction
nature.
With the motivations above, this paper developed a digital

twin-enabled adaptive scheduling strategy based on RL to
cope with the complicated industry environment and
changeable order. The primary contributions of this paper are
mainly listed as follows. (1) DT-enabled adaptive scheduling
system framework is built to facilitate the interaction be-
tween the virtual and physical job shops to adapt the complex
production. (2) The explicit exploration and asynchronous
update proximal policy optimization algorithm (E2APPO) is
designed with an innovative search strategy and asynchro-
nous update mechanism, bringing higher exploration effi-
ciency and more stable network updates. (3) Numerical
experiments demonstrate the effectiveness of the proposed
DT-enabled adaptive scheduling strategy.
The remainder of this paper is as follows. A brief review of

scheduling based on RL is presented in Section 2, as well as
the related research of DT technology. Section 3 describes
the job shop scheduling and the mathematical model. Section
4 designs the DT-enabled adaptive scheduling methodology.

Section 5 proposes the design details of the improved
E2APPO algorithm, which plays a vital role in the proposed
DT-enabled scheduling. Section 6 presents the numerical
comparison experiments, which prove the advancement of
the proposed E2APPO algorithm within the DT-enabled
scheduling system framework. Finally, the conclusions and
future work are drawn in Section 7.

2 Literature review

Traditional scheduling strategies, which are only applicable
to specific scenarios because of their rigidity, show defi-
ciencies in complicated manufacturing environments. The
development of RL and DT technology makes it possible to
design an adaptive scheduling strategy.

2.1 RL-based scheduling

To cope with the insufficient self-learning ability of the
traditional scheduling methods, many scholars have used RL
to train scheduling models for the increasingly complicated
industry environment and the changeable order. RL is an
unsupervised learning algorithm without requiring the pre-
paration of label data in advance. It has unique advantages in
scenarios where it is difficult to collect and obtain label data.
The job shop can be seen as a similar scenario, where the
agent selects an operation to be machined according to the
current state.
To the best of our knowledge, the application of RL on

scheduling can be mainly classified into four different action
space types of RL, as represented in Table 1. Firstly, RL is
combined with a meta-heuristic algorithm, the parameter
pool is designed as the action space, and the algorithm per-
formance is improved by selecting the algorithm’s optimal
parameters [13–15]. For example, Emary et al. [13] devel-
oped an improved gray wolf optimization method combined
with a neural network named experienced gray wolf opti-
mization (EGWO). They designed the exploration rate as
action space to learn the optimal parameter, and demon-
strated that EGWO outperforms the previous algorithm in all
performance metrics. Secondly, RL is applied in combina-
tion with priority rules, and the rules pool is designed as the
action space. The agent finds the best rule at each decision-
making point [16,17]. For example, Lin et al. [17] provided
the DQN method and edge computing to solve the JSSP, and
the single priority rule or compound rule is taken as an action
set so that the agent learns how to assign rules to different
machines. Thirdly, the operations of the workpiece are de-
signed as the action space, and the agent directly selects the
operation at each decision-making point [18–21]. For ex-
ample, Xia et al. [20] applied a Q-network for semiconductor
manufacturing and defined an action set including all fea-
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sible operations. Experiments showed the superiority of the
proposed method on makespan. Lastly, machine ID or
transferring material is defined as action space for an agent to
choose [22].
The above literature suggests that continuous learning and

trial-and-error of RL provide a new idea for the adaptive
scheduling scheme. However, there are still two issues that
need to be concerned to alleviate time-consuming in network
training, i.e., the stability of network model updates and the
efficient exploration mode of action space. The improvement
of the optimization algorithm for the above two problems
will be introduced in detail in Section 5.

2.2 Digital twin and its application on scheduling

The self-regulation of scheduling strategy can be promoted
with the emergence of DT, which benefits from the progress
of the Internet of Things (IoT), big data technology, visua-
lization, communication technology, sensing technology,
simulation technology, etc. The five-dimensional model is a
popular model for DT, which includes DT data, an evolving
virtual entity, a physical entity, and the on-demand services
and their connectivity [23]. The five-dimensional model
emphasizes bidirectional interaction between real and virtual
to realize mutual control. The first white paper on DT was
released in 2014, showing that DT could be extended to
many fields [24].
DT technology has been widely used in the manufacturing

industry in recent years, such as in job shop scheduling [25],
diagnosis and maintenance [26], asset simulation [27], etc. In
the studies of DT application on scheduling, Li et al. [28]
proposed an anomaly detection and dynamic scheduling
framework based on DT, and used the improved grey wolf
optimization algorithm to solve the job shop problem. Yan
et al. [29] proposed a machine maintenance strategy enabled
by DT, integrating with Q–learning algorithm for effective
scheduling. Zhang et al. [30] proposed a five-dimension DT
of the machine for the availability prediction in the job shop

scheduling, triggering rescheduling when necessary. Negri
et al. [31] built a framework including machine health pre-
dictions, and embedded the machine health indicator in the
virtual scheduling model, providing various scheduling al-
ternatives by the genetic algorithm.
These studies indicate the positive function of DT in job

shop scheduling. Most of them diagnose equipment faults by
DT to adjust the scheduling strategy, which inspires future
research. Unlike previous works, this paper intends to obtain
the deviation between the real-time and predicted state
through the interaction between physical and virtual job
shops to realize the self-regulation of scheduling policy.

