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Improved analytical model for mesh stiffness calculation of cracked
helical gear considering interactions between neighboring teeth
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As one of the most typical fault forms of the helical gear, the crack will change the dynamic excitation and further affect the
dynamic behaviors of the transmission systems. Due to the complicated structure of the helical gears, the coupling effect between
the neighboring loaded teeth is usually ignored in the mesh stiffness calculation, making it considerably overestimated especially
in the case of the crack fault. An improved mesh stiffness calculation method of helical gear with spatial crack is proposed to
make up this gap. The interactions between the loaded neighboring teeth induced by the gear body flexibility were considered to
improve the calculation accuracy and applicability. Besides, the load distribution law for the engaged cracked tooth along the
tooth width and profile can be obtained. The results indicated that the mesh stiffness of the multi-tooth engagement calculation
using this model could be further improved compared with the traditional methods. Finally, the effects of the helix angle, crack
depth, and crack propagation length on the mesh stiffness and load distribution were investigated using the proposed method.
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1 Introduction

The helical gear tooth load in the alternate engagement re-
gion is gradually loaded and unloaded. Therefore, the helical
gear transmission is suitable for complicated high-speed and
heavy-haul mechanical equipment to deliver force and mo-
tion. In addition, the impact, vibration, and noise are low for
the transmission systems during the operation process.
However, the fault will inevitably occur due to the complex
internal excitations and external vibration environments
[1,2]. As a typical fault of the helical gear, the crack pre-
senting the complicated spatial propagation can significantly
reduce the effective load-bearing region for both the tooth
and gear body. Therefore, accurately obtaining the time-
varying mesh stiffness of helical gear pairs with the com-
plicated spatial crack propagation path is the premise of the

relevant dynamic analysis and crack fault diagnosis.
Actually, an increasing number of scholars are performing

studies on calculating of the mesh stiffness of the gear pair
with crack fault from the perspective of the crack fault effect
on the tooth part. Lewicki and Ballarini [3] performed ana-
lytical and experimental studies to investigate the propaga-
tion paths of the tooth root crack with different backup ratios
which determined the crack path propagating to the tooth
part or gear body. Verma et al. [4] researched the tooth root
crack propagation effect on the mesh stiffness under different
backup ratios by adopting the extended finite element (FM)
method. Wang et al. [5] employed the analytical FM method
to calculate the mesh stiffness of the gear pair with gear body
crack and complex gear body foundation, such as thin-web
and holes foundation. Based on ref. [5], the FM theory and
loaded tooth analysis, Chen et al. [6] further took the situa-
tions of the slots foundation and tooth root cracks into ac-
count. Raghuwanshi and Parey [7] adopted the strain gauge
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technique to measure the mesh stiffness of the spur gear pair
with the tooth root crack. Patel and Shakya [8] calculated the
time-varying mesh stiffness of the cracked gear pair based on
the potential principle, which was incorporated into a lumped
parameter dynamics model of the gear pairs to perform the
fault diagnosis of the tooth root crack using variational mode
decomposition. Chen and Shao [9] proposed the mesh stiff-
ness calculation method for the non-uniform tooth root crack
based on the slice method, and established the corresponding
relationship between the dynamic responses of the gear
system and crack propagation. Furtherly, they determined the
relationship between the tooth errors and the comprehensive
mesh stiffness, and investigated the effects of the tooth
profile modification and tooth root crack on the engagement
features [10]. Mohammed et al. [11] established the time-
varying mesh stiffness calculation method and the corre-
sponding dynamics model of the gear pair with tooth root
crack, and evaluated the crack propagation effect on the
dynamic behaviors with several statistical indicators. Wan et
al. [12] researched the dynamic behaviors of the gear-rotor
system where the mesh stiffness considered the flexibility
between the root circle and the base circle. Ma et al. [13]
improved the mesh stiffness calculation method for the gear
pair considering the transition curve equation to receive
better calculation accuracy. In addition, the effects of the
extended tooth contact [14] and crack propagation paths [15]
on the fault characteristics of the gear systems were in-
vestigated. Pandya and Parey [16,17] studied the effects of
different crack parameters and paths on the mesh stiffness of
the spur gear for both low and high contact ratios. Yu et al.
[18] researched the spatial propagation effect of the tooth
root crack on the mesh stiffness and the load sharing factor.
Cui et al. [19] presented a universal tooth profile equation
according to the actual manufacturing to improve the mesh
stiffness for the cracked tooth. Meng et al. [20] calculated the
mesh stiffness of the cracked gear pair and analyzed the
vibration characteristics of the gear systems. Jiang and Liu
[21] modeled the dynamics model of the cracked helical gear
pair considering the axial stiffness components and the gear
body deflections. Tang et al. [22] developed two coupling
models to calculate the mesh stiffness of the helical gears.
Huangfu et al. [23] established more detailed spalling geo-
metries and analyzed the contact features and dynamic be-
haviors of the gear systems from the theoretical and
experimental study perspectives, and then the effect of the tip
relief was further investigated under the wear fault [24].
All the above literature only considered the crack fault

