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This study presents a dynamic modeling and analysis methodology for the 3-PRS parallel mechanism. First, an improved
reduced dynamic model of component substructures is proposed using the dynamic condensation technique and the rigid
multipoint constraints at the joint/interface level, leading to a minimum set of generalized coordinates for external nodes. Next,
the mapping between interface constraint stiffness and global stiffness is illustrated, resulting in an analytical stiffness model of
joint substructures. Subsequently, the derived component and joint substructures are synthesized into the entire mechanism based
on the Lagrange equation. Finally, a case study illustrates that the lower-order dynamic performances predicted within the
proposed approach have the same trend as those obtained from a complete-order finite element model. The root mean square
discrepancy of the lower-order natural frequencies between the two models is less than 5.92%, indicating the accuracy and
effectiveness of the proposed model. The developed approach can highly and efficiently predict the dynamic performance
distributions across the entire workspace and guide the optimal functional design under the virtual machine framework.
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1 Introduction

As one of the most significant performance parameters of a
parallel kinematic machine (PKM), dynamic characteristics
represent the capability of the end-reference point to with-
stand elastic deformations under dynamic cutting loads re-
sulting from the tool-workpiece interaction [1–3]. Due to the
position-dependency nature of the PKM dynamics, a reduced
semi-analytical model is essential for predicting the lower-
order dynamic characteristics and illustrating the strategies
for the optimization design [4–6].
The available methods for the dynamic modeling of PKMs

are roughly categorized into five categories: lumped para-
meter method (LPM) [7–9], matrix structural analysis

(MSA) [10–13], finite element analysis (FEA) [14–16],
transfer matrix method for multibody systems (MSTMM)
[17–21], and component mode synthesis (CMS) [22–26].
The components in the LMP and MSA are treated as lumped
mass-springs and equivalent spatial beam elements, respec-
tively. The LMP is adapted for the dynamic modeling of
PKMs in which the inertial and elastic parameters can be
significantly separated. Meanwhile, the MSA is suitable for
dynamic systems with slender link structures. Despite the
fact that the analytical expressions of stiffness and mass can
be directly derived via the LPM and MSA, guaranteeing the
calculation accuracy is challenging due to an over-simplified
model. To improve the calculation accuracy, the FEA pro-
vides a precise description of the deformation field of com-
plex geometrical components and the contact elasticity of
joints in the FE software. However, this method is typically
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available for model verification or final design prediction
considering the re-meshing operations for different config-
urations.
The MSTMM was proposed by Rui et al. [17–19] to

overcome the time-consuming shortcomings of the FEA
method. It is an improvement over the traditional transfer
matrix method (TMM). The MSTMM is straightforward
since the complicated global equation of motion is replaced
by deriving the transfer equations and matrices of the overall
dynamic system with sufficient modeling flexibility and low-
order matrices. Employing this method, Chen et al. [20]
derived a dynamic model and state-space representation of
the Stewart mechanism considering a rigid moving platform
and flexible limbs. Nevertheless, obtaining an accurate re-
duced model of subsystems in the PKMs, especially for
complex geometrical components, is a fundamental chal-
lenge for the MSTMM. The CMS organically combines
elasticity and structural mechanics, employing static or
dynamic condensation to reduce the full FE model of
complex geometrical components in the PKMs while
keeping the kineto-static or lower-order modes almost un-
changed [22,23]. Wu et al. [25] presented a general ap-
proach for the stiffness distributions of the parallel
mechanism and verified its performance with the FEA re-
sults over a reference plane. This approach was employed to
predict the lower-order dynamics of a type of 5-degrees-of-
freedom (DOF) hybrid mechanism with a minimum group
of coordinates [26]. The component substructures were
synthesized according to the interface deformation com-
patibility condition. A challenge of this process is the re-
presentation of external nodal DOFs by the condensation
node DOFs solved by two common approaches, that is,
interpolation and rigid multipoint constraints (RMPC) [27].
Selecting a suitable multipoint constraint equation follow-
ing the modeler’s tendency is a significant problem. In
addition, the mapping between each joint and its interfaces,
which was ignored in the abovementioned research, must
be constructed.
As a typical lower-mobility parallel mechanism, the 3-PRS

power head is widely used in multiple industrial areas, in-
cluding aerospace, automobiles, and shipping, because of its
high pose-ability, highly symmetrical kinematics, and high
axial stiffness. In contrast to other parallel mechanisms with
slender link structures (e.g., Stewart platform and Tricept
robot), the components in the actuated limbs of the 3-PRS
parallel mechanism are more complex and more challenging
to be equivalent. This study introduces an improved reduced
dynamic model for this mechanism to provide sufficient
guidance for the optimization design under the virtual ma-
chine framework. The contributions of this study lie in
providing an accurate and practical approach for the lower-
order dynamic modeling and analysis of PKMs by combing
the screw theory, RMPC, and CMS methods.