3 Problem description and optimization func-
tion

3.1 Problem description

The JSSP can be regarded as a sequential decision-making
problem. The n jobs and mmachines are used as examples in
this paper, and each job includes m different operations. Due
to the process constraints, each operation has to be processed
on a specific machine. A job is finished after the completion
of its last operation. The proper processing sequencing of
operations is critical to the completion time of the jobs. All
the scheduling objectives are related to the completion time
of all the jobs, and the target function of minimizing the
makespan corresponds to the length of the schedule. Nota-
tions used in formulating the problem are listed in Table 2.
To facilitate modeling, several predefined constraints as

follows are agreed upon for this problem [32]. (1) The se-
quential relationship and processing time of different op-
erations of the same workpiece are known in advance. (2)
Each machine can process at most one operation at a time.
(3) Each operation can only be processed on one machine at a
time. (4) Any operation should be processed continuously
without interruption until completion. (5) No sequential
constraints between operations of different workpieces. (6)

Table 1 Scheduling based on RL for four different action space types

Action space type Work Type of problem Algorithm Objective

Choose parameter
Emary et al. [13],
Shahrabi et al. [14],
Zhao and Zhang [15]

DJSS/JSSP RL and heuristics Performance /makespan/
tardiness

Choose scheduling rule Stricker et al. [16],
Lin et al. [17] JSSP Q-learning/ D3QN Makespan/tardiness

Choose operation

Shi et al. [18],
Palombarini and Martínez [19],

Xia et al. [20],
Park et al. [21]

JSSP Q-learning /deep-Q/DQN
/Q-network Makespan/tardiness

Choose machine Zhou et al. [22] DJSS Q-learning Mean flow time
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All jobs are available at time 0.

3.2 Optimization objective

The optimization function of the adaptive scheduling in this
paper is defined as follows [33]:

{ }C min C= max . (1)b kmax ,

where b=1,2,…,n; k=1,2,…,m. max represents the completed
time of the last operation of all jobs, and min represents the
optimization goal, the minimum of all solutions.

t E yC + (1 ) C , (2)bk bk bhk bh

where E is infinitely large values, b=1,2,…,n; k, h=1,2,…,m.
E x tC C + (1 ) , (3)ak bk bak ak

where E is infinitely large values, a, b=1,2,…,n; k=1,2,…,m.
y

b h k
=

1,  if  job  is processed by machine  before ,
0,  other situation,

(4)

bhk

x k b a
=

1,  if  machine  processes job  before job ,
0,  other situation,

(5)bak

C C t or C C t  , (6)bk ak bk ak bk ak

where Cbk and Cak are the actual completion times of job Jb
and Ja on the machine Mk, b, a=1,2,…,n; k=1,2,…,m.
C C t or C C t  , (7)bk bh bk bh bk bh

where Cbk and Cbh are the actual completion times of job Jb
on the machine Mk and Mh, b=1,2,…,n; k, h=1,2,…,m.
Eq. (1) is the total objective function, which minimizes the

completion time of all jobs. All remaining formulas are
limitations for the scheduling process. Eqs. (2) and (4) in-
dicate that job Jb is processed on machineMh before machine
Mk. Eqs. (3) and (5) suggest that job Jb is processed on
machineMk before job Ja. Eq. (6) indicates that each machine
can process only one operation at a time. Eq. (7) suggests that
an operation could only be processed on one machine at a

time [34]. For such an instance, this paper is to explore the
adaptive scheduling strategy to address the scheduling pro-
blem.

4 DT-enabled job shop adaptive scheduling
methodology

The modern complicated manufacturing environment and
smart manufacturing tendency put forward a new adaptive
requirement for scheduling. Self-adaptability is the sig-
nificant difference between the scheduling enabled by DT
and the scheduling based on traditional heuristic scheduling
algorithms. The adaptive scheduling system framework en-
abled by DT is built in this section, which includes five
modules: the physical job shop module (PJSM), virtual job
shop module (VJSM), data module (DM), service module
(SM), and the connection module (CM). To explain the op-
eration mechanism more clearly, this section first introduces
the general process of DT-enabled scheduling shown in
Figure 1, then presents the interaction between modules of
the adaptive scheduling system framework.

4.1 Operation process of the DT-enabled adaptive
scheduling

The preparation before generating the scheduling strategy is
to transfer and store the production state in the form of data
in the database, such as order size, equipment capability,
processing time, etc. The database contains not only the
above information, but also historical and experience data,
all of which will be used for the scheduling policy genera-
tion. The specific processes of the proposed DT-enabled
adaptive scheduling are as follows.
Step 1: The DT-enhanced adaptive system framework is

explored with the components described previously, which
includes SM, PJSM, VJSM, DM, CM. All the components
share information and data through direct or indirect inter-
action. Different components play different roles. In the
service module, the optimization algorithm uses the saved
data to train the scheduling model. The optimization algo-
rithm continuously iterates according to its specific rules,
converging to generate the scheduling model for the corre-
sponding shop scheduling.
Step 2: The models generated in the previous step, either

limited by the myopic nature of some algorithms, or limited
by some field factors in the job shop, have different perfor-
mances. In this step, the virtual job shop uses these sche-
duling models for virtual scheduling to validate their
performance, screen out the models with superior perfor-
mance, and eliminate the poor ones.
Step 3: The purpose of this step is to build the scheduling

model base and save the perfect models validated in the

Table 2 Notations used in formulating the problem

Notations Explanations

N Number of jobs

m Number of machines

Jb The bth job, 1≤b≤n

Mk The kth machine, 1≤k≤m

Ob,k The kthoperation of job Jb
tb,k The processing time of job Jb on the machine Mk

