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A multi-scale convolutional neural network for bearing compound
fault diagnosis under various noise conditions
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Recently, with the urgent demand for data-driven approaches in practical industrial scenarios, the deep learning diagnosis model
in noise environments has attracted increasing attention. However, the existing research has two limitations: (1) the complex and
changeable environmental noise, which cannot ensure the high-performance diagnosis of the model in different noise domains
and (2) the possibility of multiple faults occurring simultaneously, which brings challenges to the model diagnosis. This paper
presents a novel anti-noise multi-scale convolutional neural network (AM-CNN) for solving the issue of compound fault
diagnosis under different intensity noises. First, we propose a residual pre-processing block according to the principle of noise
superposition to process the input information and present the residual loss to construct a new loss function. Additionally,
considering the strong coupling of input information, we design a multi-scale convolution block to realize multi-scale feature
extraction for enhancing the proposed model’s robustness and effectiveness. Finally, a multi-label classifier is utilized to
simultaneously distinguish multiple bearing faults. The proposed AM-CNN is verified under our collected compound fault
dataset. On average, AM-CNN improves 39.93% accuracy and 25.84% F1-macro under the no-noise working condition and
45.67% accuracy and 27.72% F1-macro under different intensity noise working conditions compared with the existing methods.
Furthermore, the experimental results show that AM-CNN can achieve good cross-domain performance with 100% accuracy and
100% F1-macro. Thus, AM-CNN has the potential to be an accurate and stable fault diagnosis tool.

anti-noise, residual pre-processing block, bearing compound fault, multi-label classifier, multi-scale convolution feature
extraction
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1 Introduction

As important industrial equipment, rotating machinery is
widely used in manufacturing, transportation, metallurgy,
aerospace, and other fields [1–4]. The rolling bearing is one
of the most critical components in rotating machinery.
Rolling friction occurs from the sliding friction between its
shaft seat and running shaft, which is a kind of precision
mechanical element to reduce friction loss. The rolling
bearing diagnosis is important in achieving high-quality and
low-cost maintenance of industrial equipment [5]. In the

industrial environment, the fault types of rolling bearing
mainly include single fault and compound fault. A “com-
pound fault” refers to two or more faults occurring si-
multaneously during operation. Due to the complex and
changeable working conditions of practical application en-
vironments, a compound fault is more common and more
harmful [6,7]. Therefore, compared with a single fault di-
agnosis, the accurate location of the compound fault is more
challenging. For this reason, it has attracted more attention
from researchers in recent years.
Generally, signal processing and artificial intelligence (AI)

methods are the two main schemes to solve the compound
fault diagnosis. Hilbert-Huang transform [8], empirical mode
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decomposition [9–13], wavelet transform [14–16], sparse
decomposition [17], and wavelet packet transform have been
proposed as signal processing methods to address the pro-
blem of detecting compound fault under practical applica-
tions.
AI methods contain traditional machine learning (ML)

approaches and deep learning (DL) approaches for diag-
nosing compound faults. Feature extraction and feature
classification are two stages of traditional ML approaches
that require numerous expert knowledge. Varying manual
features often lead to different diagnostic performances. Liu
et al. [18] extracted a time-frequency dictionary and used the
support vector machine approach to classify them. Li et al.
[19] detected compound fault from locomotive bearings
based on the distance preserving projection. Guo et al. [20]
combined frequency, time, and time-frequency domain fea-
tures for monitoring bearing conditions based on a deep
neural network. Shao et al. [21] proposed a loss function to
build an autoencoder and used a fish swarm algorithm to
classify bearing faults. With the development of AI methods,
DL methods are now applied to fault diagnosis, which can
automatically extract numerous representations without ex-
tra manual knowledge. Chen et al. [22] extracted time-fre-
quency and statistical measurement features from input
signals and built a convolutional neural network (CNN) to
achieve good diagnosis performance. Huang et al. [23] uti-
lized different scale filters to acquire more useful inputs and
designed a multi-scale cascade CNN for classifying input
classification. Further, Guo et al. [24] presented an adapta-
tive CNN-based model with a hierarchical learning rate to
determine bearing faults and achieve good performance.
Cheng et al. [25] used continuous wavelet transform and
CNN for intelligent diagnosing faults of rotating machines.
The above results show that DL methods can achieve