2 System description

Figure 1 illustrates the computer-aided design (CAD) model
of the 3-PRS parallel mechanism under investigation, which
essentially comprises three identical PRS limbs, a moving
platform, and a base. In the figure, the R, S, and underlined P
denote the passive revolute, spherical, and actuated prismatic
joints, respectively. We set the number of the three parallel
PRS limbs as 1, 2, and 3 to describe each limb component
and joint.
Figures 2 and 3 illustrate the schematic diagram and the

reference frames, respectively, of the 3-PRS power head,
where A A A1 2 3 and B B B1 2 3 are both equilateral triangles. A
fixed frame K0 is placed at the center point A of A A A1 2 3

with its x and z axes along A A3 2 and normal to A A A1 2 3,
respectively. The global reference frameK is attached to the
end-reference point C of the spindle, with its u and w axes
along B B3 2 and normal to B B B1 2 3, respectively. O i1,

Figure 1 (Color online) CAD model of the 3-PRS parallel mechanism.

Figure 2 (Color online) Schematic diagram of the 3-PRS parallel me-
chanism.
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(i=1,2,3) denotes the center points of the linear guidance
slider system in the P joint.O i2, and ( )B O j, = 3, 4, 5j i, are the
center points of the revolute and spherical joints, respec-
tively. The body-fixed frames in limb i,K j i, (j=1,2,3,4,5), are
located at Oj i, with z j i, along the translational or rotational
motion. The unit vectors of each joint in Figure 2 conform to
the following relationships:

i
s s s s
s s s s

, ,
, , = 1, 2, 3.

(1)i i i i

i i i i

1, 2, 2, 3,

3, 4, 4, 5,

The abovementioned reference frames and unit vectors are
obtained using the inverse kinematic analysis of the 3-PRS
power head when given an end-reference point C config-
uration [28,29]. Assume that the connecting board in each
limb is fixed on the base component.

3 Dynamic modeling

Based on the rigid multipoint constraints and screw theory,
this section concentrates on formulating an improved re-
duced dynamic model of the 3-PRS power head that enables

the lower-order dynamic analysis to be accurately and effi-
ciently predicted.

3.1 Improved reduction model of the component sub-
structures

A semi-analytical reduced dynamic model of component
substructures is developed in this section. Considering the
connecting board as the component substructure i, the local
reference frame K i+1 is placed at the center of the joint i + 1
(prismatic joint) (Figure 4). Without considering the number
of the component substructure and the limb number, its un-
damped equation of motion evaluated in the frame K i+1 is
obtained as follows using the CMS method from its full FE
model [30,31]:

( ) ( )
mü ku f

u u u f f f

m
m m
m m k

k k
k k

+ = ,

= , = ,

= , = ,

(2)E
T

P
T T

E
T

P
T T

EE EP

PE PP

EE EP

PE PP

where k and m are the stiffness and mass matrices, respec-
tively, of the component substructure. f and u denote the

Figure 3 (Color online) Elastic model and body-fixed reference frames of the 3-PRS power head.

1871Ma Y W, et al. Sci China Tech Sci July (2023) Vol.66 No.7



force and nodal displacement vectors, respectively, of the
component substructure. uE and uP represent the nodal dis-
placement vectors for the group of external nodes and modal
coordinates of the first P-order elastic mode with all external
nodes constrained, respectively. The natural frequency of the
Pth internal elastic mode is determined as 1.5 to 2 times the
maximum excitation frequency of the mechanical system to
balance the calculation efficiency and accuracy. Please refer
to ref. [32] for more guidance regarding dynamic con-
densation. uE is expressed as follows:

R

R

( )
( )