ta,k The processing time of job Ja on the machine Mk

tb,h The processing time of job Jb on the machine Mh

Cb,k The completion time of job Jb on the machine Mk

Cb,h The completion time of job Jb on the machine Mh

Ca,k The completion time of job Ja on the machine Mk
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previous step for actual production calls. The model storage
rules are as follows. (a) The order size is graded according to
size, with a rank interval of 5. The scale difference of 5 is
planned to store a single model. (b) Not all orders of any size
need to store the exact model, but the stored models can be
applied to orders of similar size. The purpose of these rules is
to make lightweight service modules. The model load is
reduced to balance the scheduling quality and computing
resource consumption. The above work about model train-
ing, testing, and storage is completed in the service module.
Step 4: At this step, through the interaction between the

physical and the virtual job shop, the real-time job shop data
(real-time state) is transferred to the virtual job shop for
virtual scheduling, and the scheduling performance of the
model for the current order is evaluated.
Step 5: Based on the evaluation results of the model in the

previous step, the scheduling model makes a judgment and
gives instructions.
Step 6: There will be two evaluation results of the previous

step. When the model is insufficient and needs to be regu-
lated, go back to the model base in step 3, and re-match the
scheduling model more consistent with the current order,
then re-evaluate.
Step 7: When the evaluation result is: the current model

does not need to be adjusted, it can be directly used to save

the recalculation time and promote the efficient production.
Step 8: After the model evaluation and adjustment, the

model determined is applied to the actual physical workshop.
The data from physical, virtual, and service modules are
stored in the database for future use.

4.2 Interactions between DT-enabled adaptive sche-
duling system framework modules

From the process in the previous section, it can be seen that
the service module plays a key role in the proposed adaptive
scheduling system framework. The proposed scheduling
system framework is shown in Figure 2. The service module
acquires information through interaction with other modules
and employs an optimization algorithm to train, validate, and
save the optimal scheduling models. These interactions of
service modules with other modules, which like the blood
vessels of the adaptive scheduling system framework and
contribute to the adaptive scheduling model, are described as
follows.

4.2.1 Interaction between the service module and physical
job shop module
The physical shop is a job shop filled with machine tools and
sensing hardware. It is responsible for receiving production

Figure 1 (Color online) Operation mechanism of the DT-enabled adaptive scheduling.
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tasks, and executing production activities in strict accordance
with the scheduling strategy optimized by the virtual shop
scheduling. The physical shop is also capable of sensing and
transferring data from multiple heterogeneous sources, pre-
senting the production state (St). The production state of the
physical job shop can be described as follows:
S S S S S= + + + , (8)t equip job order enviro

where Sequip indicates device capabilities and equipment
health status Mk; Sjob indicates workpiece tasks Obi; Sorder
indicates the order information Jb and Senviro indicates the
production environment Abk, tbk, and Cbk.
These factors of production are integrated into the pro-

duction state (St) at each scheduling decision-making point.
The state (St) is served as the input to the optimization al-
gorithm in the service module for agent learning. The state of
the next decision point (St+1) changes according to the timely
reward (rt) that the agent receives after executing the action
(at). Finally, the scheduling model is generated through
continuous learning, trial-and-error, and experience accu-
mulation.
The interaction between the service module and the phy-

sical job shop module contributes to the generation of a
scheduling model, which has a self-learning ability and can
adapt to complex production environments.

4.2.2 Interaction between the service module and virtual
job shop module
The virtual job shop module is essentially a collection of
models and mapping of the physical job shop, such as ma-
chines, materials, workpieces, and environments. The virtual
job shop module not only focuses on the digital geometric
modeling of production resources, but also portrays the
physical attributes and behavior rules of production re-
sources.

The service module interacts with the virtual module, and
drives the latter to carry out the generated model to validate
its performance. The scheduling models well-trained will be
saved in the service module to compose the model base with
the storage rules. These saved scheduling models have ex-
cellent performance, meaning that they can obtain the max-
imum cumulative reward value in the scheduling process to
achieve the optimization objective of makespan Cmin in this
paper.
On the other hand, the virtual module interacts with the

service module and perceives the history state data of the job
shop, simulating the actual production. So virtual scheduling
is performed to verify the effectiveness of the saved sche-
duling model, and the verification results are fed back to the
service module to optimize the saved scheduling model.

4.2.3 Virtual-physical interaction facilitated by the service
module
Through the interaction with the service module, the real-
time production data (St) from the physical module is passed
to the virtual module to simulate actual production. The
saved scheduling model is used for virtual scheduling to
verify its superiority, and it will be adjusted according to the
deviation between the real-time production state (St) and the
predetermined state. The saved scheduling model in the
service module will be updated.
On the other hand, the virtual scheduling reflects the actual

scheduling effect of the physical job shop. It guides the ac-
tual production activities by evaluating and regulating the
saved scheduling model in the service module on time.
It can be seen from the above that the service module plays

a critical position in the adaptive scheduling system frame-
work. All interactions between the service module and the
others are supported by the data module, which stores all the
data for the entire process and lifecycle. In the service

Figure 2 (Color online) DT-enabled adaptive scheduling system framework.
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module, the optimization algorithm is a powerful tool for
generating and testing the scheduling model. The improved
optimization algorithm is described in detail in Section 5
below.