effect on the tooth stiffness component and that on the gear
body-induced stiffness component was ignored. Based on the
aforementioned research, some scholars performed their
scientific research from the perspective of the effect of the
crack fault on the gear body part for the spur gear. Actually,
the effective load-bearing region on the gear body would be

reduced when there is the presence of a crack fault. Con-
sidering the actual bearing zone of the gear body under the
crack fault, Chen et al. [25] performed the geometric mod-
ification of the effective load-bearing region and center of
the gear body under the condition that the presence of the
tooth root crack and the improved calculation method was
employed into the locomotive system with tooth root crack
for dynamic features analysis [26,27]. Ning et al. [28] es-
tablished the mapping relationship between the vibration
responses of the support bearings and the crack propagation
of the gear system. Yang et al. [29] improved the cantilever
beam model of the gear with tooth root crack, which was
applicable to situations where the crack propagated in both
the tooth part and the gear body. They further studied the
effect of the different crack opening states on the mesh
stiffness and the dynamic characteristics of the gear systems
[30]. Wang and Zhu [31] calculated the mesh stiffness var-
iations of the gear pair under the different spatial crack
propagations with the modified method.
The gear body-induced stiffness was simply superimposed

in the multi-tooth engagement in the above literature.
Therefore, the total gear body-induced stiffness would be
overestimated in the multi-tooth engagement as the engaged
tooth pairs share one gear body, eventually overestimating
the comprehensive mesh stiffness for the double-tooth en-
gagement region. Feng et al. [32] introduced the modified
coefficients of the fillet-foundation stiffness in the mesh
stiffness calculation, and the coefficients could be de-
termined by ref. [33] via the finite element model to solve the
above problem and obtain a more accurate mesh stiffness for
the dynamic analysis. Then, Huangfu et al. [34] employed
the modified mesh stiffness to analyze the spatial crack
propagation effect of the helical gear on the mesh stiffness.
Xie et al. [35] deduced the analytical formulas for the gear
body-induced deflection when the neighboring tooth was
loaded to theoretically reveal the coupling effect between the
two neighboring teeth in the double-tooth region for the
healthy spur gear. Then, it was introduced into the mesh
stiffness calculation [36,37] and analysis of the nonlinear
dynamic behaviors [38] for the spur system.
The effective load-bearing region reduction of the gear

body would be reflected in the geometric parameters of the
gear body, and more than that, it can vary the coefficients of
the polynomial formulas employed to calculate the gear
body-induced stiffness. In addition, the structural coupling
effect between the neighboring teeth with the crack fault in
the double-tooth region is usually ignored by many re-
searchers due to the absence of an effective method. To fill
up the gap, Chen et al. [39] calculated the stiffness of the gear
fillet-foundation and the structural coupling effect with the
tooth root crack via the finite element method. However, the
mesh stiffness calculated by the finite element method was
time-consuming. Ning et al. [40], considering the coupling
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effect of the deformations between the neighboring teeth
based on the elastic mechanics, derived the analytical for-
mulas of the gear body-induced stiffness with the tooth root
crack to obtain an efficient and accurate analytical method to
calculate the gear body-induced stiffness.
As mentioned in the foregoing literature, the coupling ef-

fect between the adjacent loaded teeth induced by the gear
body flexibility was only considered in the spur gear. While
the coupling effect of the elastic deformation between the
neighboring teeth is usually ignored in the mesh stiffness
calculation for the healthy helical gears, let alone the situa-
tion for the cracked helical gear. Actually, the coupling effect
between the loaded neighboring teeth has been demonstrated
to have a considerable influence on the mesh stiffness of the
spur gear. The theoretical calculation result will greatly de-
viate from the actual one in the mesh stiffness calculation of
the helical gear if the structural coupling effect is ignored.
Therefore, the structural coupling effect was considered in
this study to calculate the mesh stiffness of the helical gear
with the complex spatial crack propagation.