( )u u u

u u u

u

= ,

= ,

= ,

(3)

i i

i i i N
N K

i n i n i n K
K

E
T

+1
T

,1
T

,
T T ( ×3 )×1

+1, +1, ,1
T

+1, ,
T T 3 ×1

where ui+1 is the nodal displacement vector of the group of
finite element nodes in the joint i + 1, and the format of ui is
similar to that of ui+1. ui n+1, denotes the nodal displacement
vector of the group of finite element nodes in interface n of
joint i + 1 (N interfaces in total), and i n k+1, , is the three-
dimensional translational displacement vector of the kth
node Ni n k+1, , in interface n (K nodes in total) (Figure 4). In
this case, joint i is the fixed joint.
Based on the rigid multipoint constraints, i n k+1, , is ex-

pressed as follows in terms of a condensation node in the
interface n:

r= × + , (4)i n k i n k i n i n+1, , +1, , +1, +1,

where i n+1, and i n+1, denote the translational and rotational
motions of the condensation node Ni n+1, , respectively.
r i n k+1, , is the position vector from Ni n k+1, , to Ni n+1, eval-
uated in the local frame K i n+1, .
Similarly, assume that the condensation nodes in the joint

i + 1, Ni n+1, (n=1–N), have a consistent deformation field,
then the rigid multipoint constraints can be used at the joint/
interface level (Figure 5). The mapping of the nodal dis-
placement vectors between the group of finite element nodes
in the joint i + 1 and a condensation node in the joint i + 1 is
derived as follows from eq. (4):
u T U

T
T X

T X
T

r

r

X
1 r

0 1

= ,

= , =
1 ×

1 ×
,

=
×

,

(5)

i i i

i

i
i

i

i N
i N

i

i n

i n

i n K

i
i n

i n

+1 +1 +1

+1

+1,1
+1,1

+1

+1,
+1,

+1

+1,

3×3 +1, ,1

3×3 +1, ,

+1
+1,

3×3 +1,

3×3

where ( )U =i i i+1 +1
T

+1
T T

indicates the nodal displacement

vector of the node Ni+1 created at the center of the joint i + 1
(Figure 5). i+1 and i+1 are the displacements along the
rotational and translational motions, respectively, of the
condensation node Ni+1 measured in the local frame K i+1.
r i n+1, is the position vector from Ni n+1, to Ni+1. r × is the
skew-symmetric matrix of r related to its vector product,
and 13×3 denotes the three-order unit matrix. Xi

i n
+1

+1, re-
presents the adjoint transformation matrix of the frame
K i n+1, with respect to K i+1, and Xi n

i
+1,

+1 is the inverse ma-

trix of Xi
i n

+1
+1, . T i n+1, represents the reduction matrix from

the DOFs of the interface finite element nodes to that of the
condensation node in the interface n of the joint i + 1, and
T i+1 denotes the reduction matrix from the DOFs of ui+1 to
that of U i+1. Similarly, for joint i in the component sub-
structure i, we have u T U=i i i, where T i is the reduction
matrix from the DOFs of ui to that of U i. Thus, u in eq. (2) is
expressed as

Figure 4 (Color online) Schematic diagram of component substructure i (Connecting board).
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( )

u TU
T T T

U U U U

= ,
= diag 1 ,

= ,

(6)i i P P

i i P

+1 ×

T
+1

T T T

where T is the reduction matrix from the CMS method’s
reduced nodal displacement vector u to the DOFs of the
condensation nodes in the joint i and i + 1 plus a set of the
normalized modal coordinate vector. 1P P× is the P-order unit
matrix, and U u=P P denotes the first P-order internal modal
coordinates of the component substructure i. The following
coordinate transformation is applied to describe the dy-
namics of each component substructure in the global re-
ference frame K :

( )

U S U
S R R

U U U U

= ,

=diag ,

= ,

(7)

i

i i i

i i P

+1

+1 +1 +1

T
+1

T T T

where R i+1 denotes the rotation matrix of K i+1 with respect
to K . Ui, Ui+1, and UP represent the nodal displacement
vectors of nodes Ni, Ni+1, and the first P order internal modal
coordinates evaluated in the frame K , respectively. U de-
notes the reduced nodal displacement vector of component
substructure i measured in the frame K . We then take into
account the number of component substructures and describe
them using superscripts. Substituting eq. (7) to eq. (6), and
then to eq. (1) leads to

U X U U X U

F X F F F

= ,   = ,

= ,   = ,
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T
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( +1)
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( )

where K i( ) and M i( ) are the reduced stiffness and mass ma-

trices, respectively. F i( ) denotes the reduced force vector of
component substructure i measured in the frame K .
Based on the constraint interface synthesis method and

rigid multipoint constraints at the joint/interface level, the
dynamics of each component substructure in the 3-PRS
power head are described using two condensation nodes and
the first P-order elastic modes, leading to a minimum group
of generalized coordinates with P(12 + )DOFs. Therefore,
the dimensions of calculation are significantly reduced than
that of FEA.