5 Optimization approach of the DT-enabled
adaptive scheduling

In the service module of the DT-enabled adaptive scheduling
system framework, optimization algorithms play an essential
role in generating scheduling models. An improved proximal
policy optimization (PPO) with an innovation search strategy
and asynchronous update mechanism is proposed to train the
scheduling model in this paper. This section begins with a
review of the basic PPO algorithm, and then presents the
design detail of the proposed method, such as the pseudo-
code and Markov decision process of the shop floor sche-
duling environment.

5.1 Review of the proximal policy optimization algo-
rithm

PPO is an RL algorithm developed based on policy gradient
(PG). It is based on the typical actor-critic structure, where
the actor-network is used for action selection, and the critic-
network is used for evaluating the decisions made by the
actor, figuring out the state value function V(St). On this
basis, it restricts the updating range of new and old policies
to guarantee stability, making the PG algorithm less sensitive
to a more significant learning rate.
It implements the clip loss function, constraining the ob-

jective function value between 1‒μ and 1+μ as shown in eq.
(9), where the μ is a hyper-parameter [35].

J

min

p a S
p a S A S a

clip p a S
p a S µ µ A S a

( )

=

( )
( ) ( , ),

( ( )
( ), 1 , 1 + ) ( , )

, (9)

PPo

S a

t t

t t
t t

t t

t t
t t

( , )t t

2

A s a r V s( , ) = ( ). (10)t t t t
t t

t t>

The advantage function eq. (10) is defined by integrating
V(St) with the discounted reward, and it represents the ad-
ditional return from taking action at.The baseline value V(St)
is minus so that the variance is more minor, and the network
is trained by the Adam optimizer.
In this paper, the agent is used to interact with the pro-

duction environment to generate scheduling data (St), such as
processing time, machine allocation, scheduling current op-
eration, etc. The data is collected and stored in the buffer.
After a trajectory, all operations are allocated and processed,
and the actor-network and critic-network use the stored
scheduling data (St) to learn experience. The temporal dif-
ference error is used for gradient descent to update the critic-
network, and the policy gradient is used for gradient ascent to
update the actor-network, and find the best actor-critic net-
works to deal with variable production status. The role of the
network is to form the model with the maximum cumulative
rewards, seeking a mapping relationship between states and
actions. The specific process of scheduling is described in
Figure 3.
As described in subsection 2.1, RL has the deficiency of

being time-consuming in network training. Therefore, a
more efficient action selection strategy and more stable
network updates would be designed in this paper, called
E2APPO.

5.2 Design of the E2APPO algorithm

5.2.1 Explicit exploration of the action space and asyn-
chronous update of networks
The E2APPO algorithm, which serves as the critical part of
the adaptive scheduling system framework, is proposed with
the following pseudo-code by designing an innovation action
selection strategy and an asynchronous update method.
In the following pseudo-code shown in Table 3, step 1 uses

Markov to design the key elements (st, at, rt) used in the RL
process, which will be covered in detail in the following part

Figure 3 (Color online) Algorithm process based on PPO.
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5.2.2. N is the number of trajectories, and J is the training
steps per trajectory. In each trajectory, steps 2‒11 represent
the agent interacting with the production environment and
collecting data.
Step 5 is the action selection strategy, representing rules

for the agent to select an action based on state. The softmax is
the action selection strategy of the original PPO, which is
based on a stochastic sampling of output probabilities, and
the exploration efficiency needs improvement. Therefore,
this paper proposes an innovation strategy to select the action
with the highest probability, as shown in eq. (11). The
highest probability action is selected within 1‒ε, and the rest
are randomly sampled according to the distribution of the
output. The proposed innovation strategy reduces mean-
ingless exploration and gives the agent a more explicit di-
rection for action exploration. ε means the balance between
exploration and exploitation, generally adjusted between
0.05‒0.15. By the experimental comparison, 0.1 was adop-
ted.

argmax s if rand
random randint if rand

= ( ( )), > ,
= . ( ),  < ,

(11)innov t

innov

where πinnov is the innovation strategy, and π(·|st) is the output
probability of actions.
At the end of a trajectory, step 7 evaluates the advantage

function. Steps 17‒21 draw on a delay strategy to form the
asynchronous updating mechanism between the actor-net-
work and the critic-network. The asynchronous updating
mechanism reduces erroneous updates through that the actor
updates slower than the critic-network. Such advantages can
avoid unnecessary repeated updates, and reduce the cumu-
lative error in repeated updates. K represents the actor update
delay coefficient, and the optimal value is 2 through the
training experiment.
Unlike most other RL algorithms, the smooth loss function

is used instead of the mean square error loss function in the
E2APPO. Smooth is insensitive to outliers and guarantees
stability [36]. In job shop scheduling, outliers are inevitable
when exploring spatial values. The model generated from the
smooth loss function in eq. (12) has better robustness and
could adapt to different scheduling cases.

loss x y n z( , ) = 1 , (12)
i i

z
x y x y

x y
=

0.5( ) ,  < 1,

0.5,  otherwise,i
i i i i

i i

2

where steps 17‒21 represent the network update, the acti-
vation function Swish as eq. (13) is adopted in our neural
network to maximize model performance. It can be regarded
as a smooth function between the linear function and the

Table 3 The pseudo-code of E2APPO for job shop scheduling

Explicit exploration and asynchronous update proximal policy optimization algorithm