2 Improved mesh stiffness calculation method
for the cracked helical gear

In the multi-tooth engagement of the helical gears, the loaded
tooth will influence the deformation of the neighboring tooth
due to that the two neighboring teeth share one gear body.
Based on the analytical calculation method, the coupling
effect between the neighboring teeth is introduced into the
mesh stiffness calculation of the helical gear in this paper,
especially for the occurrence of the spatial crack fault.
When the mating helical gears are engaging, the meshing

first occurs at one end, gradually transits to the other end and
finally exits engagement. The length of the contact line on
the tooth surface first presents the trend of gradual growth,
followed by the modest decline until nil. Due to the time-
varying characteristics of the length of the contact line, the
“slice method” is usually adopted in the time-varying mesh
stiffness calculation for the helical gears. The schematic of
the sliced helical gear model is shown in Figure 1.
According to the refs. [41,42], the actual crack of the he-

lical gear does not only occur in the dedendum region, but
shows the spatial propagation instead. The crack propagation
paths of the helical gear are displayed in Figure 2, there are
two types of spatial crack propagation, namely the end face
propagation and the addendum propagation.

2.1 Modeling of the spatial crack propagation

The addendum propagation and end face propagation of the
tooth crack are the common propagation paths in helical gear
systems. In addition, there are two degrees of crack propa-

Figure 1 (Color online) Schematic of the sliced helical gear model.

Figure 2 (Color online) Schematic of the crack propagation of the helical
gear. (a) Addendum propagation; (b) end face propagation; (c) propagation
paths.
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gation, namely penetration and non-penetration. Therefore,
the four types of the spatial crack propagation distribution on
the helical gear are analyzed in this paper, namely non-pe-
netrative addendum crack (Type-1), penetrative addendum
crack (Type-2), non-penetrative end face crack (Type-3), and
penetrative end face crack (Type-4). The crack propagation
path is assumed to be curvilinear distribution according to
the actual failure mode of the helical gear. The crack depth is
modeled as the parabolic distribution.
The crack propagation paths under the four types of time-

varying crack parameters are depicted in Figure 2. v is the
intersection angle between the extension line of the crack and
the centerline of the gear tooth. It is worth noting that the
intersection angle of the crack along the propagation path is
deemed as constant value in this study. q0 is the initial crack
depth of the transverse, q1 and q2 are the ending crack depth
for penetrative and non-penetrative crack, respectively. l0 is
the distance between the dedendum circle and the initial
position of the crack, le is the distance between the dedendum
circle and the ending position of the crack for the Type-4. Lc
is the width of the crack propagation. The crack depth of the
different gear slice can be calculated by refs. [31,34]:
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where z is the coordinate in z-axis of the gear slice.
The x-axis coordinate of the crack propagation path for the

gear slice can be calculated by refs. [31,34]:
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where Rap and Rfp denote the radius of the addendum and
dedendum circle, respectively.

2.2 Stiffness components calculation with the spatial
crack propagation

The tooth stiffness of the helical gear slice can be regarded as
a spur gear, and the cantilever beam model with variable
section of each helical gear slice is shown in Figure 3(a). Due
to the presence of the helix angle, the force acting on the
tooth profile of the helical gear slice can be divided into two
parts, namely the transverse force acting on the xoy plane and
the axial force acting along the z-axis, and the schematic of
the axial force is depicted in Figure 3(b). According to the
deformation theory of the beam, the transverse force acting
on the xoy plane will generate the bending, shear and axial
compressive deformations, and the axial force acting along
the z-axis will cause the bending deformation on the xoz and
yoz planes. It is worth noting that the coupling effect between
the adjacent helical gear slices is of secondary importance
when the influence factors affecting the contact region along
the tooth width are ignored, such as tooth modification and
assembling error [43]. Therefore, the interactions between
the helical gear slices are not taken into account since these
influencing factors are not considered in the present study.
The transverse force Fxy consists of the Fy along the di-

rection of the tooth thickness and the Fx perpendicular to the
tooth thickness, axial force Fz along the z-axis, they can be
calculated by the mesh force Fm [44]:

F F
F F
F F

= cos sin ,
= cos cos ,
= sin ,

(3)
x

y

z

m b m

m b m

m b

where βb is the helix angle of the base circle; αm denotes the
transverse pressure angle.
The torque Mxy is caused by the transverse force Fxy, and

the torquesMxz andMyz are induced by the axial force Fz. All
three torques can be given as

M x F hF
M x F
M hF

= ,
= ,
= ,

(4)
xy y x

xz z

yz z

F

F

where xF is the distance between the micro-section and the
engaged point; h denotes the half of the tooth thickness at the

Figure 3 (Color online) Schematic of the mesh force for the helical gear. (a) End face; (b) axial direction.
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point of engagement.
According to the principle of potential energy, the stored

potential energy of the deformation components induced by
the transverse force can be expressed as
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The deformation components induced by the axial force
can be expressed as
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where E and G are the Young’s modulus and shear modulus,
respectively; d is the effective length of the cantilever beam
and the mesh force; A and I are respectively the section area
and moment of inertia of the gear slice, which can be cal-
culated by ref. [44]:
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where dw is the width of the gear slice; hx denotes half of the
length for the micro-section; hq represents the distance be-
tween the center line and the crack tip along the y-axis.
Combining the eqs. (3)–(8), the stiffness components of

the total mesh stiffness can be obtained.
The bending stiffness induced by the transverse force and

axial force can be respectively calculated by
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The shear stiffness and the axial compressive stiffness can be
calculated by refs. [9,10]:
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where dx is the distance between the micro-section and the
point of the engagement.
When the two teeth engage, elastic deformation would be

formed in the contact region. The component of Hertz con-
tact stiffness can be calculated by the simplified formula [37]:

