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Advanced methodologies for the cleaning of works of art
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Cultural heritage assets constitute a fundamental socioeconomic resource, but the actual works of art need to be maintained,
counteracting degradation processes, to transfer these benefits to future generations. In particular, the removal of soil, aged
coatings, and vandalism/overpaints is one of the most needed interventions in art restoration. Traditional cleaning methodol-
ogies, based on classical solution and polymer chemistry, only grant limited control of the cleaning interventions, with the risk of
affecting the original components of the artifacts, and often involving the use of toxic or non-environmentally friendly com-
pounds. Alternatively, materials science, colloids, and soft matter have provided valuable and safe solutions in the last decades.
This review provides a selection of the most recent and advanced methodologies for the wet cleaning of works of art, spanning
from nanostructured cleaning fluids (microemulsions, surfactants swollen micelles) to physical and chemical gels. The new
methodologies work on different physico-chemical mechanisms, such as processes for detaching/dewetting, to selectively
remove the unwanted layers in sustainable and cost-effective interventions. The best performing systems, like microemulsions
confined in “twin-chain” polyvinyl alcohol gels, have been assessed in the cleaning of masterpieces such as works by Pablo
Picasso, Jackson Pollock and Roy Lichtenstein. Particular attention is dedicated to “green” chemistry systems, using low-toxicity
solvents or bio-based/waste materials to build gel networks. Finally, current trends and future perspectives are given, showing
that advanced systems for art cleaning link with transversal fields of crucial importance even beyond Cultural heritage con-
servation, e.g., detergency, tissue engineering, drug-delivery, food industry and cosmetics.
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1 Introduction

Cultural heritage assets have crucial socioeconomic im-
portance: they are drivers for job creation through tourism,
favor inclusiveness, and social cohesion, and are carriers of
aesthetical and ethical messages from diverse cultures
throughout the history of mankind [1]. Yet, these benefits are
hardly maintained if degradation processes, which inevitably
affect the artifacts, are not counteracted with time-, cost-
effective and sustainable methodologies. Degradation is ty-
pically caused by environmental factors (temperature, light,

relative humidity and pollutants), natural or anthropogenic
disasters and climate changes (floods, fires), microorgan-
isms, and even poor previous restoration interventions car-
ried out using materials with poor physico-chemical
compatibility with the artifacts’ original components. In re-
sponse, scientific research has developed methodologies in a
similar approach to medicine, where works of art stand as
patients, and diagnostic analyses, preventive measures, or
materials for remedial conservation are proposed against
degradation [2].
Diagnostic techniques have traditionally constituted the

first bulk of scientific research in conservation science with
many dedicated studies, progressively moving towards
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non-invasive and portable analytical setups [3,4]. Current
challenges involve the development and use of sensors
with enhanced performances, to detect early degradation
stages in the artifacts, and smart technologies to enable ac-
tive monitoring of buildings and works of art by citizens
[4–9].
Inevitably, conservation activities (i.e., remedial inter-

vention) will be necessary to preserve the physical integrity
of the artifacts; to this purpose, robust and reliable materials
and methodologies are continuously required, coping with
the complexity of works of art and their sensitiveness to
solvents and other chemicals. In this framework, materials
science, colloids, and soft matter have contributed many of
the most advanced and sophisticated systems for the re-
storation of works of art, ranging from protection (e.g.,
against oxidation, corrosion, or microorganisms) to con-
solidation (improving cohesion and mechanical properties)
and cleaning (removal of soil or aged varnishes/coatings)
[10–25]. In addition, some of the generated systems and
knowledge can also be used for preventive conservation
(e.g., metal organic frameworks or gels as absorbers of
pollutants/VOCs) and diagnostics (e.g., graphene and smart
portable sensors, nanoinks and gel substrates for surface-
enhanced Raman spectroscopy) [26–31]. Among all tasks in
remedial conservation, cleaning is one of the most recurring
and delicate operations, dealing with the removal of un-
wanted layers (soil, corrosion patinas, aged varnishes/coat-
ings, overpaints, vandalism) from the surface of works of art,
with the crucial requirement of avoiding any alteration of the
original components such as dyes, pigments, and binders.
Thus, the development of safe and reliable solutions is of
uttermost importance to preserve a vast portion of iconic
heritage assets like wall and canvas paintings, stone or metal
objects, textiles and plastic objects. Solutions need to be
time- and cost-effective given the vast number of objects in
actual or potential need of cleaning, i.e., easily ranging from
thousands to millions of items for a single museum or col-
lection. In addition, recent recommendations such as the EU
Green Deal, pose imperatives to devise eco-friendly and
sustainable solutions in different fields, including Cultural
Heritage preservation. Accordingly, the design of cleaning
systems must switch from traditional synthetic polymers and
petroleum-based solvents (mineral spirits) to products based
on natural or bio-materials.
In the following sections, we recall the materials and

methodologies employed in the traditional practice for the
wet cleaning of artifacts and describe how new systems have
evolved in parallel taking advantage of different physico-
chemical frameworks that granted enhanced performances as
opposed to classical approaches. Finally, we provide per-
spectives and open challenges in this field that links to
transversal applications in detergency, drug-delivery, cos-
metics, food industry and tissue engineering.

2 Classical approaches to cleaning works of art

Traditionally, conservators rely on classical solution chem-
istry for the removal of soil, grime or aged varnishes/coat-
ings. Essentially, solubility tests or predictions via solubility
parameters are used to select solvents (or solvent blends)
able to swell or solubilize the unwanted layers. Ideally, the
selection should be such that only the unwanted layers are
affected. However, in most cases selectivity is limited, and
polymers are used to thicken the solvents and gain some
spatial and time control of the cleaning intervention.
Fardi et al. [32] have given an extensive discussion on the

use of solubility parameters for cleaning art, while Baij et al.
[33] recently reviewed the effects of solvent action on paints.
We recall here the fundamental concepts to highlight the
main issues and limitations in the classical solubility ap-
proach.
The total solubility parameter of a compound (δtot) was

defined by Hildebrand as the cohesive energy density (CED):

E
V(CED) = , (1)tot
coh

where Ecoh is the molar cohesion or potential energy, and V is
the molar volume.
For vaporizable compounds, Ecoh can be expressed as

E H RT= , (2)coh vap

where ΔHvap is the molar enthalpy of vaporization of the
compound at absolute temperature T, and R is the molar gas
constant. In other words, solubility is expressed as the energy
necessary to break intermolecular forces in the compound.
Hansen then divided δtot into three partial components δd, δp,
and δh, to separate the contribution of dispersive, polar, and
hydrogen bonding forces, respectively:
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Teas eventually introduced fractional expressions using
Hansen solubility parameters:
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The Teas parameters are usually plotted in two-dimen-
sional (triangular graphs, see Figure 1) or three-dimensional
plots, and compounds at close positions in the graphs are
considered to have similar solvating properties in terms of
hydrophilicity/hydrophobicity [35]. Materials with complex
chemical compositions, such as natural varnishes or syn-
thetic coatings, are described in the graphs by the sum of the
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points corresponding to solvents able to solubilize or swell
the material. The Italian Central Institute for Restoration
(ICR) has developed a program to interactively plot solvents
and match them to the swelling areas of different varnishes
and coatings commonly found in restoration case studies,
including aged materials whose solubility is altered by
changes of molecular weight or oxidative processes fol-
lowing exposure to light, temperature and relative humidity.
The group-contribution (GC) method is a predictive com-
putational method where the molecular structure of materials
is used to calculate their partial solubility parameters [36].
Alternatively, Fardi et al. [32] proposed a Critical Solvent
Selection (CSS) methodology that uses experimental data
and computer-based data correlations in a multi-step flow-
chart, which simulates solubility tests and optimizes the
solvent selection so as to minimize risks to binding media in
the paint layers underneath the coating/varnish that must be
removed.
However, as noted by some authors, Hildebrand and

