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Shield tunneling machines are paramount underground engineering equipment and play a key role in tunnel construction. During
the shield construction process, the “mud cake” formed by the difficult-to-remove clay attached to the cutterhead severely affects
the shield construction efficiency and is harmful to the healthy operation of a shield tunneling machine. In this study, we propose
an enhanced transformer-based detection model for detecting the cutterhead clogging status of shield tunneling machines. First,
the working state data of shield machines are selected from historical excavation data, and a long short-term memory-auto-
encoder neural network module is constructed to remove outliers. Next, variational mode decomposition and wavelet transform
are employed to denoise the data. After the preprocessing, nonoverlapping rectangular windows are used to intercept the working
state data to obtain the time slices used for analysis, and several time-domain features of these periods are extracted. Owing to the
data imbalance in the original dataset, the k-means-synthetic minority oversampling technique algorithm is adopted to over-
sample the extracted time-domain features of the clogging data in the training set to balance the dataset and improve the model
performance. Finally, an enhanced transformer-based neural network is constructed to extract essential implicit features and
detect cutterhead clogging status. Data collected from actual tunnel construction projects are used to verify the proposed model.
The results show that the proposed model achieves accurate detection of shield machine cutterhead clogging status, with 98.85%
accuracy and a 0.9786 F1 score. Moreover, the proposed model significantly outperforms the comparison models.

shield tunneling machine, cutterhead clogging, fault diagnosis, autoencoder, multihead self-attention mechanism, im-
balanced data
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1 Introduction

Shield machines are major equipment urgently needed in the
basic construction of subways, highways, railroads, water
conservancies, and national defense facilities [1]. Shield
machines have the advantages of fast excavation speed, high
construction quality, and little disturbance to the surrounding
environment and have been widely used in tunnel con-
struction projects [2–5]. As shown in Figure 1, during a
construction process, clay may get attached to the cutterhead

of the shield tunneling machine, forming the so-called “mud
cake” and causing the cutterhead to be clogged. Once the
cutterhead is clogged, the load exerted on it will increase,
making the excavation parameters change drastically and
causing the construction efficiency to decrease [6].
There are four reasons for cutterhead clogging: adhesion of

soil particles to the cutterhead surface, cohesion between
clay particles, bridging effect of clay clusters in the opening
of the cutterhead, and some soil particles’ tendency to dis-
solve in water [7–10]. Based on scaled experiments, Fang
et al. [10,11] suggested that the cutterhead clogging process
can be divided into three stages. The first stage is called the
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adhesion stage, during which clay clusters begin to adhere to
the cutter, causing the excavation speed to decrease sharply.
The second stage is called the adhesion development stage,
during which the clay clusters adhered to the cutter in the
first stage become larger and start to cover the cutter, making
the excavation speed further decrease and the cutterhead
torque slowly increase. The third stage is called the clogging
stage, during which the clay adhesion begins to join together
and extend from the cutterhead center to the edge, resulting
in sharper excavation speed fluctuation and larger cutterhead
torque. This theory has uncovered the relationship between
cutterhead clogging and the excavation speed and cutterhead
torque of shield tunneling machines, which provides some
criteria for recognizing potential cutterhead clogging cases
based on several excavation parameters of a shield tunneling
machine. In early studies, real construction data also suggest
that when the cutterhead is clogged, the cutterhead torque
and total thrust tend to increase, whereas the excavation
speed tends to decrease, and the earth pressure becomes
unstable [6,12–14].
Traditionally, clogging risk is estimated by the geological

environment of a shield tunneling machine. Hollmann et al.
[15,16] studied the relationship between clogging potential
and several geological environment characteristics, such as
the liquid limit, plastic limit, and water content of the soil,
and developed several diagrams to evaluate the clogging
potential. Kang et al. [17] built an apparatus to assess clog-
ging potential and drew similar results to those diagrams.
Oliveira et al. [18] performed several experiments and fur-
ther amended those diagrams based on the experiment re-
sults. However, because geological information cannot be
acquired in real time, these methods may not detect cutter-
head clogging in time; thus, measurements to remove clay
clusters on the cutterhead may not be taken timely, and the
tunneling efficiency may decrease. Fortunately, data-driven
clogging potential detection methods provide a feasible al-
ternative solution. These methods exploit the excavation data

of a shield tunneling machine and build diagnostic models
based on the data to detect clogging potential. With the de-
velopment of hardware and data processing algorithms, data-
driven methods are widely used in various engineering fields
[19–21]. For cutterhead clogging, Zhou et al. [22–24] sug-
gested that thrust and torque are the main loads acting on
shielding machines and consume the most energy. Zhai et al.
[25] used parameters such as penetration rate, thrust, specific
energy, rotation speed, and torque of a shield tunneling
machine to build a random forest (RF)-based model. Their
work described another method to detect potential cutterhead
clogging. However, as deep learning-based methods are
frequently used in mechanical fault diagnosis fields, their
diagnostic models are becoming deeper and achieving higher
performances. The performance of shallow models such as
RF may be less accurate than deep learning-based methods.
To improve the detection performance, we propose a novel