Input: actor-network πθ with trainable parameter θ; critic-network vw with trainable parameter w, clipping ratio μ. Batch size N, K is the multiple of the update
frequency of the critic compared to the actor, discounting factor γ, policy loss coefficient cp, value function loss coefficient cv, entropy loss coefficient ce.
Step 1. Markov modeling of job environments, design of environment states (St), actions (at), and rewards (rt);
Step 2. Initialize πθ, πθold, and vw,
Step 3. for i =0,1,2…N do
Step 4. for j=0,1,2…J do
Step 5. Observe si,j, select action ai,j based on innovation strategy πinnor(ai,j|si,j)
Step 6. Receive reward ri,j and next state si,j+1

Step 7. Estimate advantages: A r V s r
a s

a s
= ( ),  ( ) =

( )

( )i j

j j

i j i j i j

i j i j

old i j i j
, 0 , , ,

, ,

, ,

Step 8. If si,j+1 is terminal then
Step 9. break;
Step 10. Collecting {si,j, ri,j, ai,j}
Step 11. End

Step 12. L r A clip r µ µ A( ) = min( ( ) , ( ( ), 1 , 1 + ) )i
p j

i j i j i j i j0 , , , ,

Step 13. L w v s A( ) = ( ( ) )i
v j

w i j i j0 , ,
2

Step 14. L S a s( ) = ( ( ))i
s j

i j i j0 , ,

Step 15. Aggregate losses: L w c L c L w c L( , ) = ( ) ( ) + ( )i p i
p

v i
v

e i
s

Step 16. Update critic w y Q s a( ( , ))
imin

2

Step 17. if i%k=0
Step 18. Update actor θ by a gradient method;

Step 19. L w= argmax( ( , ))
i

N

i

Step 20. πold←πθ
Step 21. End
Step 22. End
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Relu function, combining the advantages of both above.
According to Googleʼs paper [37], the Swish performs better
than the Relu activation function. The swish activation
function is used in our experiment, which shows better ac-
curacy.
f x x sigmoid x( ) = . ( ), (13)
where β is a trainable parameter.

5.2.2 Markov process modeling for job shop scheduling
The process of the job shop schedule should be translated
into the Markov decision process (MDP), as shown in Figure
4. The agent observes the job shop scheduling state and se-
lects the mapping action. The agent would receive an im-
mediate reward with the execution of the operation, and
maximize the cumulative reward to learn the optimal sche-
duling strategy. The critical elements, which play an essential
role in the E2APPO, are state, action, and reward as follows.
(1) Feature extraction of job shop state based on the graph

neural networks (GNN)
The job shop scheduling status can be represented by the

disjunctive graph, which offers a comprehensive view that
includes processing time, and pre-constraints sequence on
each machine [38]. The state at the decision point of shop
scheduling is expressed as a disjunctive graph G=(N, A, E),

{ }N O O O O O O O O O= { , } = , , , , , , ,s e s vn n n vn e1,1 1, ,1 , ,
where the set describes the set O of all operations, including
the start and the end dummy nodes. The set A of conjunctions
indicates the pre-constraints of the operations for the same
job, and A contains a directed edge Oj,k→Oj,k+1 for each j∈J.
The set E of disjunctions reflects the undirected arcs, each
connects to a pair of operations that require the same ma-
chine for processing. Thus, looking for a solution for a job
scheduling instance is the same as determining the direction
of each disjunction.
GNN is an effective method to extract disjunctive graph

features, which takes the disjunctive graph as input and up-
dates the new graph. The technique-based spatial domain has
three steps to obtain the features: sampling the neighbor-
hood, subsequently calculating the correlation between the
target node and its neighbor nodes, then aggregating a single
vector from the received message, which represents the shop
state. Taking G=(N,A,E) as an instance, GNN is used to take
on iterations to attain a multi-dimensional embedding for
each node [39], and the update equation is described as eq.
(14). This method of extracting scheduling state features by
the neural network has obvious advantages compared with
other manually extracting feature methods, which require

expert knowledge, consider only local information, and lead
to different scheduling performance in varied instances.
Features extracted by GNN are based on the raw data to
express the current state better and avoid artificial deficiency.

{ } { }h W mean h h u N v= * ( * ( , ( ) )), (14)v
k

v
k

u
k( ) 1 1

where σ is the non-linearity,W is the weight matrices, h is the
node feature, k is the depth, and neighborhood function N.
(2) Action modeling of the agent in the job shop
A(i,j) represents the set of actions in each decision-making

point. In a job shop scheduling, action space generally refers
to the operations or heuristic rules that can be selected. In
addition, there are some other different forms, such as
equipment sets and parameter selection. As mentioned in
subsection 2.1, this paper has reviewed articles on job shop
scheduling with RL in recent years and listed them in Table
1, which lists four different action space types designed by
scholars. Considering the execution efficiency of actions, the
candidate operations of workpieces are designed as action
space in our experiment. Operation Ot∈At is selected as ac-
tion at the decision-making point. Given that each job can
only prepare one operation at time t, the action set size equals
the number of jobs, and decreases as the completion of jobs.
(3) Reward modeling of the agent in the job shop
The reward function leads the agent to achieve maximum

cumulative rewards. Our agent aims to minimize the make-
span Cmax with an optimal scheduling strategy. Cmax is the
maximum completion time for all jobs, the same as the entire
range of the schedule. The reward function is defined as eq.
(15) as follows, where r(at, st) stands for the immediate re-
ward between state st and state st+1. And r(at, st) is positively
related to the magnitude of the effect after executing action
at. Maximizing the cumulative sum of immediate reward is
the same as minimizing the makespan. The reward design is
the key to the convergence of RL, and this work is con-
sidered the most crucial part of the design of the environment
for RL.
r a s T s T s( , ) = ( ) ( ), (15)t t t t+1

where T(st) stands for the estimated completion time of
production in state st, T(st+1) stands for the estimated com-
pletion time of production in the next state.