3.2 Stiffness model of the joint substructures

This section establishes an analytical stiffness model of the
joint substructures, including the actuated (P joint) and
passive (R and S joints) joints. Taking the actuated prismatic
joint i + 1 as an example, Figure 5 illustrates a schematic
diagram of its constraint system. From the rigid multipoint
constraint and the virtual work principle, the mapping of the
nodal displacement vectors along the constraint motions of
the condensation nodes between the interfaces and the joint
is formulated as follows:

U X U

U X U

F X F

F F

= ,

= ,

= ,

= ,
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T
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+1, ,
( +1)
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where U i n s
i
+1, ,

( ) and U i n s
i
+1, ,

( +1) are the 5 × 1 nodal displacements

Figure 5 (Color online) Rigid multipoint constraints at joint/interface level.
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of nodes Ni n
i

+1,
( ) and Ni n

i
+1,
( +1), respectively, along the constraint

motions evaluated in the frame K i n+1, (Figure 5). U i s
i
+1,

( ) and

U i s
i
+1,

( +1) are the 5 × 1 nodal displacements of nodes Ni
i( ) and

Ni
i( +1), respectively, along the constraint motions evaluated

in the frame K i+1. Xi n
i s

+1,
+1, is the transformation matrix

created by removing the Xi n
i

+1,
+1 row and column related to

the translational motion along the moving axis, thereby
providing a 5×5 matrix consistent with the above-reduced
5×1 vectors. Fi n s

i
+1, ,

( ) and Fi s
i
+1,

( ) are the 5 × 1 force vectors of

nodes Ni n
i

+1,
( ) and Ni

i
+1
( ) , respectively, along the constraint

motions. For interface n in the joint substructure i + 1,
Hooke’s law gives

( )F K U U= , (10)i n s
i

J i n i n s
i

i n s
i

+1, ,
( )

, +1, +1, ,
( +1)

+1, ,
( )

where KJ i n, +1, is a 5×5 contact stiffness matrix of interface n
in the joint substructure i + 1 (Figure 4) that can be generated
using the sample handbook. Substituting eq. (10) into eq. (9)
leads to

K X K X= , (11)J i s
n

N
i n

i s J i n
i n

i s, +1,
=1

+1,
+1,

T
, +1,

+1,
+1,

where KJ i s, +1, represents the 5×5 equivalent constraint
stiffness matrix of the joint substructure i + 1 evaluated in the
frame K i+1. Eq. (11) illustrates that the joint comprising the
interfaces is actually a parallel system, and the stiffness
matrix of which is the linear superposition of the local
stiffness matrix of each interface in the frame K i+1.
For the actuated prismatic joint, i is equal to zero. The

stiffness matrix of the actuated joint evaluated in the frame
K , KJ P, , is represented as the following tensor transforma-
tion:

( )KK X K X X X= + , (12)J P s J s s a J a a, 1, ,1,
1

1,
T

1, ,1,
1

1,
T 1

where X1 is the adjoint transformation matrix of the frameK1

with respect toK . X s1, denotes the transformation matrix by
removing the X1 column related to its translational motion,
thereby providing a 6×5 transformation matrix. X a1, re-
presents the transformation vector related to the translational
motion along the moving axis of the X1 columns, thereby
providing a 6×1 vector. KJ a,1, denotes the equivalent axial
stiffness of the feed drive system evaluated in the frame K1
[33].
The compliance of the passive spherical joint is the linear

superposition of the compliance matrices of the passive re-
volute joints in the spherical joint. Therefore, the stiffness
matrices of the passive revolute and spherical joints eval-
uated in the frame K are represented as follows:

K X K X= , (13)J R s J s s, 2,
T

,2, 2,
1

K X K X= , (14)J S
j

j s J j s j s,
=3

5

, , ,
1

,
T

1

where KJ j s, , denotes the equivalent constraint stiffness ma-
trix of each revolute joint in the spherical joint. The formats
and meanings of the transformation and stiffness matrices in
eqs. (13) and (14) are similar to those in eq. (12).