long short-term memory (LSTM)-autoencoder and enhanced
transformer-based model for cutterhead clogging status de-
tection. First, the working state data of shield machines are
collected from historical excavation data, and an LSTM-
autoencoder neural network (NN) module is designed to
remove outliers. Then, variational mode decomposition
(VMD) and wavelet transform (WT) are employed to de-
noise the data after the removal of outliers. After pre-
processing, nonoverlapping rectangular windows are used to
intercept the working state data to obtain the time slices used
for analysis, and several time-domain features of these per-
iods are extracted. Considering that the original data set is
imbalanced, we employ the k-means-synthetic minority
oversampling technique (SMOTE) algorithm to oversample
the extracted time-domain features of the clogging data in the
training set, which balances the dataset and improves the
model performance. Finally, we construct an enhanced
transformer-based NN for extracting essential implicit fea-
tures and detecting cutterhead clogging. The data collected
from actual tunnel construction projects are used to verify the
proposed model. The results show that the proposed model
achieves accurate detection of shield machine cutterhead
clogging status and significantly outperforms existing mod-
els.
The major contributions of this study are as follows.
(1) We propose a novel cutterhead clogging detection

model for shield machines.
(2) The outlier removal and denoising techniques proposed

in this study guarantee a good overall performance of the
proposed model.
(3) The training set is oversampled and balanced by a k-

means-SMOTE algorithm, which improves the model per-
formance.
(4) The proposed model achieves an accuracy of 98.85%

and an F1 score of 0.9786, which are significantly higher
than those of existing methods.

Figure 1 (Color online) A clogged cutterhead after excavation.
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The remainder of this article is organized as follows.
Section 2 presents the main materials and methods used in
this study. The performance of the proposed model is eval-
uated and discussed in Section 3. Several discussions on the
experimental results are presented in Section 4. Finally,
conclusions are presented in Section 5.

2 Materials and methods

The framework of the proposed LSTM-autoencoder and
enhanced transformer-based cutterhead clogging detection
model is presented in Figure 2. It contains four main steps.
First, the original data are preprocessed by the LSTM-auto-
encoder NN module and a denoising method. Then, time-
domain features are extracted as the input to the constructed
enhanced transformer-based NN. In the dataset construction
step, a k-means-SMOTE algorithm is adopted to oversample
the extracted time-domain features of the clogging data in the
training set to balance the dataset and improve model per-
formance. Eventually, the model is trained on the balanced
training set, and clogging results can be obtained.

2.1 Materials and data preparation

The original data of this study are from the excavation data
on a shield tunneling machine from 10:05 on May 9, 2021, to
15:57 on June 23, 2021. During the construction, cutterhead
clogging appeared twice, from 11:01 on June 7, 2021, to
20:08 on June 10, 2021, and from 14:21 on June 14, 2021, to
18:15 on June 15, 2021. The data are sampled at a rate of
1 piece/min, and because of possible failures of sensors,
some data may be missing. In summary, there are 64633
pieces of data available in total, and each piece of data
contains information from 25 different sensors installed on a
shield tunneling machine, such as cutterhead speed and tor-
que. However, as shield tunneling machines need to be shut
down regularly for maintenance, the tunneling process only
makes up for a small part of time [26–28]. In the case of
clogging detection, only the working data of shield tunneling
machines are useful; consequently, only the working state
data should be retained for analysis. In this study, working
state data are obtained by keeping the data with nonzero
values of cutterhead speed, torque, and penetration rate.
After selection, 7505 pieces of working state data are ob-
tained. Combined with recommendations from the literature
in Section 1 and observation of the distribution of the data,
19 of the 25 parameters are selected for analysis. Details of
the selected parameters are listed in Table 1.

2.2 LSTM-autoencoder-based outlier removal method

LSTM is an effective network architecture for analyzing

sequences, which can make good use of both historical and
current information on a given sequence [29]. The structure
of an LSTM unit is shown in Figure 3.
The inputs to an LSTM unit at a specific time t are the

memory unit and hidden state at time t−1 and the state input
at time t. An LSTM unit contains three parts: forget gate,
input gate, and output gate. The forget gate is used to de-
termine whether historical information should be used. The
output of the forget gate can be calculated as follows:
F X W H W b= Sigmoid( + + ), (1)t t xf t hf f1

where Ft denotes the output of the forget gate, Xt denotes the
input at time t, Ht−1 denotes the hidden state at time t−1, and

Figure 2 (Color online) Flowchart of the proposed model.