Hansen-based models (and the projection of solubility
parameters in Teas charts) can exhibit inaccuracy in de-
scribing the solubility range of polymers and the activity
coefficients of solvents at infinite dilution (often employed to
define solvent-solute interactions). For instance, Baij et al.
[33,37] recommended the use of alternative models to pre-
dict solvent interactions for art materials. Transport phe-
nomena and polymer elasticity should also be taken into
account to model the swelling behavior of paint layers (e.g.,
made by linseed oil and pigments) affected by solvents. For

instance, the Flory-Rehner model considers the equilibrium
between osmotic pressure forces (entropy-driven swelling)
and elastic pressure in polymers and could be in principle
used to describe swelling in oil paints upon interaction with
solvents [38]. Baij et al. [39] also stressed the importance to
distinguish between thermodynamics and kinetics when
evaluating the capacity of a solvent to affect varnishes and
paint layers. Accordingly, the same authors derived a “dif-
fusion-swelling” model that describes much better than pure
Fickian diffusion the progressive solvent penetration from
the top surface of an oil paint section to the bottom face
(where solvent content was measured via ATR-FTIR). The
model derivation starts by describing the solvent diffusion
coefficient as an exponential function of the polymer volume
fraction. This approach was deemed more feasible than using
free-volume models, which are more comprehensive but
contain several parameters that are not easily accessed ex-
perimentally. Eventually, this approach led to an accurate
description of the delay times caused by polymer swelling
before the solvent reaches the bottom face of the oil paint
layers, and allowed obtaining diffusion coefficients at equi-
librium swelling for a set of solvents in these experimental
conditions. In particular, it was found that strongly swelling
solvents like acetone diffuse faster than weakly swelling
solvents like water or cyclohexane. The final recommenda-
tion by the authors was thus for the scientific community to
develop confining systems for aqueous fluids or aliphatic
hydrocarbons, or microemulsions formed by these compo-
nents, fostering their use in cleaning interventions.
Confinement of the cleaning fluids in retentive matrixes is

crucial, since the main limitation to the use of solvents re-
mains their scarce selectivity, i.e., they involve the risk of
swelling binding media and leaching dyes/pigments [34]. Oil
paints can be affected by prolonged contact with water, for
instance through hydrolysis of ester bonds or adsorption by
hygroscopic clay additives, overall making the paint layer
brittle [40]. Contact with acetone has been shown to leach
mobile materials, producing a stiffness increase. In the
cleaning of acrylic paints, extracted species can include non-
ionic surfactants of the original paint formulation (e.g.,
polyethylene oxides, PEOs, retained in the paint film), in
addition to the acrylic binder, pigments, and other additives
[41,42]. PEOs aggregates at the surface of paint films, are
hygroscopic and readily soluble in water released by swabs
during cleaning processes [43,44]. Accordingly, changes in
the long term mechanical adhesion or in the bulk film
properties can occur in the treated acrylics [42,45]. In this
regard, Dillon et al. [45] indicated how the conductivity and
ionic strength of aqueous solutions can be adjusted to reduce
the extraction of these surfactants and the swelling of acrylic
paint layers. In addition, varnish molecules or soil dissolved
by non-confined solvents can penetrate in the pores of an
artifact, rather than being effectively removed from its

Figure 1 (Color online) Teas solubility diagram indicating the solubility
parameters of common families of solvents with similar properties. W,
water; N, nitrogen solvents; K, ketones; Alc, alcohols; G-E, glycol ethers
and esters; E, esters; C, chlorine solvents; Ar, aromatics; Ali, aliphatics.
Readapted with permission from ref. [34]. Copyright © 2013 The Royal
Society of Chemistry.
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surface. Finally, most solvents used in varnish/coating re-
moval have some toxicity issues, and their confinement re-
duces the impact on end-users.
Other classical approaches to cleaning formulations in-

volve the use of surfactants, taking advantage of detergency
mechanisms, and the use of polymers to thicken aqueous
solutions or solvent blends.
Surface active molecules are present in natural products

traditionally used for cleaning art, and examples include
deoxycholic acid or abietic and aleuritic acids found in bile
or in natural resins, respectively. Wolbers [46–49] developed
a more systematic approach in the 1980s, covering the se-
lection of surfactants and their combination with enzymes
and chelators, or even their use combined with synthetic
polymers to thicken solvent blends. Namely, non-ionic sur-
factants such as Triton X-100, Brij 35, or Tween 20, were
indicated as optimal choices for the cleaning of oil paints,
having cloud points above room temperature and hydro-
philic-lipophilic balances (HLBs) in the 12–17 range, which
was deemed safer for prolonged contact with oil paint layers.
These non-ionic surfactants have also been used in cleaning
aqueous solutions where some diluted ionic strength is in-
cluded to limit the swelling of water-sensitive paint layers.
Surfactants are also mixed with chelators in aqueous solu-
tions and coupled with a microfiber cloth for soil removal
[50].
The removal of greasy soil is targeted by surfactant solu-

tions through a series of detergency mechanisms where the
amphiphilic molecules adsorb at the surface of soil and art
substrates in soil-artifact contact areas, or locally solubilizes
the soil inside surfactant micelles. In the latter case, an oil-in-
water (o/w) microemulsion can form “in situ”, provided that
the interfacial tension between soil and water is strongly
decreased by the surfactant [51]. Wolbers et al. [46] also
provided guidelines for the use of regular o/w emulsions that,
however, are poorly stable, i.e., only kinetically stable and
without the optical clarity and enhanced micelle surface area
found in microemulsions. Emulsion stability was achieved
by thickening the water phase with cellulose ethers, gums,
and polyacrylates. Highly viscous polymer dispersions
(HVPDs) were also employed by Wolbers in the so-called
“solvent gels”, where weakly basic non-ionic cocoamine
surfactants (Ethomeen®) are used to deprotonate carboxylic
groups in polyacrylic acid (PAA), whose chains unfold by
electrostatic repulsion and then stack to increase viscosity.
The obtained material cannot be strictly defined as a gel, as it
lacks the rheological behavior exhibited by extended 3D
chemical networks, e.g., elastic modulus much higher than
the viscous over a wide range of frequencies under applied
oscillatory stress (see the “Gels” section).
The Ethomeen® surfactants come with a range of HLBs,

allowing the thickening of low- or average-polar solvents,
which makes solvent-gels versatile and affordable tools.

However, the removal of these pasty HVPDs from treated
surfaces involves the use of clearing solvent blends, which
can be invasive to the paint layers [52]. In addition, the
retentiveness of these systems is not optimal, and their use
could be discouraged on highly solvent-sensitive substrates.
Overall, despite the progress introduced by these approaches
over traditional serendipitous experimentations, crucial im-
provements were still necessary in the cleaning systems, i.e.,
increasing their time and spatial control, lowering their en-
vironmental impact or toxicity, and improving the overall
time-effectiveness of the intervention. These requirements
pushed the parallel development of advanced cleaning fluids
and confining networks based on different scientific frame-
works, such as soft condensed matter and colloids science.