K Ed
1 = 4(1 ) , (13)

h

2

w

where υ is the Possion’s ratio.
The tooth stiffness of the single tooth for each helical gear

slice can be calculated by

K K K K K K
1 = 1 + 1 + 1 + 1 + 1 . (14)

x y zt b b b s a

Besides the tooth deformation, the elastic deformation of
the gear body also exerts a considerable effect on the mesh
stiffness when the tooth is loaded. Sainsot et al. [45] derived
the analytical formulas of the gear body-induced stiffness for
the healthy gear based on the assumption of the linear dis-
tributed normal stress and the constant distributed tangential
stress. Furtherly, Xie et al. [35] improved the calculation
formulas considering the cubic distributed normal stress and
parabolic distributed tangential stress. The load-bearing re-
gion effect of the healthy tooth and cracked tooth are S f and
S f , respectively, which are shown in Figure 3(a). Consider-
ing the variation of the load-bearing region when the crack
fault occurs, Ning et al. [40] proposed analytical formulas for
calculating the gear body-induced stiffness with the presence
of the crack fault. The calculation equation of the gear body-
induced stiffness for the healthy tooth and cracked tooth of
the helical gear slice can be expressed as [35,40]
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where u f and u f denote the distance between the dedendum
and the point which is the intersection point between the
center-line of the tooth and the line of action; m is the mesh
angle with geometric correction, whose detailed calculation
can refer to ref. [25]. The details for determination of the Lf,
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Mf, Pf, and Qf for the healthy tooth can refer to ref. [35] and
that of the Lfc,Mfc, Pfc, and Qfc for the cracked tooth can refer
to ref. [40].
It has been verified that the loaded tooth will not only

induce the deformation of its own tooth, but also make the
neighboring tooth generate the flexible deformation. In the
double-tooth engagement region, the two engaged tooth pairs
share one gear body, therefore, the double-tooth mesh stiff-
ness will be considerably overestimated via the simple su-
perposition of the single-tooth stiffness. Further, the coupling
effect between the loaded neighboring teeth is proved to
exert a considerable effect on the total mesh stiffness. Figure
4 shows the structural coupling effect between the loaded
neighboring teeth of the healthy helical gear slice. It can be
seen that the effective load-bearing regions for both engaged
healthy teeth are Sf. However, the deflection angle will be
formed between the center of the load-bearing and the geo-
metric center with the presence of the crack fault. The ef-
fective load-bearing region Sf for the healthy helical gear
slice and Sf′ for the cracked helical gear slice are respectively
shown in the Figure 5 with the bule and pink line. In addition,
the analytical formulas of the coupling stiffness caused by
the structural coupling effect for the healthy gear slice and
the cracked gear slice are derived by Xie et al. [35] and Ning
et al. [40], respectively. The stiffness K21 of the flexible
deformation of the tooth #2 induced by the loaded tooth #1
and the stiffness K12 of the flexible deformation of the tooth
#1 caused by the loaded tooth #2 for healthy and cracked
helical gear slice can be expressed as [35,40]
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where the meaning of the variables can refer to Figures 4–5
for healthy and cracked helical gear slice, respectively. It is
worth noting that the subscript 2 is replaced by 2c for the
case of the crack fault. The calculation details of the coupling
stiffness for the healthy helical gear slice can refer to ref. [35]
while the cracked situation can refer to ref. [40].

2.3 Total mesh stiffness calculation for the cracked
helical gear

Due to the presence of the helix angle, the engagement al-

ways begins at one end face and exists at the other one.
Figure 6 shows the engaged process of the helical gear, the
point A and B are the starting and ending points of the en-
gagement, respectively. The contact line CD and GH are the
transition region from the triple-tooth region to double-tooth
region, and the contact line EF and IJ are the transition re-
gion from the double-tooth region to the triple-tooth region.
εp denotes the total contact ratio and Pbt represents the pitch
of the transverse. It is worth noting that although the contact
ratio of helical gear is greater than 2, there is no situation that
three teeth on the same gear slice engage simultaneously.
Therefore, the structural coupling effect between neighbor-

Figure 4 (Color online) Schematic of the structural coupling effect for
the healthy helical gear slice.