Table 1 Details of selected parameters

Number Parameter

1 Cutterhead speed (r/min)

2 Cutterhead torque (kN m)

3–8 Propulsion pressure of cylinders groups A–F (bar)

9 Mean excavation speed (mm/min)

10 Penetration rate (mm/r)

11 Total thrust (kN)

12–17 Earth pressure of excavation soil bin No. 1–No. 6 (bar)

18–19 Earth pressure of working soil bin No. 1–No. 2 (bar)
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Wxf, Whf, and bf denote the corresponding weights and bias.
The input gate determines how much information about

the current state should be retained, and its output can be
calculated as follows:

I X W H W b= Sigmoid( + + ). (2)t t xi t hi i1

The output gate is directly related to the hidden state Ht,
and its output is calculated as follows:
O X W H W b= Sigmoid( + + ). (3)t t xo t ho o1

Ct is called a memory unit, and Ct is the candidate memory;
their values can be updated as follows:
C X W H W b= tanh( + + ), (4)t t xc t hc c1

C F C I C= + , (5)t t t t t1

where the operator is the Hadamard product or elementwise
product between matrices.
Finally, the hidden state output can be calculated as fol-

lows:
H O C= tanh( ). (6)t t t

Autoencoder is an unsupervised learning method used to
reconstruct an input [30]. Autoencoders use an encoder-de-
coder framework; the encoder can be seen as a feature ex-
tractor, which maps the input to a low-dimensional latent
space, and the decoder can be treated as a reconstructor, used
to recover the input from the latent space. To learn low-
dimensional representations from an input, bottleneck net-
work architectures are often used to build autoencoders [31].
For time sequence inputs, to minimize the reconstruction
loss, the reconstructed sequence will try to learn the dis-
tribution of the inputs, and the reconstruction error of outliers
will be higher because outliers are difficult to reconstruct. As
LSTM is capable of extracting information from sequences
and autoencoders can be used to detect outliers, their com-
bination may have good performance in detecting sequence
outliers. Srivastava et al. [32] proposed an LSTM-auto-
encoder model; the model was first developed to reconstruct

and predict videos, but it turned out that the same model
performs well in outlier detection.
A flowchart of the proposed LSTM-autoencoder-based

outlier detection method is shown in Figure 4. First, the re-
cords from each sensor are standardized as follows:

x x µ= , (7)i
i i

i

where xi denotes the datapoint from the i-th sensor, and μi and
σi denote the mean value and standard deviation of xi, re-
spectively. After standardization, the data of each parameter
are intercepted by a series of sliding rectangular windows.
The length of the window is 20; also, to better reconstruct the
original signal, the window slides over one sample for each
interception, meaning that, for each excavation parameter,
there are 7486 pieces of small sequences to be reconstructed.
Then, these sequences are used to train the autoencoder;
some critical parameters of the autoencoder are shown in
Figure 4. The model takes the small sequence both as the
input and training label with Adam optimizer. Meanwhile,
the loss function used for the model is the mean absolute
error.
After training, the sequences are input into the model again

to generate the corresponding reconstructed sequences. The
reconstruction of the original signal is achieved using the
mean value of the same point in different reconstructed small
sequences. The autoencoders are trained separately for each
parameter, and for each reconstructed data, the reconstruc-
tion error is defined as the absolute difference between the
original and reconstructed data. For example, the re-
constructed cutterhead speed and the distribution of its re-
construction error are shown in Figure 5.
From Figure 5, the reconstructed signal is much smoother

than the original signal, and for most points, the re-
construction error is small, so it is reasonable to treat the data
with large reconstruction errors as outliers. For each para-
meter, the outlier is defined by applying the 3σ criterion on
the reconstruction error, which means that a threshold value

Figure 3 (Color online) Structure of an LSTM unit.

515Qin C J, et al. Sci China Tech Sci February (2023) Vol.66 No.2



is set as follows:

T µ= + 3 , (8)

where T denotes the threshold, and μ and σ denote the mean
value and standard deviation of the reconstruction error, re-
spectively. For a given parameter, any data point that has a
reconstruction error greater than the threshold will be treated
as an outlier. For the working state data of shield tunneling
machines, if all selected parameters are normal, the data will
be treated as normal; otherwise, the data will be treated as
outliers and discarded.

2.3 VMD-WT-based denoising

The purpose of outlier removal is to remove the data that are
inconsistent with the global distribution of the original data,

but the remaining data may still contain some noise because
of measurement errors. Therefore, the data need to be further
denoised. In this study, a combination of VMD and WTwas
used to denoise the data.
As an effective signal-processing method, VMD has been

widely used in different engineering fields [33–35]. The idea
of VMD is to decompose a signal into a series of band-
limited amplitude-modulated-frequency-modulated signals
called intrinsic mode functions (IMFs) [36]. An IMF can be
expressed as follows:

u t A t t( ) = ( )cos( ( )), (9)k k k

where Ak(t) denotes the amplitude of the IMF, ϕk(t) denotes
the phase, and uk(t) denotes the decomposed IMF. Con-
sidering a given signal f to be decomposed into k IMFs and
the center frequency of each IMF uk is ωk, VMD can be

Figure 4 Flowchart of the proposed outlier detection method.