3 Complex cleaning fluids

Parallel to the development of solvent gels and systematic
guidelines on surfactants or regular emulsions, an alternative
approach to cleaning artifacts was pioneered by Ferroni and
Baglioni starting from the 1980s, focusing on the design of
microemulsions specifically tailored for the removal of soil
or aged coatings from mortar, stone and painted surfaces
[53,54]. Microemulsions are thermodynamically stable sys-
tems (as opposed to regular emulsions that are only kineti-
cally stable) formed by two immiscible solvents, where the
dispersed phase, e.g., an apolar solvent, is confined in nano-
sized droplets within a continuous phase, e.g., water, thanks
to the presence of a surfactant. The dispersed oil droplets are
included in self-assembled structures (e.g., spherical or
elongated micelles) built by packing of the surfactant mo-
lecules that can be assisted by a co-surfactant included in the
structure.
The reduced size of the droplets makes microemulsions

optically clear and produces a dramatic increase in the in-
terfacial area of the dispersed solvent as opposed to regular
emulsions, or to the same mass of bulk (non-dispersed)
solvent. The vast interfacial areas, along with the dynamics
of the micelles that can exchange solvent and surfactant
molecules to target soil/coatings, are key to explaining the
boosted cleaning power of these nanostructured fluids. As
indicated in a seminal work by De Gennes and Taupin [55] in
1982, to obtain stable microemulsions from a water/oil/sur-
factant system, the surfactant must be able to saturate the oil
interface, and the resulting film must have low rigidity to
allow small radii of curvature. In addition, long-range in-
teractions among surfactant molecules must be weak, to
avoid the preferential formation of extended macrocrystal-
line domains over local structures (micelles). This frame-
work in colloids science and soft matter served as an
inspiration for the design of an o/w microemulsion by Fer-
roni and Baglioni in 1986, where the cleaning task was the
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removal of wax spots that were jeopardizing Italian Re-
naissance frescoes in the Brancacci Chapel, Florence (Italy)
[53,54]. In this case, dodecane was dispersed in water using
an anionic surfactant (dodecyl ammoniumsulfate) and pen-
tanol as a co-surfactant, the overall system being ca. 87%
water and only 10% solvent (w/w). The o/w microemulsion
was loaded in a cellulose poultice, which acted as a sorbent
to retain the fluid while wax migrated in the micelles. The
application led to the removal of the wax spots, recovering
the painted surfaces with high effectiveness and a strongly
reduced environmental impact, overcoming the limitations
of the traditional solvent blends.
This pivotal case study fathered the design of a whole class

of products over the last decades, where the selection of
solvents and surfactants, and thus the structure and func-
tionality of the cleaning fluids, targeted different types of
unwanted layers that needed to be removed from the surface
of artifacts [34,56–58].
O/w microemulsions, as defined above, work through

detergency in the removal of particulate soil and low mole-
cular weight compounds (fatty acids and triglycerides found
in greasy soil, or terpenes in natural varnishes): these layers
are removed from substrates by direct inclusion of the soil/
compounds in the micelles, or by gradients of osmotic
pressure that, following the adsorption of ionic surfactants at
the surface of substrate and soil, push water in soil-substrate
contact areas [51].
Instead, different kinds of nanostructured fluids and

cleaning mechanisms were used to target aged synthetic
polymer coatings, such as acrylate and vinyl acetate copo-
lymers, which have been widely employed by conservators
as protectives or adhesives on mural and easel paintings,
wood, paper, textiles, parchment, leather, and even metals.
These coatings are typically yellow and crack upon aging,
producing strong aesthetical alterations on artistic surfaces
[54,58–61]. In addition, they can produce extensive damage
on stone and wall paintings, where the coatings fill and block
the substrate porosity; this enhances the pressure induced in
the pores by salts contaminants (usually present in these
artifacts) as the salt crystals form in narrowed and con-
strained spaces at the coating-substrate interface [62].
The polymeric chains, globules, and beads, are too large to

fit in the nano-sized micelles, but can be removed by taking
advantage of different, non-classical cleaning mechanisms
promoted by the dynamic exchange of solvent and surfactant
molecules from the cleaning fluids to the polymer coatings
[56,63–67]. To boost these processes, multi-component
fluids were designed where partially water-soluble solvents
populate both the continuous water phase and the dispersed
micelles. For instance, Baglioni et al. [56,63,68] designed an
o/w fluid where ethyl acetate and propylene carbonate (8%
w/w each) are partitioned between the continuous phase and
the micelles formed by SDS and pentanol (ca. 4% and 7%w/w),

with partition coefficients of 0.7 and 0.3, respectively. This
class of cleaning systems, defined more correctly as nanos-
tructured fluids rather than standard microemulsions, has
been explored owing to its versatility and effectiveness in the
removal of polymeric coatings [69]. Some partially water-
soluble molecules are good solvents for the typical synthetic
polymers encountered in art conservation, and it was shown
that the polymer layer can uptake solvent, surfactant and co-
surfactant in proportions dictated by its chemical nature. The
solvent/surfactant/molecule migration causes shrinkage and
structural re-arrangement in the micelles, and swells polymer
beads that soften up and detach from the substrate (see
Figure 2) [56,63,70]. The polymer swelling and detachment
can be coupled with gentle mechanical cleaning to achieve
complete removal of films and coatings from painted sur-
faces, as was demonstrated in numerous case studies where
traditional approaches had previously failed. This novel class
of nanostructured fluids was employed with great effec-
tiveness and versatility to address the conservation of cul-
tural heritage assets ranging from Mesoamerican historical
sites to the Renaissance and modern/contemporary art pro-
duction [19,53,56]. In addition to the ethyl acetate and pro-
pylene carbonate formulation, current o/w swollen micelle
systems feature non-ionic surfactants (alcohol ethoxylates or
methoxy-pentadeca(oxyethylene) dodecanoate) and a variety
of solvents (see also next section) [57,66]. The non-ionics
have a lower critical micellar concentration (CMC, con-
centration threshold for the formation of surfactant self-as-
semblies) than ionic surfactants, thus their use reduces the
amounts of non-volatile residues in the cleaning systems.
Extensive assessment and validation by end-users world-

wide eventually culminated in the market uptake of these
cleaning fluids as new benchmarks in art cleaning tools [62].
Recent studies have further elucidated the interaction of

these fluids with polymer coatings, highlighting the role of
dewetting processes to obtain polymer removal [64–67].
Dewetting is defined as the inverse process of a fluid’s
spreading on a surface: owing to some instability, thin fluid
films can break and withdraw spontaneously from a substrate
forming spinodal patterns that evolve in patterns of holes
with characteristic correlation lengths related to capillary
waves and the film thickness [71–74]. It is well known that
thin polymer films (<100 nm) dewet from surfaces upon
thermal annealing or exposure to solvent vapors, bulk poor
solvents, water-solvent blends, and even non-solvents.
However, the inclusion of surfactants in water/good-solvent
mixtures, as in the cleaning fluids, was shown to induce
dewetting even in films with a thickness of few microns,
representative of coatings found on works of art, where the
process is thermodynamically favored but kinetically in-
hibited by an energy barrier. Good solvents, along with
surfactants, swell the polymer chains, increasing their
mobility which is a necessary requisite for dewetting to occur