3.3 Synthesis model of the 3-PRS power head

This section derives the dynamic model of the 3-PRS power
head by assembling all the components and joint sub-
structures. Without considering the smaller inertia of the
shafts in the spherical joints, the entire mechanism can be
broken down into five-component substructures consisting
of a base, three limbs, and a moving platform numbered from
0 to 4 (Figure 6). The ith PRS limb substructure is decom-
posed into three-component substructures with a connecting
board, a slider, and a connecting rod numbered from i1, to

i3, . A number of nodes Nb
a( ) and nodal displacement vectors

U b
a( ) are set to conveniently synthesize the entire mechanism.

a and b denote the component substructure number and the
node number in them, respectively. The adjacent nodes are
connected through the joint substructure stiffness, ensuring
compatibility between the component substructures. The
kinetic T and elastic potential V energies of the 3-PRS power
head are estimated as follows:

( )

( )

( )

T T T T

V V V V V
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m j i i j k P R S
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= + + + ,

= 1
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= 1
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= 1
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= 0, , ( , ), , 4, , = 1 3, = , , ,
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i k P R S
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b
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m m
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=1

3
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( ) ( )

( ) T ( ) ( )

,
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T
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, ,

( )

( )

( )
1
( ) ( ) ( ) T

where Tm and Vm represent the kinetic and elastic potential
energies, respectively, of the component substructurem.U m( )

and U P
m( ) are the nodal displacement vectors of the compo-

nent substructure m and its internal modal coordinates, re-
spectively. n represents the number of external condensation
nodes in the component substructure m. Vk i, is the elastic

1874 Ma Y W, et al. Sci China Tech Sci July (2023) Vol.66 No.7



potential energy of the kth joint substructure in limb i. U b
a( )

and U d
c( ) are the nodal displacement vectors of the nodes

connecting the kth joint substructure. The compatibility be-
tween U i

2
(1, ) and U i

1
(2, ) is ensured by KJ P, .

Using Lagrange’s equation of eq. (15), the entire me-
chanism’s undamped equation of motion is represented in the
global reference frame K by the following partitioned
model.

MÜ KU F

M
M M M

M M
M

K
K K K

K K
K

U q F
F

+ = ,

=
sym

, =
sym

,

= , = 0
0

.

(16)

q

qq q

q

qq q

C

where RU= C
6×1 and RFC

6×1 represent the nodal
displacement and force vectors, respectively, of the end-re-
ference point C. Rq 144×1 represents the collection of the
nodal displacement vectors of all the external condensation
nodes in the entire mechanism, except point C. R P11 ×1 is
the collection of the internal modal coordinates of all com-
ponent substructures. The lower-order dynamics of the hol-
istic mechanism are described using a group of generalized
coordinates with P(150 + 11 )DOFs.

3.4 Dynamic analysis of the 3-PRS power head

Assume that the dynamic system of the entire mechanism is
viscous proportional damping. If the damping distribution of
the system of the abovementioned DOFs is denoted as matrix

C, then the equation of motion of the entire system in the
time domain is given as

t t t tMÜ CU KU F( ) + ( ) + ( ) = ( ). (17)

Subsequently, substituting tU U( ) = ( )e tj into eq. (17)
leads to the following frequency response functions (FRFs)
of the holistic mechanism in the frequency domain:

k m c

U H F

H K M C

( ) = ( ) ( ),

( ) = ( + j ) =
+ j

,
(18)

k

k k

k k k

2 1

=1

T

2

where mk , kk , and ck are the normalized modal mass, stiff-
ness, and damping of the kth mode shape, respectively. k is
the normalized reduced nodal displacement vector of the
holistic mechanism. For convenience, U( ) and F( ) are
denoted as U and F, respectively. During the machining
process, the end-reference point C is excited by the dynamic
cutting load FC . Based on the modal analysis theory, the
FRFs of point C are expressed as

k m c

U H F

H

= ( ) ,

( ) =
+ j

,
(19)

C C C

C
k

C k C k

k k k=1

, ,
T

2

where C k, is the nodal displacement of point C of the kth
mode shape measured in the frame K . Considering the ex-
citations along the u, v, and w directions, the FRFs of point C
along the i i u v w( = , , ) direction are represented as

( )

( )
( ) ( )

U H F

H
f

f k

= ( ) ,

( ) =
1 / + 2 / j

,

= ,

(20)

C i C ii C i

C ii
k

m C i k

k k k

C i k
C k

k

, , ,

,
=1

,

2

,
,

2
i

whereUC i, denotes the nodal displacement of point C along
the ith direction, and FC i, is the excitation force of point C
along the ith direction. C k,i

represents the nodal displace-
ment of point C in the k-order mode shape along the ith
direction. k and k represent the damping ratio and natural
frequency of the k-order mode, respectively. H ( )C ii, is the

ith main diagonal element of H ( )C . ( )fC i k, denotes the kth
modal flexibility of point C. When the exciting frequency
is zero, then we have