Figure 5 Reconstruction of cutterhead speed. (a) Comparison between the original and reconstructed data; (b) distribution of the reconstruction error.
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achieved by solving the following optimization problem:
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where λ(t) denotes the Lagrangian multiplier and α denotes a
penalty factor. This function can be solved by an alternate
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In this study, a signal is first decomposed by VMD to seven
IMFs with the penalty factor α set to 1000. Based on the
center frequency of the seven IMFs, the decomposed signals
are labeled as IMF1–IMF7. IMF1 with the highest center
frequency is considered a noise signal and is discarded. In
addition, because the signal is not exactly the summation of
those IMFs, there will also be a residual sequence re-
presenting the error between the original signal and the
summation of IMFs:

Residual f t u t= ( ) ( ). (16)
k k

Because the residual is just a reconstruction error and does
not make many contributions to the original signal, it is also
discarded in the denoising process.
The center frequencies of IMF5–IMF7 are low, and those

signals are considered to represent the characteristics of the
original signal and hence are kept unchanged. As for IMF2–
IMF4, they are further decomposed by WT into five levels
using sym4 as the wavelet function and are denoised with the
empirical Bayes method with the threshold set to be the

posterior median. After the wavelet threshold denoising, the
denoised IMF2–IMF4 signals are recovered, and the de-
noised signal can be obtained by summing up IMF2 to IMF7.
The flowchart of the denoising method is shown in Figure 6.

2.4 Time-domain feature extraction

To better detect cutterhead clogging, the working state data
of a shield tunneling machine should be cut into smaller
periods. Because the shield tunneling machine may be
stopped between two working periods, two adjacent working
state data may not come from the same working period.
Therefore, the working state data can be split according to
the following rule: for the data coming from the same
working period, it is further split into smaller periods using a
series of nonoverlapping rectangular windows with a length
of 16 data points (i.e., each period contains the data gener-
ated in 5 min). If the cutterhead gets clogged at any time in
those small sequences, the sequence should be annotated as
clogging.
In the field of mechanical fault diagnosis, it is a common

method to extract features of the sequences in time and
frequency domains. However, as the sampling rate of a
shield tunneling machine is quite low, severe aliasing pro-
blems will occur in the frequency domain, so it would be
meaningless to extract features from the frequency domain.
Therefore, only time-domain features were extracted for
analysis. For feature selection, Wu et al. [37] used 11 time-
domain features of vibration signals from rolling element
bearings (REBs) to detect the degradation processes of REBs
in electrical machines, Kuang et al. [38] performed a similar
task using 13 time-domain features, Huang et al. [39] used
root mean square, variance, maximum, skewness, kurtosis,
and peak-to-peak value of signals from different sensors as
time-domain features to predict tool wear in milling opera-
tions, and Bandyopadhyay et al. [40] used mean, standard
deviation, skewness, kurtosis, shape factor, and crest factor
of current signals to realize fault diagnosis of induction
motors. Based on recommendations from the literature, 11
time-domain features are selected (Table 2).

2.5 Enhanced transformer block based on multihead
attention mechanism

An attention mechanism can be described as finding an ap-
propriate representation for a given query with a set of key-
value pairs. The attention function can be calculated using
different methods; nevertheless, considering the time con-
sumption, dot-product attention is more often used and is
given by

Attention Q K V softmax QK V( , , ) = ( ) , (17)T

where Q, K, and V denote the queries, keys, and values,
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respectively. If Q, K, and V are the same in attention score
calculation, the attention is called self-attention. To gather
more information from a given sequence, Vaswani et al. [41]
proposed the multihead attention model. This model first
linearly projects input queries, keys, and values h times to get
h different lower dimensional queries, keys, and values,
where h is called the model’s head, and then performs scaled
dot-product on those projected elements for attention cal-
culation. Finally, the attention output of each head is con-
catenated and connected to a fully connected layer.
The scaled dot-product is similar to the original dot-pro-

duct, except for scaling the input of the softmax function

with a factor of
d
1

k
to avoid gradient vanishing, where dk is

the dimension of the keys. Combining this with the multi-
head attention mechanism, they further proposed a trans-
former block comprising a multihead attention layer and a
feed-forward layer, which consists of two linear transfor-
mations with ReLU as the activation function. The layers are
connected with residual connections, and the output of each
residual block is normalized by layer normalization. The
architecture of the transformer block is shown in Figure 7.
In this study, we modified the architecture to enhance its

performance. The original multihead attention calculation
requires the input dimension to be divisible by the key di-
mensions. To further improve the model, we ensure that the
number of heads and dimensions of keys, values, and queries
can be any value. To achieve this, we first map the input with
a shape of (n_features, n_channels) into a latent space with
the shape of (n_features, n_heads × key_dimensions) and