2166 Casini A, et al. Sci China Tech Sci August (2023) Vol.66 No.8



[65,67]. Depending on the nature of the solvent and surfac-
tant, micelles can also extract chains with low molecular
weight from the swollen polymer [66]. In addition, surfac-
tants also lower the interfacial energy of all the interfaces
involved in the dewetting process, decreasing its activation
energy. The process is initiated by isolated holes that evolve
in the film through nucleation and growth, leading to Voronoi
patterns and finally to isolated polymer droplets that detach
from the surface (see Figure 3). In other words, surfactants
with high surface activity enhance polymer swelling and
boost the kinetics of polymer dewetting from substrates,
even though they make the polymer-substrate interface less
thermodynamically unstable [65,67]. Accordingly, non-ionic
surfactants like alcohol ethoxylates with 9–11 carbon chains
showed better efficacy than SDS in dewetting coatings cast
from polymer solutions [75]. In the case of coatings cast
from aqueous polymer emulsions/latexes, the swelling was
preferentially observed rather than dewetting, likely due to
the presence in the polymer latex of surfactants, which
makes dewetting from hydrophilic surfaces less thermo-
dynamically favored [76,77].
Water-in-oil systems (w/o) have also been designed for the

removal of hydrophilic soil from water-sensitive surfaces
like modern oil or acrylic latex paints [78,79]. The rationale
behind this choice is that an apolar continuous phase (par-
affin and naphthenes, ethers such as DOWANOLTM, CEL-
LOSOLVETM, and CARBITOLTM) can limit the swelling/
leaching of the paints, while the dispersed aqueous phase can
contain chelators to achieve soil removal [80]. Linear al-
kylbenzene sulfonate or nonionic ethoxylated/propoxylated

branched alcohols (ECOSURFTM) were used, along with
short chain alcohols as co-surfactants. Further attention and
investigation need to be dedicated to these potential tools,
possible concerns involving the surfactants amounts needed
to obtain stable w/o microemulsions, which can range from
5%–10% to more than 25% (w/w) or even up to >50%.
Working with surfactant content >10% might imply ex-
tensive rinsing steps after cleaning interventions, which must
be carefully evaluated.
Overall, it is crucial to adopt, whenever possible, readily

biodegradable or self-cleavable surfactants in nanostructured
cleaning fluids, with the goal of reducing their environmental
impact as well as lower the amounts of non-volatile residues
left on the treated artifacts [57,66,81,82]. Possible candidates
include recently proposed gemini surfactants with a carbo-
nate bond in the spacer [83].
Finally, other approaches such as Pickering emulsions

have been recently explored to formulate nanostructured
fluids for art cleaning tasks. Namely, halloysite nanotubes
have been modified with SDS to obtain micelles that en-
capsulate tetradecane in o/w microemulsions, and are used to
clean historical marble surfaces [84,85]. These Pickering
emulsions were also thickened with pectin to gain more
control in the cleaning action [86].

4 Gels

Most iconic objects in the historical and artistic heritage can
show high sensitiveness to solvents or aqueous solutions.

Figure 2 (Color online) Interaction of the continuous phase and swollen micelles of an o/w nanostructured cleaning fluid with a polymer coating on the
surface of a painting. (a) The partially water-soluble solvents (also good-solvents for the polymer) are found both in the aqueous continuous phase and in the
micelles built by the surfactant and co-surfactant molecules. (b) The aqueous phase and the micelles dynamically exchange solvents, surfactant and co-
surfactant molecules with the polymer layer, which uptakes them and swells/softens up, while the micelles shrink and rearrange in smaller aggregates. (c)
Beads of the swollen/softened polymer detach from the surface and are removed in the aqueous phase of the fluid. Readapted with permission from ref. [56].
Copyright © 2010 The Royal Society of Chemistry.
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Examples include ancient and modern ink manuscripts,
inked/dyed paper artworks, modern oil and acrylic paintings,
plastic materials, parchment, and leather [80,87–89]. When it

comes to removing soil, contaminants, or aged adhesives/
coatings from these objects, spatial and time control of
solvent-substrate interfacial processes are crucial. This also

Figure 3 (Color online) Dewetting and detachment of a synthetic polymer coating from the surface of a fresco painting, using an o/w nanostructured
cleaning fluid. (a) Visible light image of the fresco painting. (b) The yellow box marked with “*” indicates the area where the fluid was used to remove the
polymer coating. (c) The dashed lines highlight the areas where the polymer was removed. (d) Detail of the application of the fluid uploaded in cellulose
poultices. (e) A gentle mechanical action is applied to remove the swollen and detached polymer coating after the action of the cleaning fluids. (f)–(g)
Grazing light comparison of the painting before (f) and after (g) the removal of the coating. (h) The combined action of good solvents and surfactants dewet
the polymer (labeled in red in the confocal laser scanning microscopy images), which forms ripples and eventually isolated droplets on the surface, leading to
the removal of the coating simply by using a fluid-loaded cellulose poultice and some gentle mechanical action (swab roll). PDE: pentadecaoxyethylene
dodecyl ether; MPD: methyoxy pentadecaoxyethylene dodecanoate; PC: propylene carbonate. Readapted with permission from ref. [67]. Copyright © 2022
with permission from Elsevier.
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applies to cases where only partial removal of varnishes and
patinas is required to leave some historical patinas on the
surface of the art objects [90]. Poorly retentive and me-
chanically weak confining networks, like traditional HVPDs
and cellulose poultices, can hardly cope with these challen-
ging tasks. Alternatively, gels and molecular scaffolds with
enhanced properties have been designed in the last decade in
the framework of colloids science and soft matter [34].
Gels are materials of uttermost importance in several

transversal scientific and technological fields, spanning from
detergency to cosmetics, the food industry, pharmaceutics,
and drug delivery. Indeed, several classes of gel or gel-like
materials have been traditionally borrowed from these fields
by restorers and conservation scientists; examples include
gellan and agar gels which will be mentioned further in this
section. Then, starting from the early 2000s, gel systems
specifically designed for use in conservation science have
been progressively designed, physico-chemically character-
ized, and assessed in art cleaning case studies worldwide.
Gels are distinguished by HVPDs in that they feature a full

3D network of bonds spanning the whole system, which in
polymer gels is permeated with finite branched polymers.
The gelation process can have diverse physico-chemical
drivers that eventually lead from a solution (sol) to the
emergence of macroscopic rigidity [91]. The presence of a
3D fully extended bond network translates in structural and
dynamic properties that set gels apart from mere polymeric
dispersions. The first fundamental classification regards the
type of bonds holding the network, which can be dis-
tinguished between physical and chemical, as illustrated in
Table 1 [91].
Taking advantage of different types of cross-links can lead

to gel systems with various mechanical and rheological be-
haviors, which are broadly classified as strong vs. weak gels.
In the standard rheological characterization, gel materials are
perturbed with small oscillatory deformation, measuring
their stress response over a range of oscillation frequencies.

Typically, the elastic (or storage) modulus, G′, and the vis-
cous (or loss) modulus, G″, are obtained by the Fourier
transform of the shear relaxation function, and used to
evaluate the viscoelastic behavior of the material (see Figure
4). Strong gels have G′>G″ and both moduli are nearly fre-
quency-independent over a large frequency range, owing to
the presence of localized particles or molecular structures
able to store deformation energies over long timescales [91].
Several materials commonly termed “gel-like” have strongly
frequency-dependent storage and loss moduli, and fill in the
class of weak gels. HVPDs can even exhibit crossover points
frequencies above which G″>G′ [92].
Another fundamental distinction is between hydrogels,

which confine aqueous media or blends of water with polar
solvents, and organogels, used to confine average- or low-
polarity solvents.
As anticipated in the previous sections, traditional thick-

eners like cellulose ethers (Klucel®, Tylose, HPMC) and
PAA HVPDs have been largely employed in art cleaning, but
they only offer limited control on the action of the poorly
confined solvents/fluids and are known to leave residues.
Polysaccharides (see Figure 5) have been widely explored

to formulate bio-based hydrogels for the cleaning of art, and
a comprehensive review was recently given by Passaretti et
al. [93,94]. For instance, gellan or agarose have been for-
mulated as rigid (physical) gel sheets that reduce or avoid
residues, but are too rigid to adapt to the rough surfaces
typically encountered in modern/contemporary paints
[18,95].
However, they have been successfully used on flat surfaces

such as paper artworks. Upon heating, the gellan polymer is
dispersed in water as coils, which partially form double he-
lices when cooling; the helices are alternated with coils, and
calcium ions are used to stabilize the structure, e.g., by
adding calcium acetate. Concentrations from 1%–2% to 3%–
4% are typically used to obtain rigid gel sheets. Applications
include the removal of degradation products from paper, the