( )C H f= (0) = , (21)i C ii
k

C i k,
=1

,

where Ci represents the static compliance of point C along

the ith direction, and ( )f C/C i r i, is the ratio of the rth modal
flexibility and the static compliance illustrating the con-
tribution of the rth modal flexibility to the static compliance

Figure 6 (Color online) Overview of substructure synthesis of the 3-PRS
power head.
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along the ith direction.
We define the following energy distribution indices to

evaluate the energy contribution of each substructure to the
entire dynamic system:

( )T
T f k= , = , (22)r i
r i

r C i k
C k

k
,

,
,

,
2

i

where r i, and µr i, denote the distribution rates of the kinetic
and elastic potential energies, respectively, of the component
or joint substructure i in the rth order mode.

4 Numerical example

In this section, one type of 3-PRS power head is taken as an
illustration to demonstrate the accuracy and efficiency of the
presented dynamic modeling and analysis approach. Figure 7
shows the task workspace of the 3-PRS mechanism (curved
triangular prism with h height) defined by the nutation and
precession angles and the stroke along the z direction (θ=0°–
30°, ψ=0°–360°, and s=0–h mm). Table 1 gives the geo-
metric dimensional and task workspace parameters of the
mechanism. A reference configuration is defined when
q q q q q= = = ( + ) / 21 2 3 min max , where qmin and qmax denote
the minimum and maximum strokes, respectively, of the
screw-nut system in the PRS limb.
Table 2 shows the structural parameters of each elastic

interface and the compliance matrices in the actuated pris-
matic and passive revolute and spherical joints evaluated in
the corresponding local reference frames. For convenience,
the order of the internal elastic modes P for each component
substructure in eq. (2) is identically set to 3, resulting in
15×15 reduction mass and stiffness matrices. These data
were obtained from the Super-element Creation module of
the SAMCEF commercial FEA software. Consequently, the
DOFs of the proposed semi-analytical dynamic model are
183.
Figures 8 and 9 illustrate the lower-order mode shapes of

the 3-PRS mechanism obtained from the FEA model and
predicted by the proposed semi-analytical model at the re-
ference configuration, respectively. The FE software’s cor-
responding boundary conditions, material properties, and
contact stiffnesses are set consistent with those parameters of
the developed model, resulting in an FEmodel with 3.05×105

DOFs. The 1st and 2nd mode shapes are primarily the
translational vibrations along the u and v directions of the
moving platform, respectively. The 3rd mode shape is pri-
marily the torsional vibration about the w direction of the
moving platform, and the 4th is the combination of the tor-
sional vibration of the moving platform and the translational
vibration of limbs 2 and 3. The 5th mode shape is the
translational vibrations of sliders in three parallel limbs
along the direction of motion. The 6th and 7th mode shapes

are the translational vibrations of sliders in limbs 1 and 2
along the direction of motion, respectively. The 8th mode
shape is the bending vibration of the connecting rods in limbs
1 and 3. The dynamic responses of the end-reference point in
the 3rd, 4th, and 8th orders are essentially zero. Obviously,
the lower-order mode shapes estimated by the developed
model agree very well with those from FEA. The modal
assurance criterion (MAC) is employed further to verify the
above two models’ consistency as

( )
( )( ) i jMAC = , , = 1, 2, , 8, (23)ij

i j

i i j j

FE,
T

RS,
2

FE,
T

FE, RS,
T

RS,

where iFE, and jRS, are the ith and jth mode shapes of the
FE and the developed reduced semi-analytical model, re-
spectively. Figure 10 shows the MAC of the first eight-order
mode shapes between the two models, and it is evident that
the diagonal elements’ values are much higher than the rest
non-diagonal elements’ values (0.92 against 0.25), demon-
strating the accuracy of the developed model for predicting
the lower-order mode shapes.
Figure 11 illustrates the FRFs of the end-reference point

along the u, v, and w axes of K predicted by the proposed
model and obtained from FEA at the reference configuration,
respectively. The damping ratios for the first eight-order

Figure 7 (Color online) Task workspace of the 3-PRS power head.