Table 2 Extracted time-domain features

Feature number Feature name Equation

1 Absolute mean x N x=
1

i

N

i
= 1

2 Standard deviation N x x=
1

1 ( )
i

N

i
= 1

2

3 Root mean square (RMS) x N x=
1

rms
i

N

i
= 1

2

4 Peak value x x= max(| |)ipeak

5 Peak-to-peak value x x x= max( ) min( )p p i i

6 Crest factor C
x
x=r

peak

rms

7 Impulse factor I
x
x= peak

8 Shape factor S
x
x=f
rms

9 Clearance factor C
x

N x
=

1l

i

N
i

peak

= 1

2

10 Kurtosis K N x x

N x x
=

1 ( )

1 ( )

i

N
i

i

N
i

= 1

4

= 1

2
2

11 Skewness S N x x

N x x

=
1 ( )

1 ( )

i

N
i

i

N
i

= 1

3

= 1

2
3
2

Figure 6 Flowchart of the denoising method.
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then reshape it to different heads. In addition, unlike natural
language processing problems, the input dimension of our
model is a fixed number and is relatively small, so we used
the dot-product attention without scaling, and instead of
layer normalization, we still used batch normalization to
normalize the outputs of the residual blocks.
As a linear transformation is applied to the input, the at-

tention output and input do not have the same dimension. To
make them summable for the residual connection, we need
another fully connected layer to map the attention output to
the input shape. To prevent overfitting, a dropout layer is also
added between the two residual blocks of the transformer
block.
In the feed-forward layer, we used a similar design as the

original transformer block, with just changing the output
dimension of the first fully connected layer to 32. The ar-
chitecture of the modified transformer block is shown in
Figure 8. For each modified transformer block, the main
hyperparameters are the head numbers, key dimensions, and
dropout rates, and the activation function for all linear
transformations in the block is ReLU.

2.6 Architecture of the proposed model

The proposed model for clogging detection has four en-
hanced transformer blocks, and for each block, a dropout rate
of 0.5 is applied. The first two blocks have two heads, with a
key dimension of 10, and the following two blocks have four
heads, and the key dimension for each head is 5. The reason
is that our model first extracts the overall information with
large key dimensions and few heads and then extracts more
detailed information from the input with more heads and
smaller key dimensions. The architecture of the proposed
model is shown in Figure 9. Details of the proposed model
are listed in Table 3.

3 Experiments and results

3.1 Data preprocessing

In this study, there were originally 7505 available working
state data points. As the original working state data were
contaminated by outliers, to better make use of the data, the
outliers should be removed by the LSTM-autoencoder-based
method. After outlier detection, there were 6469 data points
available for further analysis.
To show the advantage of the proposed LSTM-auto-

encoder-based method in outlier detection, two other fre-
quently used methods, namely isolation forest (IF) and local
outlier factor (LOF), were used for comparison. The outlier
results of the cutterhead speed signal are shown in Figure 10.
Clearly, there are several time points where the cutterhead
speed is significantly lower than their adjacent time points,

and they should be treated as outliers. The proposed method
successfully marked almost all of those data as outliers,

Figure 7 (Color online) Architecture of a transformer block.

Figure 8 (Color online) Architecture of the modified transformer block.
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whereas IF only detected a small part of those data, and LOF
did not recognize those data as outliers at all. As a result, the
proposed outlier removal method is superior.
After outlier removal, the data were further denoised.

Without loss of generality, considering the cutterhead speed
signal as an example, the denoising result is shown in Figure
11.

Figure 9 Architecture of the proposed model

Figure 10 Outlier detection of cutterhead speed using different methods.
(a) LSTM-autoencoder-based method; (b) IF; (c) LOF (n_neighbors = 35).

Table 3 Details of the proposed model

Layer number Description Parameters Output shape

Layer 1 Input − (11,19)

Layer 2 Enhanced transformer n_heads = 2, key_dimension = 10, dropout = 0.5 (11,19)

Layer 3 Enhanced transformer n_heads = 2, key_dimension = 10, dropout = 0.5 (11,19)

Layer 4 Enhanced transformer n_heads = 4, key_dimension = 5, dropout = 0.5 (11,19)

Layer 5 Enhanced transformer n_heads = 4, key_dimension = 5, dropout = 0.5 (11,19)

Layer 6 Flatten − 209

Layer 7 Fully connected units = 64, activation = ReLU 64

Layer 8 Dropout rate = 0.5 64

Layer 9 Output (fully connected) units = 1, activation = Sigmoid 1
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Because the amount of data in this study is relatively small,
particularly after denoising, linear interpolation was used to
expand the dataset. The interpolation was performed in two
steps; the first step was used to fill up the missing values
caused by removal outliers or malfunction of the sensors.
The method is to check the sampling time of every two
adjacent data points; if the time difference is less than 10 min
(i.e., 10 sample points), it is considered that the shield tun-
neling machine is still working, and the missing data be-
tween these two data points can be filled up by linear
interpolation. Because the purpose of this step is only to
make up for the missing values, it makes little contribution to
expanding the dataset; the data should be further inter-
polated. In the second step of interpolation, for data sampled
between every two consecutive time points, another two data
points were interpolated between them. After the interpola-
tion, there were 20429 available data points. Finally, the
interpolated data were windowed, and their time-domain
features were extracted to prepare the original data for fur-
ther experiments.
In real-time applications, the LSTM-autoencoder model