Table 1 The main types of cross-links building chemical and physical gel networks, with representative examplesa)

Type of cross-link Procedure Example

Chemical gels

Cross-linking of existing polymer chains in random (vulcanization)
or end-linking process rubber, poly(vinyl alchol) gel

Cross-linking polymerization poly(acryl amide) gel

Addition polymerization silicone gel (addition cure)

Condensation polymerization silicone gel (condensation cure)

Physical gels

Formed by physical (e.g., hydrogen) bonds ‘jello’, agarose gel

Formed by crystallization cellulose gel

Formed by ionic bond gelatin gel

Formed by self-assembly of small molecules (e.g., organogelators) steroid gel

Formed by mechanical dispersion of carbon nanotubes in
polypropylene carbon nanotube, entanglement network

a) Readapted with permission from ref. [91]. Copyright © 2018 American Chemical Society.
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reduction of oxidized groups, or even targeting biopollution
and aged glues by uploading in the gellan, respectively, hy-
drolats from botanical species or enzymes [96–103]. Agar is
composed of agaropectin and agarose, extracted from red
seaweeds, and forms coils in water at 80°C, which rearrange
upon cooling into a thermo-reversible 3D gel structure built
by the coils linked through hydrogen bonds. An extensive
review of the use of agar gels for cleaning art was recently
provided by Sansonetti et al. [104], covering important ap-
plicative aspects. Agar gels have been used as loaded with
chelating agents, enzymes, surfactants, or o/w microemul-

sions, and have been formulated as poultices, grated parti-
cles, or rigid gels [46,105–108]. Agar can even coordinate
copper centers, especially in cooperation with chelating
agents, and can thus be used for removing stains from copper
or stone [109]. Overall, agar gels are versatile and sustain-
able tools, but the possible presence of gel residues left on
treated surfaces still needs thorough investigation. Hydrogels
or viscous dispersions of xanthan gum have been used to
remove polyacrylate coatings from paintings or to clean ar-
chaeological metals, while chitosan has been mostly used to
realize protective coatings in art conservation applications
[94,110].
Regarding synthetic polymer hydrogel networks, a ple-

thora of different compounds has been explored over the
years for art cleaning tasks, including polyacrylamide, poly
(2-hydroxyethyl methacrylate) (p(HEMA)), poly(vi-
nylpyrrolidone) (PVP), and polyvinyl alcohol (PVA) [34].
Chemical networks formed by radical crosslinking of ac-

rylamide were used to remove lining adhesives from canva
[111]. The application provided one of the first examples in
art cleaning where the meso/nano and microporosity of a
hydrogel network were controlled to tailor its water reten-
tiveness and mechanical properties for specific applicative
purposes. Successively, pHEMA/PVP semi-interpenetrated
networks (SIPNs) were formulated to achieve highly re-
tentive gels and remove particulate soil from poorly bound,
powdering and highly water-sensitive paintings, such as the
Tibetan Tang-ka [112]. These SIPNs were formed by
crosslinking HEMA in the presence of linear PVP, which
does not participate in the crosslinked network but remains
embedded in it. The resulting SIPN gathers the optimal

Figure 4 (Color online) Schematic representation of the dependence on
the perturbation frequency of the elastic modulus G′ and viscous modulus
G″ for strong and weak gels subjected to an oscillatory mechanical per-
turbation. Readapted with permission from ref. [91]. Copyright © 2018
American Chemical Society.

Figure 5 Bio-polymers used for hydrogel formulations in cultural heritage: structural formula of xanthan gum, gellan gum, agarose and chitosan.
Reproduced with permission from ref. [94].
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mechanical properties of pHEMA and the high hydro-
philicity and water retention of PVP. Indeed, these gels
marked a significant step forward in art cleaning formula-
tions and were assessed in numerous case studies. On paper
artworks, they proved to be more retentive, mechanically
resistant and safe than gellan gels, and were uploaded also
with enzymes to remove glues and cellulose degradation
products [112,113].
These positive results culminated in the publication of

applicative guidelines and in the formulation of commercial
products based on the pHEMA/PVP systems [114]. In ad-
dition, the pHEMA/PVP gels were loaded with o/w micro-
emulsions to produce one of the most advanced cleaning
tools, able to target the selective detachment or dewetting of
unwanted surface layers, leaving unaltered the original ar-
tistic surface underneath. The gels behave as sponges able to
upload different nanostructured fluids with only minimal
alteration of the SIPN 3D structure (see Figure 6) [115]. The
fluids’ micelles can undergo slight size reduction. Overall,
the combination of non-classical cleaning mechanisms by
the fluids with their confinement in the gels’ networks al-
lowed the safe removal of aged coatings/adhesives from
highly sensitive surfaces (watercolors, wood icons, leather,
paper artworks), and of vandalism/graffiti from murals and
painted surfaces [17,89,115]. The latter case was particularly

challenging as the chemical composition of the graffiti often
matches that of the original paint layer of the artifact, making
the safe removal of the vandalism time-consuming with
traditional solvent chemistry [17,116,117]. In the case of
paper artworks, a frequent challenge is to remove scotch tape
adhesives, used as repairs in past restorations, from inked/
dyed areas that are highly water- and solvent-sensitive. A
recent study showed how the combined gel+fluid system was
quickly effective in transferring the fluid through the scotch
plastic backing into the adhesive layer, swelling the adhesive
and allowing its safe and feasible detachment from inked
areas [17]. The fluids composition can be tuned to address
different types of backings, e.g., cellulose or plastics.
As effective as pHEMA/PVP SIPNs are, they have one

main limitation in that they typically have high elastic
moduli, which hinders complete adhesion to the rough
painted surfaces commonly found in modern/contemporary
paintings. To overcome this limitation, a completely new
class of gels was formulated based on polyvinyl alcohol
[18,118]. PVA is an optimal candidate for building gel net-
works, being an almost non-toxic, affordable, and water-
soluble synthetic polymer able to produce physical gel net-
works with optimal properties simply by freeze-thawing
(FT) PVA aqueous solutions, without the need of cross-
linkers or other additives [18,19]. Upon freezing of PVA