Table 1 Geometrical parameters of the 3-PRS parallel mechanism (mm)

Parameters Value

a 330

b 165

l 350

e 315

H 1175

h 200
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modes are set at 0.025 identically in the two models men-
tioned above. Obviously, the proposed model’s FRFs agree
well with those obtained by the FEA. The discrepancy of
natural frequencies between the above two models is less
than 8.16%, as shown in Table 3, demonstrating the accuracy
of the developed model for predicting lower-order natural
frequencies. From Figure 11 and Table 3, the lower-order
natural frequencies predicted using the proposed model are

slightly higher than those obtained using the FEA model. In
the meantime, the dynamic response of each lower-order
mode has the opposite tendency. This phenomenon can pri-
marily be attributed to the fact that: (1) the rigid multipoint
constraint increases the rigidity of the interface and joint,
leading to an over-estimation of elastic potential energy in
the proposed semi-analytical model; (2) neglecting the in-
ertia of shafts in spherical joints results in the under-esti-

Table 2 Local reference frames and compliance matrices of elastic interfaces in the 3-PRS parallel mechanism (i=1,2,3)a)

M Km, Km n, K J m n, ,
1 (unit: N, m, rad)

1,i

l q l q= 0.15 + ,  = 0.40i i1 2

l l= 0.160,  = 0.2153 4

( ) ( )K k k k k k= + + + +J a b l b l nut, 1,
1

1
1

1
1 1

2
1

2
1 1 1

1

k l EA k l EA EA= / ,  = / ,  = 2.138 × 10l l1
1

1 2
1

2
8

k k k= 5 × 10 ,  = 4 × 10 ,  = 1.60 × 10b b nut1
1 9

2
1 9 1 9

n

K =

1.87
0.98

1.87 × 10

1.87 × 10

4.00 × 10

× 10

= 1, 2, 3, 4

J i n, 1, ,
1 3

3

3

9

2,i

l = 0.1975

n

K =

0.43
0.43

1.16

0.83 × 10

0.83 × 10

× 10

= 1, 2

J i n, 2, ,
1

3

3

9

3,i
4,i
5,i

l l= 0.105,  = 0.1326 7

n

K

K

K

=

0.93
0.93

0.68

6.10 × 10

6.10 × 10

× 10

=

3.70
3.70

14.29

1.00 × 10

1.00 × 10

× 10

=

3.70
3.70

2.70

1.00 × 10

1.00 × 10

× 10

= 1, 2

J i n

J i n

J i n

, 3, ,
1

3

3

9

,4, ,
1

3

3

9

,5, ,
1

3

3

9

a) knut, kb1, kb2 are compression or extension stiffness coefficients of the nut, front and rear support bearings, respectively. EA is the tensile modulus of the lead-screw. qi denotes
the stroke of the screw-nut system in the ith PRS limb.
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mation of the kinetic energy of the mechanical system.
In Figure 12, a further demonstration of the accuracy of the

developed model under more general nutation and preces-
sion angles is provided by selecting nine additional config-
urations in the reference layer (θ=0°–30°, ψ=0°–360°,
z=1275 mm) of the task workspace. This is performed by
considering the central symmetry of the 3-PRS mechanism
in the task workspace. Table 4 presents the values of the
nutation and precession angles for each selected configura-
tion in the reference layer. Figure 13 illustrates the dis-
crepancy of the first eight-order natural frequencies between
the proposed dynamic model and the FEA under each se-
lected configuration. The root mean square (RMS) value of
the first eight-order natural frequencies is employed to

evaluate the discrepancy of each selected configuration
(Table 4). The RMS discrepancy of the lower-order natural
frequencies between the developed model and the FEA is
less than 5.92%, demonstrating the accuracy of the proposed
model in the entire task workspace.
With these persuasive results, the first six-order natural

frequency distributions over the reference layer of the task
workspace are predicted using the proposed dynamic model
(Figure 14). The prediction results were processed using an
i7-8750 CPU and 16 GB RAM laptop. The overall calcula-
tion time for solving 3600×100 configurations was less than
20 s. In contrast, obtaining the dynamics for a single con-
figuration in the FEA model required at least 150 s, de-
monstrating the efficiency of the developed model for

Figure 8 (Color online) The lower-order mode shapes obtained from the FEA.

Figure 9 (Color online) The lower-order mode shapes predicted by the developed model.
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predicting lower-order natural frequencies over the task
workspace.
Figure 15 shows the contributions of the modal flexibility

of the lower-order modes to the static compliance of the end-
reference point along the u, v, and w directions at the re-
ference configuration. It is obvious that the 2nd, 1st, and 5th
order modes have considerable impacts on the static com-
pliances of the end-reference point along the u, v, and w
directions, respectively (i.e., ( )f C/ = 72.95%C u u, 2