6 Numerical experiments

In this part, the parameter settings and optimization of the
training process are presented first. Then this paper provides
the performance comparison between the proposed E2APPO
algorithm and classical meta-heuristic algorithms, other ac-
credited dispatching rules, as well as other two RL methods.

6.1 Experiment parameter

The training process is under the proposed scheduling sys-Figure 4 (Color online) MDP process of job shop scheduling.
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tem framework, and the processing time of training instances
in various sizes is randomly generated in the range of 1‒99.
Experimentally, the number of training trajectories 10000
can reach convergence. The proposed E2APPO was coded in
Pytorch and performed on PC with Intel Core i7
-6700@4.0 GHz CPU, GEFORCE RTX 2080Ti GPU, and 8
GB RAM. Table 4 shows the parameters of the training
process, which are an elaborately set of preliminary experi-
ments. The new instance is generated randomly at each
epoch to promote the generality of the E2APPO algorithm in
complicated manufacturing environments during the training
process. After each training epoch, the trained E2APPO
model is tested on a validation instance to decide whether to
save the current model as the best one.
The innovation action selection strategy can be seen as

compatible with the advantages of both the stochastic and
deterministic strategies, which avoids falling into a local
optimum and has a more precise direction of exploration,
preventing meaningless exploration and consumption. Fig-
ure 5(a) shows the convergence of the innovation action
selection strategy and the original softmax strategy. The re-
ward curve of the proposed innovation action selection
strategy is essentially above the other strategy, indicating that
the cumulative reward value of the innovation strategy is
greater than the other. The proposed innovation action se-
lection strategy outperformed the softmax strategy for
searching in the action space.
The parameter ε is the balance of space exploration and

exploitation, as shown in Figure 5(b). The innovation strat-
egy parameter ε, the probability of exploration, was opti-
mized in the range of 0.05‒0.15, compared with ε=1, which
means the pure random action without learning. The ex-

perimental result is shown that the reward curve tends to
increase gradually for several epsilons, except for ε=1, where
the reward curve fluctuates irregularly. After about 3000
rounds, the ε=0.1 curve has been at the top, and the reward
value of ε=0.15 decreases in the later section. The reason
may be that ε increases, leading to inadequate exploitation.
During the training process, the comparison resulted in an
optimal value of 0.1 for ε.
In the asynchronous update mechanism, parameter k re-

presents the frequency of delayed updates of the actor-net-
work compared with the critic-network. The optimal value of
multiple k was selected from 1‒3. To better display the
convergence under different coefficients k, this experiment
training number expands to 16000. As shown in Figure 5(c),
the convergence curves for k=1 and k=2 were consistently
higher. k=1 is at a high level at the beginning of the training
stage, but lowered below the k=2 curve in the latter part due
to frequent updates of the actor when the critic-network was

Table 4 Parameter settings in the training process

Parameter Value

Number of training epochs 10000

Replay memory size 106

Clipping parameter μ 0.2

Innovation strategy parameter ε 0.05‒0.15

Learning rate lr 2×10−5

Delay coefficient K 2

Discount factor γ 1

GAE parameter λ 0.98

Optimizer Adam

Figure 5 (Color online) Convergence curves under different experiments. (a) Convergence of different action selection strategies; (b) convergence of
different ε; (c) convergence of different coefficients k.
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uncertain. It can be concluded that the asynchronous update
strategy with coefficient k=2 stabilizes the entire training and
converges to the highest point in the later stage of training
compared to k=1.

6.2 Performance metrics and benchmark

For this paper, the goal is to find a scheduling scheme that
minimizes the makespan. To evaluate various scheduling
methods comprehensively, the performance score represents
the gap between the minimum makespan obtained by dif-
ferent methods and the OR-Tools as shown in eq. (16). The
higher the performance score, the more effective the method
is.

M M
MPerformance scores=(1 ) 100%, (16)i best

best

where Mi is the makespan by different methods, Mbest is the
makespan by the OR-Tools solution.
The proposed method was evaluated on various scale in-

stances, from 6×6 to 100×20. Two benchmark datasets used
in this paper were well-known public JSSP benchmarks and
generated instances, nearly 90 cases were selected from the
public benchmarks. Among them, small and medium-scale
examples were derived from FT [40], LA [41], and ORB
[42]. The large-scale examples were selected from the DMU
[43] and TA [44] data set to compare with the literature [17].
We adopted the same generated instances from the literature
[45] to facilitate comparison with the algorithm.