Figure 5 (Color online) Schematic of the structural coupling effect of the
cracked helical gear slice. (a) Addendum region of the cracked tooth with
dedendum region of the healthy tooth; (b) dedendum region of the cracked
tooth with addendum region of the healthy tooth.

711Ning J Y, et al. Sci China Tech Sci March (2023) Vol.66 No.3



ing teeth only exist in part of the helical gear slices.
To better display the coupling effect of the helical gear

between the neighboring teeth, the three-dimensional sche-
matic of the contact line for the engagement of the helical
gear is shown in Figure 7. For the triple-tooth engagement,
the effect of the elastic deformation between the neighboring
teeth of the helical gear slice only exists in the shaded area
and should be considered in the calculation of the total mesh
stiffness for the cracked helical gear.
According to the equal principle of the total deformation of

each slice along the line of action under the statical balanced
status, the loaded static transmission error δL for each helical
gear slice at one special mesh point are equal, which is the
summation of the tooth deformation δt, gear-body induced
deformation δf, contact deformation δh, deformation caused
by structural coupling effect δj,j+n, and tooth deviation e. The
loaded static transmission error of jth helical gear slice can
be expressed as the mathematical form as [37]

e= + + + + , (17)j j j j j j n jL t f h , +

where the subscript n denotes the slice number.
When the helix angle in the helical gear pair is small, the

contact ratio is low for this helical gear, of which the value is
between 1 and 2. For the single-tooth engagement, there is no
coupling deformation between the neighboring loaded teeth.
Figure 8 shows the numbering diagram of the mesh point for
different helical gear slice on the contact line, where the solid
lines with green color denote the alternating area of the en-
gaged teeth. Assuming that the mesh force acting on helical
gear slice is Fj (j=1, 2, …, n), and the external torque acting
on the driving gear is Te, the summation of the mesh force on
each helical slice is statically balanced with the external
torque, namely

F T
R= , (18)

j

n

j
=1

e

bp

where Rbp is the radius of the base circle for the driving
gear.
Here, the summation of the stiffness components of tooth

stiffness, contact stiffness, and gear body-induced stiffness is
named as Ks, in which the linear contact stiffness is em-
ployed. It can be represented as

K K K K K K
1 = 1 + 1 + 1 + 1 + 1 , (19)

s tp tg fp fg h

where the subscripts p and g denote the driving and driven
helical gear, respectively.
The relationship among the stiffness components, teeth

deviations and the loads can be expressed as the following
block matrix-vector form:

K C
C F E0 = , (20)1 1

2
L L

where

Figure 6 (Color online) Schematic of engaged process of helical gear.

Figure 7 (Color online) Schematic of coupling effect between neigh-
boring teeth for a helical gear.

Figure 8 (Color online) Schematic of the helical gear slice numbering in
single-tooth engagement.
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Eq. (20) shows that there are n+1 unknown variables,
namely F1, F2, …, Fn, δL, which can be only solved by the
n+1 dimensional matrix. When the tooth contact loss occurs
on the jth helical gear slice, the mesh force acting on it is nil,
namely
F e= 0,    for 0. (22)j jL

Eq. (20) needs to remove the component of the tooth
contact loss and then be solved again until the mesh force of
all helical gear slice is greater than 0. The total mesh stiffness
of the single-tooth engagement for the helical gear can be
obtained by

K T
R e=

min( )
. (23)

j
m

e

bp L

Figure 9 shows the numbering rules for the helical gear in
the double-tooth engagement. It is worth noting that the
helical gear slice without engagement is also numbered in
order to better determine the engagement situation of each
helical gear slices with the effect of tooth profile error. In
addition, the coupling effect between the loaded neighboring
teeth exists in the double-tooth engagement, which can be
calculated by

K K K
1 = 1 + 1 . (24)
j j n j j n j j n, + p , + g , +

Therefore, the load distribution between the helical gear
slices can be obtained by
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Eq. (25) is a 2n+1 dimensional matrix equation which is
equal to the numbers of the known variables (F1, F2, …,
Fn, Fn+1, …, F2n, δL). It is worth noting that the deformation
component on the helical gear slice is zero if the contact line
on this gear slice is out of the actual contact region. When the
mesh forces of the solved helical gear slices are all greater
than 0, eq. (23) can be employed to calculate the total
mesh stiffness for the helical gear in the double-tooth en-
gagement.
For the case of the slight larger helix angle, the contact

ratio for the helical gear is between 2 and 3. The slice
numbering for the helical gear in the triple-tooth engagement
is displayed in Figure 10. There are 3n mesh points for the

Figure 9 (Color online) Schematic of the helical gear slice numbering in
double-tooth engagement.