Figure 6 (Color online) (a) The optimal adhesion of PVA-based gels to rough painted surfaces favors the homogeneous removal of soil in a few short
applications (5 min each), while only poor removal could be obtained using a rigid gellan sheet. Reproduced with permission from ref. [118]. Copyright ©
2022 with permission from Elsevier. (b) Selective removal of an aged, yellowed varnish from the surface of a wood icon, using a pHEMA/PVP SIPN
hydrogel loaded with an o/w nanostructured cleaning fluid (Left: before cleaning; Center: cleaned, visible light; Right: cleaned, UV light). (c) Slight
alterations were induced on the pHEMA/PVP SIPN by different o/w nanostructured cleaning fluids (“EAPC”, containing ethyl acetate and propylene
carbonate as solvents, vs. “MEB” containing methyl ethyl ketone and butanol). The size of solid-like inhomogeneities in the SIPN network can be slightly
increased or decreased, but the mechanical properties and retentiveness of the gel are not essentially altered. Reproduced with permission from ref. [115].
Copyright © 2018 American Chemical Society.
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solutions, the polymer phase separates from water, and is
pushed by ice into polymer-crowded regions that become
crystallites held by tightly ordered hydrogen bonds [119].
The crystallites act as joints in the forming 3D network that
produces hydrogels with high viscoelasticity and tunable
flexibility. While FT PVA gels have been vastly explored in
several technological fields, a new class of “twin-chain”
(TC) PVA gels was recently devised for applications in art
cleaning [18]. The key concept in these new materials is the
use, in the same pre-gel sol mix, of two types of PVA, dif-
fering in their molecular weight and hydrolysis degree. The
different hydrophilicity and molecular weight cause the de-
mixing of the two polymers in the aqueous medium, to
produce micrometric blobs of the lower molecular weight
PVA (L-PVA) in the continuous sol formed by its high mo-
lecular weight counterpart (H-PVA). When the sol undergoes
FT cycles, the L-PVA blobs are elongated while the H-PVA
is mainly involved in the formation of gel walls. Upon
washing, some of the L-PVA is removed, leaving a spongy,
disordered and interconnected porous network in the PVA
gel. The difference from single-component FT PVA gels is
striking, as the latter feature cylindrical and hexagonally
packed pores. The spongy interconnected network of the TC
PVA gels likely offers an advantage in soil uptake from
treated surfaces through the gel matrix, pulled by evapora-
tion at the gel’s upper face. In addition, some of the L-PVA
remains blocked in the gel walls during FT, where it provides
improved compliance of mechanic stress and flexibility that
is unparalleled by either the pHEMA/PVP SIPNs or by rigid
gellan sheets (see also Figure 6) [115,118]. These features
have made the TC PVA gels the preferred choice in the
cleaning of masterpieces such as paintings by Pablo Picasso,
Jackson Pollock, Roy Lichtenstein and others, and these
tools are now being adopted by the conservation community
along with the pHEMA/PVP gels [18,19,120–122]. The TC
gels can be uploaded with o/w nanostructured fluids, and it
was shown that, when the gel is in contact with a surface, the
cleaning process is driven by the osmotic equilibrium inside
the gel network: the fluid diffuses freely in the outer pores
and interacts with the painted surface, while fresh fluid is
continuously recalled at the gel-paint interface thanks to the
interconnected porosity and to the equilibrium between free
and bound micelles [19]. Thus, the diffusion dynamics of the
micelles are optimized by confinement in the TC polymer
network, while uncontrolled spreading of the cleaning fluid
is avoided, granting time- and space-controlled cleaning
action not achievable with the non-confined fluids. These
features make the TC gels combined with the o/w fluids the
most sophisticated and advanced aqueous systems currently
available to conservators.
In addition to the TC gels, PVA was also used in semi-

IPNS along with linear PVP: PVA is crosslinked via FT
cycles, while PVP acts as a hydrophilic porogen to yield

large equilibrium water contents [118].
PVA has also been adopted in gel formulations where the

polymer is crosslinked with telechelic PVA (tel-PVA, i.e.,
PVAwith an aldehyde at each chain end). The ratio between
the two components can be adjusted to tune the porosity/
retentiveness and mechanical properties of the gels, which
have proven optimal tools for cleaning photographs and
paper items [123–125].
Previously to the PVA gels, the polymer had been largely

explored to form HVPDs cross-linked through the ester-
ification of the vinyl hydroxyl groups by anions like borate,
vanadate or antimonite [126]. The resulting covalent cross-
links are dynamic and their density is affected by tempera-
ture and other factors including electrostatic interactions and
charge-shielding effects, as well as PVA chain excluded
volume [127–129]. Also, importantly for art cleaning ap-
plications, these HVPDs can upload significant amounts of
high- and medium-polarity organic solvents. The type/
amount of loaded solvents and the molecular weight of PVA
affect the mechanical behavior of the HVPDs, which can
have enough viscoelasticity to allow their easy removal from
treated surfaces in one piece. The mechanical properties can
also be improved by blending PVA with agarose in double
polymer networks [130]. The PVA-borax HVPDs can be
loaded with o/w microemulsions, and it was shown that,
while SDS has a de-structuring effect, the co-surfactant 1-
pentanol and the solvent xylene provide an overall struc-
turing effect and increase the mechanical strength of the
polymer network, whose relaxation process follows a sticky
reptation mechanism where reversible bond breaking and
making between associating groups (stickers) controls the
dynamics of the associating polymers [131,132]. According
to the model, viscosity has a very strong concentration de-
pendence.
Finally, PVA has also been employed to upload chelating

agents in polymer dispersions that can film on metallic sur-
faces and extract metallic ions from corrosion patinas. These
systems have been successfully used to clean bronze sculp-
tures with finely carved surfaces, since the dispersions can
penetrate small cavities [133]. However, they can only be
used on artifacts whose original surface is not mechanically
fragile, to avoid the risk of inducing damage when the dry
films are peeled off the surface. In the case of sensitive
metallic surfaces, interpenetrated networks of pHEMA and
PAA can be uploaded with chelators in an aqueous solution,
to remove the corrosion products [134]. These pHEMA/PAA
IPNs are pH-responsive, and have proved more effective
than pHEMA/PVP SIPNs in the cleaning of bronze, owing to
the improved chelating power of PAA over PVP. In parti-
cular, when the gels are uploaded with highly alkaline so-
lutions of tetraethylenepentamine (TEPA), ternary
complexes are formed by carboxylate groups (from PAA)
chelating copper ions in cooperation with TEPA.
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The other large class of gels, organogels, is being grow-
ingly explored owing to the need of complementary tools
when artistic surfaces cannot sustain even minimal contact
with aqueous solutions, even if confined in retentive ma-
trices. Research in this applicative field has started from
synthetic polymers and is now progressing to bio-derived
and waste materials [94,135]. Organogels based on the cross-
linking of methyl methacrylate (MMA) were prepared as
gummy cylinders or sheets loaded with different organic
solvents (ethyl acetate, butyl acetate, and ketones), and used
for the controlled removal of aged varnishes from the surface
of canvas paintings [135]. The uptake of solvents in the
polyacrylate network follows different combinations of
Fickian diffusion and Case-II transport, i.e., where the re-
laxation of the polymer chains upon solvent imbibition is the
rate-controlling step. Solvent contents ranging from ca. 65%
to >90% were obtained; confinement reduces the solvents’
volatility and hence their toxicity to the operators. Succes-
sively, a PMMA gel loaded with methyl ethyl ketone was
formulated with improved retentiveness for use on paper
artworks. This gel was used to remove wax spots from 19th
century inked manuscripts, and the controlled solvent release
avoided damage to the sensitive inked portions of the arti-
fact. Alkyl carbonates, a class of “green” solvents with good
activity to several materials, were also uploaded in the
PMMA networks, tailoring the systems to the removal of
pressure-sensitive tapes from paper artworks [116,136,137].
When the gel is in contact with the tape, the solvent gradually
penetrates-through the tape plastic backing layer (as shown
by laser scanning confocal microscopy) and swells the un-
derlying adhesive. The swollen/detached adhesive can then
be removed by gentle mechanical action, as nicely demon-
strated in the cleaning of artworks such as drawings by Keith
Haring, which could be safely restored despite the presence
of highly sensitive inks.
PVA-borax HVPDs were extended to upload organic sol-