will first be trained with some historical data, and the main
purpose of outlier detection will be to determine whether the
current data are outliers. If the current data are outliers, in-
stead of removing them, their values will be replaced by
linear extrapolation of the two samples before them. After
replacing the outliers, a rectangular window with a length of
6 will be applied to the current data and the data collected
before. Unlike in the training process, interpolation will be
performed before denoising in real-time applications to
prevent the loss of useful information due to the denoising of
short sequences. In addition, because in real-time applica-
tions, denoising is performed on windowed sequences and
the length of the sequence is significantly shorter than in the
training process, only VMD will be used to denoise the
signal, meaning that the denoised signal will be the sum of
IMF2–IMF7. After denoising, the prediction process will be
similar to the training process: extract the time-domain fea-

tures and use the pretrained transformer-based model to
detect cutterhead clogging in real time.

3.2 Dataset split

As there are two periods of clogging data, the dataset could
be split, using the first half as the training set and the second
half as the test set. After splitting the dataset, there were 712
data points in the training set, among which 91 were clogging
data points, and there were 713 data points in the test set,
among which 120 were clogging data points. Given that the
dataset is unbalanced with little clogging data available, the
clogging data in the training set can be oversampled to better
train the model.
The SMOTE is a simple and commonly used method for

oversampling data in an imbalanced dataset for classifica-
tion. The classic SMOTE algorithm can be achieved in three
steps. First, a random data point in the minority class is
selected, and then another data point from the minority class
and its K-nearest neighbors (KNN) are selected. Finally, the
convex linear combination of the two selected data points
can be used to expand the dataset.
SMOTE is efficient in balancing imbalanced datasets, but

if the minority class is not continuously distributed in space,
the generated data may not have certain features of the
minority class. Douzas et al. [42] improved the algorithm by
using a k-means clustering algorithm before oversampling
with SMOTE. In the improved algorithm, the data are first
clustered into k groups, and then SMOTE is performed in the
groups with a higher proportion of minority class samples.
This algorithm can also handle an in-class imbalance in that
it can decide how many samples should be interpolated into
each cluster based on the sparsity of the clusters, and there
will be more generated samples in sparse minority clusters
than in dense ones.
The clogging data are oversampled until the training set is

balanced (i.e., the amounts of normal data and clogging data
are the same), the cluster number of k-means is set to 5, and
the number of neighbors of the KNN in SMOTE is set to 2.
To better visualize the results of the oversampling algorithm,
the real and synthesized time-domain features in the training
set were first reduced to 50 dimensions with principal
component analysis and then reduced to 2 dimensions with t-
distributed stochastic neighbor embedding (t-SNE) (Figure
12). The generated samples can effectively represent the
clogging data and thus may help improve the performance of
the proposed model.

3.3 Results and comparisons

Clogging detection is essentially a binary classification
problem; therefore, several metrics for classification pro-
blems can be used to evaluate the performance of the proposed

Figure 11 Denoising result of cutterhead speed.
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model. The most commonly used metrics of classification
problems are accuracy, precision, recall, and F1 score [43–
47]. Consider a classification problem with n classes and N
samples; for each class, according to the relationship be-
tween the predicted label ypredict and yreal, the classification
results would be one of the four scenarios: true positive (TP),
false positive (FP), true negative (TN), and false negative
(FN). The metrics are defined as follows:

Acc
y y

N=
=

, (18)predict real

P n= 1 TP
TP + FP

, (19)
i

n
i

i i=1

R n= 1 TP
TP + FN

, (20)
i

n
i

i i=1

F P R
P R1 = 2 × ×

+ , (21)

where Acc, P, R, and F1 denote the accuracy, precision,
recall, and F1 score, respectively. In a classification problem
with a balanced dataset, accuracy may be the best metric for
model evaluation as it can reflect the proportion of the cor-
rectly classified samples. However, when the dataset is im-
balanced, accuracy may not well-reflect performance. For
example, in the clogging detection problem, if all data are
predicted to be normal, an accuracy greater than 80% will
still be achieved. In this case, the F1 score can reflect more
information as both precision and recall are considered in
this parameter. Consequently, to evaluate the performance of
the proposed model, both the F1 score and accuracy are used,
with the F1 score being a primary indicator.
The proposed model was trained on the training set, with

all initial values randomly set. The optimizer used for
training was Adam, and the momentum was set to 0.8. The
loss function for the model was binary cross-entropy, and the
learning rate was 0.0003. Keras package under the Tensor-
flow framework was used to build and train the model. As for
hardware, a laptop equipped with an Intel(R) Core(TM) i7-