Figure 10 (Color online) Schematic of the helical gear slice numbering in
triple-tooth engagement.
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helical gear in the triple-tooth engagement, on which the
mesh forces are assumed as F1, F2, …, Fn, Fn+1, …, F2n, F2n+1,
…, F3n. The load distribution for the triple-tooth engagement
can be calculated by

K K C
K K K C

K K C
C C C

F E

0

0
0

= , (27)
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Through the iterative calculation, all load distribution re-
sults greater than 0 can be obtained. Similarly, eq. (23) can be
employed to obtain the total mesh stiffness of the helical
gear.
For the case of the higher contact ratio, it is not described

in details here as they have the similar calculation equations.
The above calculation process of the comprehensive stiffness
can be summarized as the flow chart shown in Figure 11. The
left module shows the traditional calculation method with
purple color while the right module shows the improved
calculation method with orange color.

3 Investigation on the crack fault effect on he-
lical gear mesh stiffness

Based on the improved analytical model for the time-varying
mesh stiffness calculation, the mesh stiffness results calcu-
lated by the improved model (Model #2) are compared with
those by the finite element and traditional models (Model
#1), where the traditional model is that the structural cou-
pling effect is ignored. The effects of the different crack
depths, crack propagation lengths, and helix angles on the
time-varying mesh stiffness are investigated. The crack in-
tersection is deemed as a constant value of 60°. The design
parameters of the helical gear pair are listed in Table 1.
The mesh stiffness results calculated by the improved

method are compared with those obtained by the finite ele-
ment method to verify the correctness of the improved cal-

culation method of the mesh stiffness for the helical gear
pair. The crack fault parameters are consistent with those in
ref. [34], reducing the errors as much as possible. The de-
tailed settings of the parameters of the four types of the
spatial crack are shown as follows:
Type-1: q0=2.5 mm, qe2=0 mm, Lc2=15 mm, l0=3 mm,

v=60°, β=10°;
Type-2: q0=2.5 mm, qe1=0.5 mm, Lc1=19 mm, l0=3 mm,

v=60°, β=10°;
Type-3: q0=2.5 mm, qe2=0 mm, Lc2=25 mm, l0=2 mm,

le=7 mm, v=60°, β=10°;
Type-4: q0=2.5 mm, qe1=2.5 mm, Lc1=30 mm, l0=2 mm,

le=7 mm, v=60°, β=10°;
where the details for the above variables are depicted in
Figure 2.
Figure 12 shows the time-varying mesh stiffness calcu-

lated by Model #1 and Model #2 compared with those ob-
tained by the finite element model. It should be noted that the
finite element results are extracted from ref. [34], where the
detailed finite element model of the helical gear with spatial
crack propagation was introduced. It can be clearly seen that
the results from Model #2 match well with the finite element
results for all the cases of the spatial crack propagation. For
Model #1, the interactions between the loaded neighboring
teeth induced by the flexible deformation of the gear body
are ignored. When the multi-tooth engagement occurs, the
engaged teeth share one gear body. The calculation method
of the Model #1 is to obtain the comprehensive mesh stiff-
ness by the simple superposition of the single tooth stiffness
and ignoring the structural coupling effect, which would
generate overestimated total mesh stiffness. The maximum
relative error between the results of the mesh stiffness cal-
culated by Model #1 and the finite element model is about
34%. When the coupling elastic effect between the loaded
neighboring teeth is considered, the mesh stiffness amplitude
is reduced in the multi-tooth engagement. The maximum
relative errors of the mesh stiffness between Model #2 and

Table 1 Design parameters of the helical gear pair

Parameters Pinion Gear

Normal module mn (mm) 4 4

Normal pressure angle αn0 (°) 20 20

Number of teeth Z 40 40

Tooth width W (mm) 30 30

Addendum coefficient ha
* 1 1

Tip clearance coefficient c* 0.25 0.25

Young’s modulus E (GPa) 212 212

Poisson’s ratio υ 0.3 0.3

Radius of hub hole Rint (mm) 30 30

Torque Te (N·m) 100

Helix angle β (°) 10, 12, 14, 16, 18
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Figure 11 (Color online) Flowchart of the calculation process for the total mesh stiffness of the helical gear.