,

( )f C/ = 75.45%C v v, 1
, and ( )f C/ = 76.29%C w w, 5

). A higher

contribution of the modal flexibility represents that the
configuration between the modal stiffness and mass in the
corresponding mode is suboptimal, resulting in a prominent
week mode. The optimization design needs to be conducted
aiming at these weak modes. In this case, the 2nd, 1st, and
5th order modes are determined as the prominent week

modes. Figures 16 and 17 give the distributions of kinetic
and elastic potential energies of component and joint sub-
structures in the 1st and 2nd order prominent week modes at
the reference configuration, respectively. It is evident that the
kinetic energies of the 1st and 2nd order modes are primarily
distributed on the moving platform, and the connecting rods
in three limbs have relatively significant contributions to the
1st and 2nd orders’ kinetic energies. The elastic potential
energies of the 1st and 2nd order modes are primarily dis-
tributed on the moving platform, connecting rods, and
spherical joints in three limbs. Component or joint sub-
structures with higher kinetic energy distribution tend to
have higher mass or lower stiffness than others, whereas
substructures with higher elastic potential energy distribution
tend to have lower stiffness. Therefore, the following opti-
mization strategies are proposed: (1) Adopting the light-
weight design for the moving platform while ensuring its
stiffness requirements; (2) improving the stiffness of con-
necting roes in three limbs by changing the stiffener topol-
ogy; (3) selecting the supporting bearings in the spherical
joints with higher stiffnesses.

Figure10 (Color online) MAC of lower-order mode shapes between the
proposed model and FEA.

Figure 11 (Color online) FRF comparisons between the proposed and the FEA models at the reference configuration.

Table 3 Lower-order natural frequencies calculated by the developed
model and the FEA at the reference configuration

Mode number Semi-analytical
(Hz) FEA (Hz) Discrepancy

(%)

1st 57.84 56.5 2.37

2nd 59.56 57.89 2.88

3rd 142.99 138.89 2.95

4th 155.84 150.54 3.52

5th 215.65 202.53 6.48

6th 226.93 214.88 5.61

7th 238.68 223.13 6.97

8th 274.22 253.53 8.16
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5 Conclusions

This study introduces an efficient approach for the accurate
dynamic modeling and analysis of a 3-PRS power head. The
following conclusions are derived from this work.
(1) By employing the rigid multipoint constraints at the

joint/interface level, an improved reduced dynamic model of
the component substructures in the 3-PRS power head is
formulated using a minimum set of generalized coordinates
for external nodes. A compact explicit expression for the
stiffness model of the joint substructure is then described
through the screw theory, leading to the mapping between
the local interface constraint and global stiffness. Finally, the
total kinetic and elastic potential energies of the holistic
power head are formulated, and the dynamic model is de-

Figure 12 (Color online) Selected configurations in the reference layer.

Figure 13 (Color online) Discrepancy of lower-order natural frequencies
between the proposed model and FEA at each selected configuration.

Table 4 Nutation and precession angles and RMS discrepancy in the
lower-order natural frequencies at each selected configuration in the re-
ference layer

Configuration
number θ ψ RMS discrepancy

(%)

1 0° 0° 5.29

2 10° 60° 5.64

3 20° 60° 5.47

4 30° 60° 5.46

5 10° 120° 5.88

6 20° 120° 5.92

7 30° 120° 5.71

8 10° 180° 5.64

9 20° 180° 5.47

10 30° 180° 5.46

Figure 14 (Color online) Natural frequency distributions of the 3-PRS power head over the reference layer.
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rived from the Lagrange equation.
(2) Taking one type of a 3-PRS power head for demon-

stration, the accuracy and effectiveness of the developed
approach are illustrated by comparative studies of lower-

order mode shapes, natural frequencies, and FRFs against
those of an FEA model. The results indicated that the lower-
order natural frequency distributions over the reference layer
in the task workspace can be predicted with a considerable

Figure 15 (Color online) Contributions of the rth modal flexibility to the static compliance of the end-reference point.

Figure 16 (Color online) Distributions of the kinetic energy of the 1st and 2nd order modes. i=0: base, i=1, 2, 3: limbs 1 to 3, i=4: moving platform.

Figure 17 (Color online) Distributions of the elastic potential energy of the 1st and 2nd order modes. i=0: base, i=1, 2, 3: limbs 1 to 3, i=4: moving
platform.
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reduction in computational time. The optimization strategies
are presented based on modal flexibility and energy dis-
tribution analyses, which are extremely useful for the opti-
mization design under the virtual machine framework. This
method is systematic and general enough to be applied to the
dynamic modeling and analysis of other PKMs.
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China Scholarship Council (Grant No. 201908060118).
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