vents by employing benzene-1,4-diboronic acid (BDBA) as a
crosslinker [138]. BDBA is soluble and stable in many or-
ganic liquids, and allows uploading dimethyl sulfoxide, di-
methylformamide, tetrahydrofuran, and 2-ethoxyethanol in
the HVPDs. Aged varnishes were feasibly removed from
16th to 18th century oil paintings using these systems.
Moving to bio-based systems, organogels for cleaning art

were synthesized using polyhydroxy butyrate (PHB). PHB
was used with alginic acid to synthesize a functionalized
organogel loaded with chelators for the removal of iron
compounds from archaeological wood [139]. However, the
authors used chloroform to obtain lower molecular weight
PHB in the synthetic route, which could be not sustainable in
upscaled productions. PHB was then used to formulate or-
ganogels, along with γ-valerolactone (GVL), ethyl lactate
(EL), and dimethyl carbonate (DMC, also coupled with
biodiesel) as organic solvents. These systems were ex-

tensively characterized and effectively used to clean water-
sensitive tempera paintings and remove aged terpene varn-
ishes, as well as to clean historical metal heritage [94,140–
143]. One limitation in the inclusion of biodiesel is that,
being non-volatile, its use implies the need of rinsing steps to
remove solvent residues from treated surfaces. To improve
the cleaning efficiency, retentiveness, and mechanical
properties of the PHB gels, they have been successively
combined in sandwich-like composites with nonwoven fab-
rics of micrometric fibers made by electrospinning technol-
ogy [144]. Besides providing mechanical improvement, the
fabrics participate in the cleaning process, likely by slowing
down solvent diffusion and conferring surface micro-
roughness to the composites.
Recently, Çakmak et al. [145] proposed bio-based orga-

nogels using thiol-ene photopolymerization (TEP) starting
from three different bio-based building blocks. In particular,
limonene and isosorbide were selected as they have an af-
finity to terpene-based natural varnishes, while pyrogallol
(which in principle has some toxicity since it can form free
radicals) introduces aromatic units to promote the removal of
aromatic compounds. DMC was used as the solvent. This
approach has potential for green gel formulations, but one
current limitation involves the low polymerization tendency
of some of these systems.

5 “Green” solvents and surfactants in cleaning
formulations

The continuing trend toward an ever-improving quality of
life is boosting the need for the consumption of vast amounts
of chemicals and increasingly sophisticated goods. By now,
chemistry has taken on a key role in practically all facets of
modernity. The manufacture of industrial chemicals has not
always been welcomed by society or seen favorably
[146,147]. Even though the chemical industry was formerly
viewed as the answer to many of society’s demands, con-
cerning skepticism toward it has grown in recent years be-
cause of an increase in disasters, spilled materials, or the
presence of undesirable substances in commonly used pro-
ducts [148,149]. As the civil community becomes more
conscious of environmental challenges, there is an increasing
interest in designing new goods, procedures, and services to
meet specific economic and environmental objectives [150].
As a result, “green” methodologies are deeply permeating
today’s modern society, developing chemical reactions and
processes to ensure improved efficiency, safety, and clean-
liness in terms of decreased waste [151]. In this framework,
“Green chemistry” emerges as a core pillar that represents a
fundamental application of sustainable development and
industrial ecology to reduce the usage and handling of ha-
zardous compounds. It follows that minimizing the raw
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materials employed, and reducing the buildup of hazardous
products and wastes, are indeed complementary to the use of
renewable resources aimed to maximize the recycling of
materials, towards a more cost-effective chemistry
[152,153]. Recently, the path to eco-sustainability was im-
plemented as a major strategy for achieving climate neu-
trality on a European level. According to this principle, the
“Green Deal” was proposed by the European Commission in
late 2019 as a European transition plan which focuses on
halving carbon emissions by 2030 and achieving carbon
neutrality by 2050. As a matter of fact, Europe seeks miti-
gation of the global warming rate by implementing an all-
encompassing approach that, through intermediate phases,
allows concurrent regulation activities in a multitude of
sectors, such as industrial manufacturing, energetic produc-
tion, transportation, finance, and agriculture [150,154,155].
Because the huge European cultural heritage constitutes a

significant part of the social-cultural landscape of Europe, its
preservation must confront the growing awareness of the
Green Deal imperatives. Despite certain developments
backed by research over the last years, the traditional ma-
terials and procedures employed in current remedial and
preventative conservation practices do not always fulfill the
criteria for durability, sustainability, or cost-effectiveness.
Indeed, while conservators are globally adopting aqueous
systems in wet cleaning, conservation practice typically re-
lies on time-consuming or energy-intensive processes. In
addition, there is the need to replace unfriendly materials that
remain in the traditional approach, including silicones and
petroleum-based solvents such as mineral spirits, with
“Green chemistry” solutions. It has become crucial to sug-
gest new eco-friendly and sustainable materials and strate-
gies to protect, maintain, and restore cultural heritage to
solve these issues.
In this sense, some large industrial enterprises have pro-

duced so far multiple solvent selection recommendations in a
variety of formats during the last ten years, contributing to
the continuous evolution of regulations. These selections are
generally based on Safety, Health, and Environment (SH&E)
criteria, and on energy consumption. Specifically, im-
portance is given to the energy production requirements and
the available options to recover some of these energetic de-
mands. The energy recovery depends on the solvent type and
can be achieved by incineration or by solvent recycling via
distillation. Additionally, solvent classification is also de-
pendent on hazard and risk codes, as well as legal exposure
limits [156–158]. Major pharmaceutical companies such as
Sanofi, AstraZeneca, GlaxoSmithKline (GSK), and Phizer,
between 2010 and 2016, made strong contributions in pro-
viding and updating this bulk of recommendations. However,
the classifications introduced so far cover only in part the
vast pool of industrially employed solvents. Academia and
industrial enterprises established together, in 2005, the

American Chemical Society’s Green Chemistry Institute
Pharmaceutical Roundtable (ACS GCI GCI-PR), which has
recently created a solvent reference open access database
collecting recommendations and information supplied by
Pfizer and AstraZeneca. In addition, further classifications
and assessment updates were recently provided by several
researchers [156–164].
In this section, we provide an updated summarizing clas-

sification that includes the final scores currently available for
solvents used in the traditional conservation practice and in
the current state-of-the-art methodologies for the cleaning of
works of art. These final scores are expressed by institutions
using a color assignment, where a red flag indicates a highly
hazardous solvent (major issues), a yellow flag a problematic
solvent (some issues), and a green flag a recommended
solvent (few/no issues).
We added color scores for traditional and recently used

cleaning solvents that were missing from the industrial/
academic surveys. The added solvents were scored according
to the Innovative Medicines Initiative (IMI)-CHEM21indi-
cations, which use the most recent and stringent combination
of SH&E criteria (taken from REACh and SDS sheets
available from producers) [156].
The same approach was used to score surfactants currently

used in the cleaning of works of art.
Finally, we also calculated a global color score for each

chemical that weighs all the final scores given to it by dif-
ferent institutions. First, we assigned a numerical value of 1
to red flags, 2 to yellow flags, and 3 to green flags. The sum
was then divided by the total number of score entries given to
each chemical by all the considered institutions, using two
decimal digits for the result. We chose to ignore “un-
classified” entries in the global score evaluation. For in-
stance, 1-propanol has 0 red flags, 1 yellow flag, 2 green
flags, and 5 “unclassified” entries, yielding a global score of
2.67. The global scores were also translated in colors, from
deep red (lower end) to yellow (average values) up to deep
green (high end). The full tables with the final and global
scores for solvents/surfactants are reported in the Supporting
Information file.
In Figures 7 and 8 we show a visual synthetic representa-

tion of the global scores (color scale) for the solvents and
surfactants that we evaluated.
Overall, among the classes of solvents used in art cleaning

interventions, the highest global “green” metrics scores are
exhibited by alcohols, ketones, and alkyl carbonate esters.
Regarding surfactants, most of the used compounds have

good scores, except cocoamines. Alcohol ethoxylates are
generally classified as potentially able to accumulate in the
environment, and thus classified as toxic to aquatic life.
However, the alcohol ethoxylate surfactants proposed so far
in art cleaning formulations are considered as readily clea-
vable or biodegradable [57,82,83].
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6 Conclusions and future perspectives