Figure 12 (Color online) Time-varying mesh stiffness obtained by different models and finite element model [34] with different crack types. (a) Type-1; (b)
Type-2; (c) Type-3; (d) Type-4.
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the finite element model for the double-tooth and the triple-
tooth engagements are 4% and 6%, respectively. It is worth
noting that the improved calculation method of the time-
varying mesh stiffness catches better consistency with the
finite element method compared with the traditional method.
The improved stiffness calculation method can acquire more
accurate mesh stiffness results. In addition, it is proved that
the coupling effect of the elastic deformation between the
loaded neighboring teeth should be considered in calculating
the mesh stiffness. It is worth mentioning that the fault de-
gree of the crack fault increases gradually from Type-1 to
Type-4, and with the crack fault deterioration, the effective
load bearing region will be reduced for both the tooth part
and gear body. Thus, the total mesh stiffness will also present
a decreasing trend. A reference line with dashed line in red
color is draw at the mesh stiffness of 600 kN/mm to improve
the readability of this paper. There are no apparent differ-
ences in the four result curves for the first multi-tooth en-
gagement, while the obvious variations can be found in the
second multi -tooth engagement. This reason may be that the
differences of the crack fault mainly are reflected in the
addendum region, while there are no obvious differences in
the dedendum region for the four crack types. The addendum
crack effect on the mesh stiffness calculation is not included
in the first multi-tooth engagement while that can be re-
flected in the second one. Therefore, there are different
variations in the two multi-tooth engagements for the four
crack types. However, there are still minor errors between
the theoretical calculation and finite element results may be
induced by neglecting of the coupling effect between the
neighboring slices and assuming that the parameters during
the meshing process are constant. Establishing a more re-
fined model and considering more influencing factors is
necessary to carry out the relevant research to improve the
calculation accuracy.
As an essential design parameter of the helical gear, the

helix angle value will exert a considerable effect on the mesh
behaviors of the helical gear systems. Figure 13(a) depicts
the effect of the different helix angles on the mesh stiffness
calculated by the improved model (Model #2) while Figure
13(b) shows the results calculated by the traditional model
(Model #1). The crack fault parameters are q0=3 mm, qe1=2
mm, Lc1=30 mm, l0=2 mm, le=7 mm, v=60°. The triple-tooth
engagement region is drawn with the shadow to improve the
readability, and the rest region in one mesh period is the
double-tooth engagement. The shadow region with green
color is the triple-tooth engagement region with the helix
angle of 12°. With the helix angle increment, the triple-tooth
engagement region presents the growth on the basis of the
region with the helix angle of 12°, and the additional regions
are shadowed with the corresponding colors for different
helix angles. However, the corresponding double-tooth en-
gagement shows a decline with the helix angle increment in

one engagement period. It can be seen that the alternate
process between the triple-tooth and double-tooth engage-
ment become moderated with the helix angle growth, and the
difference value of the mesh stiffness amplitude between the
triple-tooth and double-tooth engagements decline. As the
helix angle rises from 12° to 18°, the total contact ratio grows
from 2.157 to 2.333, which means that the mesh period
proportion of the triple-tooth engagement experiences a
considerable rise while that of the double-tooth engagement
drops in the meshing process. It can be seen that both the
amplitude and variation of the mesh stiffness calculated by
the improved model are decreased, as shown in Figure 13(a),
compared with the results obtained from the traditional
model which are shown in Figure 13(b). The stiffness of both
tooth and gear body are reduced due to the reduction of the
effective load bearing region with the crack faults. The mesh

Figure 13 (Color online) Effect of different helix angle on the mesh
behaviors. (a) Mesh stiffness obtained by Model #2; (b) mesh stiffness
obtained by Model #1; (c) contact line.
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stiffness fluctuations are alleviated because there are fewer
deformations induced by the structural coupling effect when
the crack tooth engages in its dedendum region than that
meshes in its addendum region, which has been demon-
strated in ref. [40]. Therefore, the improved model for cal-
culating the mesh stiffness with crack faults has higher
accuracy than the traditional model. Figure 13(c) shows the
contact line of the helical pair with different helix angles,
where the colored lines denote the alternating boundary of
the engaged teeth. The solid line represents the minor helix
angle while the dashed line denotes the major helix angle. It
is worth noting that the helix angle increment leads to contact
line increase in the triple-tooth engagement and the decrease
of that in the double-tooth engagement. In addition, the mesh
stiffness amplitude variations present a nonlinear relation-
ship with the helix angle increment. The relative stiffness
amplitude growth is in the range of 2%–4% for the triple-
tooth engagement while the relative reduction of that is in the
range of 0.8%–6.4% for the double-tooth engagement. As
the cracked helical gear meshed from the dedendum region
to the addendum region, the stiffness amplitudes in the de-
dendum region are larger than those in the addendum region.
The mesh stiffness of the cracked helical gear pair with

different depths of the spatial crack propagation is displayed
in Figure 14, namely (1) q0=1 mm, qe=0 mm, (2) q0=2 mm,
qe=1 mm, (3) q0=3 mm, qe=2 mm, and (4) q0=4 mm, qe=3
mm. The mesh stiffness results can reflect the alternating
process between the triple- and double-tooth engagements.