11800H CPU and a 6GB NVIDIA GeForce RTX 3060
Laptop GPU was used.
In the training process, 4-fold cross-validation was used;

for each fold of cross-validation, 75% of the data in the
training set was used as training data, and the other 25% was
used as validation data. The model was trained on each fold
for 100 epochs with a batch size of 32. To save the training
time and avoid possible overfitting, early stopping was also
used in the training, i.e., when the validation loss did not
decrease for 10 epochs, the training loop would stop for this
fold of cross-validation. The model we used is the one with
the smallest validation loss.
Because of the randomness in the training process, the

performance of the model will not be the same in each
training process. To evaluate the stability of the proposed
model, we performed five repeated experiments; the results
are shown in Table 4.
The results show that the proposed model can achieve high

performance in clogging detection with good stability. To
visualize the classification result of the proposed model, the
confusion matrix of the fifth experiment on the expanded
training and test sets is shown in Figure 13.
To show the advantage of the proposed model, several

other well-known models were also used as comparisons,
including KNN, support vector machine (SVM), RF, extreme
gradient boosting classifier (XGBC), and deep NN (DNN).
Besides, some effective fault diagnosis-related methods were
also used as comparisons. For example, Ke et al. [48] con-
sidered the synchrosqueezing transform (SST) spectra as
inputs and built a deep convolutional NN model (SST-
DCNN) to detect possible faults in modular multilevel con-
verters, Yuan et al. [49] and Zou et al. [50] proposed a
general convolutional NN (CNN) based end-to-end diag-
nostic framework for manufacturing systems. Some key
parameters of the comparison models are listed in Table 5.
All comparison models were trained on the expanded

training set and evaluated under the same test set as the
proposed model. The performance of these models is shown
in Figure 14. The results show that our model outperforms
the comparison models, attributable to the proposed pro-
cessing method and designed enhanced transformer block.
After preprocessing, the data were well-denoised and were
no longer contaminated by outliers so that the features of the
data could be recognizable to our model. Particularly, the
proposed model achieves accurate detection of shield ma-
chine cutterhead clogging status, with 98.85% accuracy and
a 0.9786 F1 score. KNN obtained 97.35% accuracy and a
0.9512 F1 score. SVM obtained 95.45% accuracy and a
0.9078 F1 score. RF obtained 92.55% accuracy and a 0.8347
F1 score. XGBC obtained 93.06% accuracy and a 0.8484 F1
score. DNN obtained 96.34% accuracy and a 0.9281 F1
score. SST-DCNN obtained 72.93% accuracy and a 0.5581
F1 score, whereas CNN obtained 92.57% accuracy and a

Figure 12 Visualization of the synthesized features.
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0.8478 F1 score. Therefore, it could be concluded that the
proposed model can achieve high precision in cutterhead
clogging detection of shield machines and hence help realize
intelligent fault diagnosis on shield machines.
To have a better understanding of the clogging results of

the different models, their confusion matrices are shown in
Figure 15. All employed models can correctly recognize the
normal data; the main difference is in detecting clogging
data. Compared with other models, only five clogging data
points were wrongly detected by our model. As shown in
Figure 12, some clogging data may share a similar feature
with the normal data, and it is those data that affect the
accuracy of clogging detection models. Compared with other
models, the proposed model can dig more information from

the data and hence better distinguish clogging data from
normal data and have a better performance.
Notably, the performance of end-to-end models and time-

frequency-domain feature-based models is worse than that of
time-domain feature-based models. For CNN-based models,
although CNNs can effectively extract information from raw
timeseries data, their performance will be better for longer
sequences. Because the window size in this study is rela-
tively small, CNNs may not outperform time-domain fea-
ture-based methods. As for SST-DCNN, because of the
extremely low sampling frequency, frequency-domain and
time-frequency-domain features are highly contaminated by
aliasing; thus, it would be difficult to extract useful in-
formation from those features. Specifically, several SST

Table 4 Performance of our model in five repeated experiments

Experiment number Accuracy (%) Precision Recall F1 score

1 99.16 0.9950 0.9750 0.9847

2 99.02 0.9873 0.9775 0.9823

3 99.44 0.9966 0.9833 0.9898

4 97.34 0.9845 0.9208 0.9491

5 99.29 0.9958 0.9792 0.9872

Mean 98.85 0.9918 0.9672 0.9786

Figure 13 (Color online) Confusion matrix of the proposed model on the following. (a) Expanded training set and (b) test set.