6.3 Verification of the DT-enabled adaptive scheduling
strategy

6.3.1 Comparisons with meta-heuristic and heuristic al-
gorithms
To prove the superiority of the proposed E2APPO algorithm

over the meta-heuristic and heuristic algorithms, we made a
comparison with the genetic algorithm (GA) and several
common high-performance priority rules. Meta-heuristic and
heuristic algorithms have good performance for solving
JSSP problems, but they are confronted with recalculation
when encountering a different JSSP instance and expend a
lot of time again.
The proposed E2APPO algorithm is compared with GA on

25 well-known instances as required in the literature men-
tioned above. Thanks to the excellent generalization ability
of the proposed algorithm, we only trained the 6×6 and
10×10 scale models. The above two models were used in
other instances to save a lot of training time. As shown in
Figure 6, the mean value of ten times is presented. The
performance of the proposed E2APPO outperforms GA in 17
cases, equals GA in 3 cases, and slightly underperforms GA
in the remaining 5 cases. It is not difficult to find that the
E2APPO algorithm has no absolute advantages in quality
compared with the GA, but the trained model can be gen-
eralized to similar scale scheduling problems and obtain
approximate excellent solutions. For large-scale cases, the
running time of the proposed method is only in seconds,
which shows a significant advantage over meta-heuristic
algorithms that are often several minutes or even several
hours. This advantage is attributed to the abstraction and
generality of state information extracted by neural networks
in the learning process, and thanks to the ability of the agent
to learn experiences and lessons. Finally, the model with
excellent self-learning ability and adaptability is generated.
The compared rules are as follows.
(1) Shortest Processing Time (SPT): selects the next op-

eration with the shortest processing time.
(2) First In First Out (FIFO): selects the next operation of

the earliest arriving job.

Figure 6 (Color online) Comparison between E2APPO and GA.

1947Gan X M, et al. Sci China Tech Sci July (2023) Vol.66 No.7



(3) Longest Processing Time (LPT): selects the next op-
eration with the longest processing time.
(4) Most Operation Remaining (MOPR): The job with the

most remaining operations to be completed is processed first.
(5) Most Work Remaining (MWKR): Highest priority is

given to the operation belonging to the job with the most total
processing time remaining to be done.
(6) Minimum ratio of Flow Due Date to Most Work Re-

maining (FDD): Highest priority is given to the job with an
earliest due date.
The comparison between scheduling rules and the

E2APPO algorithm is shown in Table 5. Like the comparison
experiment with GA, each case ran ten times, and the mean
was taken as the counterweight. The E2APPO algorithm
outperformed the rule in 18 cases, with a 72% exceedance
rate, which indicates the advantages of the E2APPO algo-
rithm over rules. Meanwhile, from the last column in the
table, the running time of the proposed E2APPO is very
short, no more than 1 s, which indicates a good balance be-
tween quality and efficiency. To further prove the advantages
of the E2APPO in adaptive ability, the well-trained model of

30×20 was generalized to large-size instances from 40×15 to
100×20. The mean value of 10 times is compared with the
well-known rules, as shown in Figure 7. It shows that the
curve of the E2APPO algorithm is always at the lower left of
the well-known rules, which not only proves the superiority
of the proposed method, but also proves that the 30×20
model can also quickly solve the optimal value of similar
scales.
It can be concluded that the E2APPO algorithm has strong

generalization ability and adaptive performance. Thanks to
asynchronous update mechanisms and action selection
strategy, the proposed method is more suitable for complex
and uncertain production environments.

6.3.2 Comparisons with existing RL scheduling algorithms
To further confirm the advantage of the E2APPO algorithm,
the traditional PPO agent [45] and the DQN agent [17] al-
gorithms were chosen for comparison. As shown in Figure 8,
it can be first observed that the proposed scheduling algo-
rithm can outperform the performance of the traditional PPO
and obtain higher scheduling scores in almost all instances.

Table 5 Results of dispatching rules and E2APPO

Instance Optimal solution SPT (score%) LPT (score%) FIFO (score%) E2APPO (score%) E2APPO
running time (s)