Due to the presence of the helix angle, the contact line ex-
periences the process of a moderate increase, followed by a
steady decrease. Here the other parameters of the crack fault
are Lc1=30 mm, l0=2 mm, le=7 mm, v=60°, β=10°. The
dramatic decline can be found in this figure when the spatial
crack propagation is introduced in the stiffness calculation
model. The mesh stiffness reduction presents a nonlinear
relationship with the growth of the depth of the spatial crack
propagation. It is worth noting that the mesh stiffness is
sensitive to the crack propagation, and the amplitudes of the
mesh stiffness present the nonlinear drops when the crack
faults propagated with a constant degree.
The load distributions of the cracked tooth with different

propagation depths are shown in Figure 15. It is worth noting

Figure 14 (Color online) Effect of different crack depth on the mesh
stiffness.

Figure 15 (Color online) Load distribution of the cracked tooth with different crack depth. (a) q0=1 mm, qe=0 mm; (b) q0=2 mm, qe=1 mm; (c) q0=3 mm,
qe=2 mm; (d) q0=4 mm, qe=3 mm.
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that the crack propagates from the origin of the coordinates
along the tooth width direction. When the size of the crack
fault is small, the differences in the load distribution along
the tooth width direction is not obvious, such as Figure 15(a)
and 15(b). In the contour figure, the warm colors correspond
to larger values, and cool colors correspond to smaller ones.
With the crack depth rise, the differences in the load dis-
tribution along the contact line are gradually observed, such
as the region circled by the dashed line shown Figure 15(c)
and 15(d). The specific mesh point on the contact line will be
assigned the lower loads when the crack faults is more ser-
ious. The region with more serious crack depth propagation
has less load distribution while the load distribution at the
other end of the tooth width is larger.
The case parameters for the crack fault are q0=3 mm, q

e1=3 mm, l0=2 mm, le=7 mm, v=60°, β=10°. The variations
of the mesh stiffness versus the propagation length of the
spatial crack are shown in Figure 16. The equally obvious
variations can be observed in the alternating boundary be-
tween the triple- and double-tooth engagements. In addition,
the same phenomenon of the variation laws of the mesh
stiffness could be seen for the crack length and depth pro-
pagations.
Here, the load distributions of the cracked tooth are in-

vestigated under the same crack depth and different propa-
gation lengths, which are demonstrated in Figure 17. With
the crack length propagation from Lc/W=25% to 100% with
the interval of 25%, and the corresponding coordinates along

the tooth width are 7.5, 15, 22.5, and 30 mm, the dis-
crepancies of the load distribution along the tooth width
firstly increase and then decrease. It can be seen from Figure
17(a)–(c) that the load distribution on the left zone is ob-
viously smaller than that on the right zone with the crack
propagation. A similar phenomenon can be found in the
variation of crack length propagation when it is shown in the
contour figure with the crack depth propagation. With the
penetrative end face crack with the same crack depth, the left
part of the load distributions is still less than the right part
shown in Figure 17(d), indicating that the crack occurring at
the root region will exert a stronger effect on the mesh
stiffness as the meshing process from the crack location to
the tip region will be affected.

Figure 16 (Color online) Effect of different crack propagation length on
the mesh stiffness.

Figure 17 (Color online) Load distribution of the cracked tooth with different crack length. (a) Lc/W=25%; (b) Lc/W=50%; (c) Lc/W=75%; (d) Lc/W=100%.
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4 Conclusions

In this study, the analytical mesh stiffness calculation method
is improved for the helical gear pair with the spatial crack
propagation considering the effective load-bearing region of
the gear body with the crack fault in the calculations of the
gear body-induced stiffness and the flexible coupling stiff-
ness between the neighboring teeth. The action mechanism
of the structural coupling effect in the helical gear pair is
revealed analytically based on the static balance principle,
namely the loaded static transmission errors are consistent
for all the engaged helical gear slices.
Compared with the traditional method, the mesh stiffness

calculated using the improved method are compared with the
finite element results, which demonstrate a better con-
sistency. With the helix angle increment from 12° to 18°,
there are the mesh stiffness growth in the triple-tooth en-
gagement while an opposite phenomenon occurs in the
double-tooth engagement. Both the amplitude and the var-
iation of the mesh stiffness decline due to the consideration
of the coupling effect between the neighboring teeth with the
crack faults. Besides, with the variations of the crack pro-
pagation size in depth or length, the region with a more
serious crack fault has the less load distribution. The mesh
stiffness reduction presents a nonlinear relationship with the
growth of the depth and length of the spatial crack propa-
gation. This improved method is capable of catching the
accurate results of the total mesh stiffness and the load dis-
tribution for the further dynamic analysis of the helical gear.
It is worth noting that such a coupling effect between the

neighboring loaded tooth pairs is also suitable for situations
with other different fault types, such as wear, spalling, and
tooth-broken faults. The proposed model has the property
that the fault action mechanism can be reflected through the
stiffness or displacement excitation for different fault types.

This work was supported by the National Natural Science Foundation of
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