Materials science, colloids, and soft condensed matter have
provided (and are providing) the most sophisticated and ef-

fective solutions for the safe and selective removal of soil,
degradation products, aged coatings, and vandalism from the
surface of works of art. Nanostructured cleaning fluids, such
as microemulsions or swollen micelles, have improved over

Figure 7 (Color online) Graphical representation of the global score that averages, for each solvent, the “green” metrics scores provided by industrial and
academic institutions [156–160,162,163]. The figure includes the solvents used in the traditional conservation practice and in the current state-of-the-art
methodologies for the cleaning of works of art. For the main references to the use of these solvents in cleaning formulations see refs.
[34,46,47,54,57,62,78,79,114,144].
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traditional solvent blends, taking advantage of non-classical
cleaning mechanisms that work on dewetting or swelling/
detachment processes. In addition, novel confining systems
have been designed to overcome the limitations of solvent
thickeners. Polymer gels have shown excellent performances
in cleaning operations on masterpieces spanning from classic
art to the Renaissance and modern/contemporary production,
where requirements such as optimal mechanical properties
and high retentiveness are imperatives to all cleaning
systems. The current benchmark for the wet cleaning of
art is constituted by the combined gels and nanostructured
fluids, which are the most efficient and advanced tools cur-
rently available to conservators for this kind of restoration
tasks. Synthetic polymers like polyvinyl alcohol and poly-
vinyl pyrrolidone are optimal choices for formulating phy-
sical gels with good mechanical properties, adhesivity to
surfaces, and retentiveness, such as the recent “twin-chain”
PVA gels.
Current and future trends in the design of gelled systems

for cultural heritage preservation, involve the development
of synthetic materials that mimic natural tissues, or the direct
employment of bio-based and waste polymers to build the
gel networks. In the first case, an approach that has been
growingly adopted is to vary the architecture of network
strands such as graft polymers [165,166]. Parameters like the
degree of polymerization of the side chains and their grafting
density can be controlled to tune the structures and physico-
chemical properties of the network.
Figure 9 shows a state diagram where different graft ar-

chitectures are obtained as a function of their chemical
structure and composition. For instance, in the “Comb” re-
gime, both side chains and backbones of graft polymers in-
terpenetrate and remain ideal, while in the “Bottlebrush”

regime excluded volume interactions between densely graf-
ted side chains can cause the backbones or side chains to
stretch to maintain a constant monomer density. Archi-
tectures such as extended backbones (Stretched Backbone,
SBB), stretched side chains (Stretched Side Chain, SSC), and
fully stretched side chains (Rod-like Side Chain, RSC) can

Figure 8 (Color online) Graphical representation of the global score that averages, for each surfactant, the “green” metrics scores provided by industrial and
academic institutions [156]. The figure includes the surfactants used in the traditional conservation practice and in the current state-of-the-art methodologies
for the cleaning of works of art. Other common names for the surfactants in the figure are as follows: Sodium lauryl sulfate (Sodium Dodecyl Sulfate, SDS);
Lauramine oxide (dodecyldimethylamine oxide, DDAO); Polyethylene glycol mono(octylphenyl) ether (TritonTM X-100); Polysorbate 20/80 (TweenTM 20/
80); Alkyl polyglucosides (AGE, AGESS, AGTM 6202); Polyoxyethylene lauryl ether (BrijTM 35); 2-hydroxyethyl cocoamine (ETHOMEEN®). For the
main references to the use of these surfactants in cleaning formulations see refs. [34,46,47,54,57,62,78,79,114,144].

Figure 9 (Color online) Diagram of states of graft polymers in a melt,
with bond length l, Kuhn length of the backbone b (i.e., the length of a
segment in a chain treated as made up of freely jointed segments), degree of
polymerization of the side chains nsc, and monomer excluded volume v
(i.e., inaccessible to other molecules in the system). φ is the monomers
partitioning between a side chain and backbone spacer between two
neighboring side chains (“dilution” of the backbone). SBB, stretched
backbone regime; SSC, stretched side chain regime; RSC, rod-like side
chain regime. Logarithmic scales. Adapted with permission from ref. [166].
Copyright © 2017 American Chemical Society.
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thus be obtained.
Regarding the use of bio-derived polymers, current trends

and future perspectives involve mixed structures where low-
toxicity polymers (e.g., PVA) interact with bio-materials (e.
g., starch) to build gel and scaffolds, or the complete re-
placement of synthetic polymers with materials derived from
agricultural waste or vegetable sources as opposed to pet-
roleum-based products [167,168]. In the second case, current
examples include the polyhydroxy butyrate gels, as well as
scaffolds of bio-based polyurethanes from castor oil, which
have already found application as pollutants absorbers in the
preventive conservation of artifacts [169–172]. Chemically
crosslinked networks of chitosan, L-cysteine, and itaconic
anhydride have been proposed by Lai et al., demonstrating
metallic ions’ uptake capacity [173]. Other promising net-
works could be realized via the so-called Michael addition
reaction, yielding hydrogels from renewable and biode-
gradable sources [173–175].
“Green” solvents, such as alkyl carbonates, are progres-

sively replacing the traditional solvents used in the con-
servation practice, and we provided here a summarizing
overview of the “green” chemistry scores for solvents and
surfactants currently used in the cleaning of works of art.
Future perspectives in this sense regard the use of deep eu-
tectic solvents, an emerging class of mixtures with sig-
nificantly depressed melting points compared to their neat
parental solvents. These materials have great potential in
several applicative fields, being affordable, “green” and
characterized by many tunable physicochemical properties.
Hansen et al. [176] recently provided an exhaustive review
on these highly promising fluids, and their use in the cleaning
of artifacts is still an open field where only a few attempts
have been tried. Ionic liquids constitute another class of
fluids that has a promising impact in art cleaning, for in-
stance, for fungi and bacteria removal, building on the
knowledge gathered on the use of these materials as pro-
tectives against biofouling or corrosion [177–182].
Finally, other important perspectives regard the use of

microorganisms (and enzymes) as tools for removing or-
ganic or inorganic unwanted layers. Biocleaning is a topic of
interest where several methodologies have been proposed,
but these are not yet established nor standardized, and in-
volve several requirements, e.g., the safety and effectiveness
of the microorganisms employed, and the need for mon-
itoring the treated surfaces before and after treatments to
avoid contamination/proliferation [183–190]. The need to
tailor the cleaning action on a case-by-case scenario is one of
the main limitations to this approach, which is also a crucial
concern to conservation scientists developing optical clean-
ing methods like laser ablation [191–193].
Overall, these perspectives make the preservation of cul-

tural heritage an exciting field where new systems can (and
must) be developed. The new solutions designed in this field

have a great potential socioeconomic impact, and foster the
possibility of transferring new tools also to other transversal
industrial and pharmaceutical sectors of fundamental im-
portance.
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