Table 5 Key parameters of the comparison models a)

Name Key parameters

KNN N_neighbors = 12

SVM Kernel = RBF, C = 10, gamma = 0.003

RF Max_depth = 3, n_estimators = 12

XGBC L2_penalty_factor = 0.01, learning_rate = 0.1, gamma = 1, max_depth = 3

DNN Input_shape = 209,
structure = {200-128-64-32-dropout(0.5)-1}

SST-DCNN Input_shape = 96 × 16@19, padding = “the same”

CNN Input_shape = 16@19, kernel_size = 3, stride = 1,
padding = “the same,” structure = {conv-maxpool-conv-maxpool-conv-globalMaxpool-fc(1)}

a) in the parameters of CNN, “conv” means the convolutional layer, “maxpool” means the maxpooling layer, “globalMaxpool” means the global maxpooling layer, “fc(1)”
means a fully connected layer with a single neuron. All convolutional layers use the same hyperparameters as stated in the table.
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spectra of the cutterhead torque under normal and clogging
conditions are shown in Figure 16. From the figure, the
difference between normal and clogged samples is unclear
from SST spectra. Therefore, time-frequency-domain fea-
ture-based models may not have a good performance.

4 Discussion

In the training process, a k-means-SMOTE algorithm was
used to oversample clogging data in the training set, and the
dataset was made balanced. However, as balancing the da-
taset will require enormous synthesized data, it may not be
the best choice for synthesizing data on such a large scale. To
evaluate the proposed model with different amounts of

oversampled data, the ratio of clogging data to normal data at
the percentages of 30%, 50%, and 80%, as well as the ori-
ginal data without oversampling, were evaluated for com-
parison. The distribution of data under these conditions can
be visualized in Figure 17.
The training processes for these models are the same as

described in Section 3.2; the average accuracy and F1 score
of the model with different numbers of oversampled data are
shown in Figure 18. From the figure, oversampling helps the
model to achieve higher performances. Notably, with more
synthesized data, the model performance improved gradually
until the amount of clogged data was 80% of the normal data.
With this proportion of clogging data to normal data, the
accuracy improved by about 0.7% and the F1 score im-
proved by about 0.12. The absolute value of the improve-

Figure 14 Performance of different methods on the test set.

Figure 15 Confusion matrices of different models. (a) KNN; (b) SVM; (c) RF; (d) XGBC; (e) DNN; (f) SST-DCNN; (g) CNN; (h) Proposed.
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ment may seem small, but as the model performed well on
the test set, a 0.7% improvement in the classification accu-
racy can reduce the wrongly classified samples by 46.85%,
which is a huge improvement.
However, when the dataset is balanced by oversampling,

the model performance drops, which is because there are too
many generated samples, and thus, their distribution is too
dense in this situation (Figure 12). Because the oversampling
algorithm presumes that the clogging data follows a certain
distribution, and with too much oversampled data, the ran-
domness of the distribution may be less, and some clogging

features that do not appear in the training set may not be
correctly detected because of overfitting caused by over-
sampling. Nevertheless, as there are few clogging data
available, the oversampled data can still be used to generate
more useful data for training; thus, the model will still have a
better performance than training with the original training
set.
The proposed preprocessing method can also help improve

performance. To examine the effect of the proposed pre-
processing method, several comparisons were made. The
proposed model was trained under four conditions: without

Figure 16 SST spectra of (a) normal samples and (b) clogged samples.

Figure 17 Visualization of data with different ratios of clogging data to normal data. (a) 14.63% (original training data); (b) 30%; (c) 50%; (d) 80%.
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preprocessing, with only removing the outliers, with only
denoising, and with both preprocessing techniques. All
training data in these situations were balanced by the k-
means-SMOTE algorithm. The results are shown in Figure
19. Compared with using the time-domain features extracted
from the original working state data, the proposed pre-
processing method improves the clogging detection accuracy
by about 1.5% and the F1 score by about 0.026, meaning that
the wrongly detected samples became less than 50%. In
addition, both the outlier removal and denoising techniques
can make certain improvements to the model performance.
On this specific dataset, the effect of each of these techniques
seems similar, and using a combination of both can further
improve the model performance and make it more precise.

5 Conclusion

In this study, we propose a novel LSTM-autoencoder and
enhanced transformer-based detection model for cutterhead
clogging status detection. To better train the model, after

selecting the working state data of shield machines from
historical excavation data, we designed an LSTM-auto-
encoder NN module to remove outliers and employed a
VMD-WT-based denoising method to further denoise the
data. Then, the k-means-SMOTE algorithm was adopted to
oversample the extracted time-domain features of the clog-
ging data in the training set to balance the dataset and im-
prove model performance. On this basis, an enhanced
transformer-based NN was constructed to extract essential
implicit features and detect cutterhead clogging status.
Comprehensive comparisons with existing models were
performed to verify the proposed model, indicating that the
proposed model outperformed the comparison models.
Meanwhile, the proposed model can achieve an accuracy of
98.85% and an F1 score of 0.9786, indicating that the pro-
posed model can achieve high precision in the cutterhead
clogging detection of shield tunneling machines and hence
can help realize intelligent fault diagnosis on shield tunnel-
ing machines. In the future, efforts will be made to combine
the excavation parameters, geological environment of shield
tunneling machines, and ideas in other fields [51–54] to
further improve the generalizability of data-driven clogging
detection models.
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