ft06(6×6) 55 88(40) 77(60) 65(81.8) 63(85.45) 0.774

ft10(10×10) 930 1074(84.52) 1295(60.75) 1184(72.6) 1190(72.04) 0.907

la02(10×5) 655 821(74.66) 990(48.85) 830(73.3) 785(80.2) 0.832

la03(10×5) 597 672(87.44) 825(61.81) 755(73.5) 681(85.9) 0.786

la04(10×5) 590 711(79.49) 818(61.3) 695(82.2) 701(81.19) 0.812

la05(10×5) 593 610(97.13) 693(84.14) 610(97.1) 593(100) 0.808

la06(10×5) 926 1200(70.4) 1125(78.51) 926(100) 926(100) 0.872

la07(15×5) 890 1034(83.82) 1069(79.89) 1088(77.75) 973(90.6) 0.866

la08(15×5) 863 942(90.85) 1035(80.07) 980(86.44) 929(92.35) 0.822

la09(15×5) 951 1045(90.12) 1183(75.6) 1018(92.9) 996(95.27) 0.845

la10(15×5) 958 1049(90.50) 1132(81.84) 1006(95) 958(100) 0.864

la11(20×5) 1222 1473(79.46) 1467(79.95) 1272(95.9) 1222(100) 0.959

la12(20×5) 1039 1203(84.22) 1240(80.65) 1039(100) 1039(100) 0.963

la13(20×5) 1150 1275(89.13) 1230(93.04) 1199(95.7) 1150(100) 0.903

la14(20×5) 1292 1427(89.55) 1434(89.01) 1292(100) 1292(100) 0.941

la15(20×5) 1207 1339(89.06) 1612(66.45) 1403(83.76) 1404(83.68) 0.919

orb01(10×10) 1059 1478(60.43) 1410(66.86) 1379(69.7) 1261(80.9) 0.958

orb02(10×10) 888 1175(67.68) 1293(54.39) 1141(71.51) 987(88.85) 0.914

orb03(10×10) 1005 1179(82.69) 1430(57.7) 1300(70.6) 1327(67.96) 0.926

orb04(10×10) 1005 1236(77.01) 1415(59.2) 1229(77.7) 1196(81) 0.944

orb05(10×10) 887 1152(70.12) 1099(76.1) 1135(72.04) 1113(74.52) 0.88

orb06(10×10) 1010 1190(82.18) 1474(54.06) 1309(70.4) 1254(75.84) 0.953

orb07(10×10) 397 504(73.05) 470(81.61) 505(72.8) 458(84.63) 0.919

orb08(10×10) 899 1107(76.86) 1176(69.19) 1174(69.4) 1166(70.30) 0.832

orb09(10×10) 934 1262(64.88) 1286(62.31) 1158(76.02) 1134(78.59) 0.923
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Especially for the instance ta30×20, the mean of the sche-
duling score is increased by up to 5.6%, which proves the
effectiveness of the innovation action selection strategy.
Meanwhile, Table 6 presents the test results of several

well-known rules, improved DQN (MDQN), and E2APPO
algorithms on the DMU dataset. The best values are in bold.
Compared with MDQN, the makespan of E2APPO for all the
instances is significantly improved, with an average decrease

of 8.9%. It can be concluded from Figure 9 that E2APPO’s
performance is evenly distributed without extreme deviation
values, which has clear superiority for considering stability.
It confirms the effectiveness of the proposed asynchronous
update mechanism.

6.3.3 Performance validating of the DT-enabled schedul-
ing methodology
From the process of the DT-enabled adaptive system fra-
mework, it can be seen that the current model is evaluated
and adjusted through virtual scheduling. To prove the self-
regulation effect of the DT-enabled scheduling methodology,
the current model 6×6 is taken as an example in this section.
The comparative experiments are conducted on the solution
quality before and after adjustment of the scheduling model
when the order changes to 15×15, 20×20, and 30×20. Each
experiment runs 100 times, and the mean value is taken for
comparison, as shown in Figure 10.
The DT-enabled scheduling regulates the model on de-

mand by testing and verifying through the virtual-real in-
teraction. The graph represents that the scheduling shows a
shorter makespan after regulation, which reflects the positive
effect of the model adjustment. The results indicate the ex-
cellent adaptability of the DT-enabled scheduling method to

Figure 7 (Color online) Generalization of E2APPO for large scale.

Figure 8 (Color online) Scheduling score of E2APPO and traditional
PPO.

Figure 9 (Color online) Comparison of E2APPO and MDQN in training
stability.

Table 6 The comparison of MDQN and E2APPO on DMU benchmark

Instance FIFO SPT LPT MOPNR LOPT SQN LQN MDQN E2APPO

dmu01 4668 32364 28233 4618 4123 29029 27411 3520 3260

dmu02 4282 33442 28571 4720 4323 31364 31676 3765 3673

dmu03 5600 32125 34467 4560 4772 30028 31107 3953 3556

dmu04 4020 28414 34550 4752 4597 36116 30830 3521 3358

dmu05 4575 35099 33981 4456 4500 37235 30996 3790 3624

dmu41 5980 25095 23095 9397 5516 20223 23496 4881 4409

dmu42 6261 23942 25140 6459 6341 23102 23937 5895 4895

dmu43 6575 20003 22662 5911 6129 25026 21344 5559 4558

dmu44 6901 26281 22429 6055 7459 22341 23753 5502 5023

dmu45 6102 24615 23394 5268 6162 24987 21562 5189 5141

Average 5496 28137 27652 5319.6 5392 27975 26611 4557 4149.7
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the variable orders and complicated manufacturing industry.

7 Conclusions

In this paper, based on the virtual-real interaction of DT and
the self-learning capability of RL, a DT-enabled adaptive
scheduling system framework embedded improved optimi-
zation algorithm called E2APPO is studied. The E2APPO
algorithm is developed with an innovative action selection
strategy and asynchronous update mechanism to minimize
the makspan. Thanks to the improvement above, the well-
trained scheduling model of E2APPO has a better adaptive
performance of different scales than heuristic and meta-
heuristic algorithms. The DT-enabled scheduling strategy
enhances adaptability to complicate shop environments and
variable orders, and achieves an optimal balance between
quality and time cost.
Numerical experiments are carried out on many instances,

including well-known benchmarks and randomly generated
instances as a realistic representation of actual manufactur-
ing, to demonstrate the advantage of the proposed adaptive
scheduling. Compared with the meta-heuristic algorithms
and priority rules, the results prove the superiority of the
E2APPO algorithm, especially the generalization perfor-
mance to similar scales. Compared with existing RL algo-
rithms, the E2APPO algorithm achieves better outcomes for
our purpose. Finally, the optimization objectives before and
after regulating the scheduling model are compared to prove
the self-adaption ability of the DT-enabled scheduling.
Although the proposed approach has shown improved

performance in simulation experiments, there are still some
limitations in its application in the actual production process
and the possible future work, including: (1) some disturbance
factors are not considered in the proposed method, such as
machine breakdown, random arrival of workpieces, proces-
sing time changes, etc. These dynamical disturbances, which
have an important impact on mathematical models and di-
gital twin models, are inevitable in the actual production
process. (2) The proposed method is a theoretical exploration

of job shop self-adaptive scheduling by combining deep re-
inforcement learning and digital twinning technology.
However, the flexible job shop in actual manufacturing is
more in line with modern production requirements. (3) In the
simulation experiment, only a single optimization objective
is considered. Many other objectives in the actual production
process should be considered in the following research, such
as tardiness, machine utilization, cost, etc.
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