better results in bearing fault diagnosis than the traditional
ML methods. However, due to the complex and changeable
actual working scenarios, the bearing vibration signal can
easily be polluted by noise, which makes feature extraction a
great challenge. Meanwhile, unlike the single fault, it is more
difficult to accurately extract and locate compound fault
features, which brings great difficulty to the task of fault
classification. Thus, this paper presents a novel anti-noise
multi-scale convolutional neural network (AM-CNN) for
overcoming the challenges of compound fault diagnosis
under different levels of intensity noise. On the one hand,
due to the different intensity of noises in actual working
conditions, the vibration signal of a rolling bearing can be
seriously polluted. DL methods cannot easily extract mean-
ingful deep features from vibration signals combined with
noise. Therefore, to process the input information, a residual
pre-processing block is proposed according to the principle
of noise superposition. Meanwhile, the residual loss is pre-
sented to construct a new loss function. On the other hand,

the vibration signal is usually nonlinear and characterized by
uncertainty, coupling, and high complexity. Additionally, the
characteristic frequency caused by compound fault changes
greatly, thus leading to the distribution of fault characteristics
on different scales. Thus, the vibration signal has multi-scale
characteristics and contains complex characteristics at dif-
ferent time scales. This paper designs a multi-scale con-
volution block to realize multi-scale feature extraction.
Multiple convolution layers with different branches and
convolution kernel sizes are utilized to extract different time
scales features, thereby enhancing the robustness of the
network model to the learning of compound fault features.
Finally, a multi-label classifier is used to simultaneously
distinguish multiple bearing faults for replacing the Softmax
classifier.
The main contributions of our proposed method are sum-

marized as follows.
(1) By combining CNN with the idea of residual learning,

this paper proposes a residual pre-processing block to ef-
fectively extract denoise information under noisy working
conditions. Then, we design a novel loss function to update
block parameters during backpropagation, aiming at ac-
quiring clean input from different intensity noises.
(2) With the aim of improving the model performance, a

multi-scale convolution block is applied based on the idea of
multi-scale learning to learn multi-scale characteristics from
vibration signals.
(3) The proposed AM-CNN is an end-to-end intelligent

diagnosis approach for obtaining domain-invariant features,
which is not only suitable for compound fault diagnosis but
also has good cross-domain capability in different noisy
environments.
The remainder of this paper is arranged as follows. Sect. 2

describes the details of our experimental bearing compound
fault dataset. The methodology and details are introduced in
Sect. 3. Sect. 4 presents the experimental design and results.
Finally, the conclusions are presented in Sect. 5.

2 The experimental dataset

For validating the generalization performance and effec-
tiveness of AM-CNN, this paper designs a bearing com-
pound fault test to build a bearing compound fault dataset.
Then, bearing vibration signals are sampled at 50 kHz, and
the amount of each fault is 512 samples.
Moreover, the dataset used in this paper includes normal

state, three single faults and four compound faults. And then,
single faults include inner ring fault, outer ring fault, and
roller fault of bearing data from the test rig. Further, four
compound faults include outer ring with inner ring fault,
outer ring with roller fault, inner ring with roller fault, and
outer ring with inner ring and roller fault.
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Further, Table 1 presents the details of the dataset, and
Figure 1 lists the vibration signals with different signal faults
and compound faults.

3 Methodology

3.1 Overview of AM-CNN

Figure 2 presents an overview of the AM-CNN. First, due to
the different intensity noises in actual working conditions,
we acquire bearing vibration signals from the dataset ac-
quisition system. Then, we use a short-time Fourier trans-
form (STFT) to obtain time-frequency information as inputs
of the AM-CNN. Additionally, inspired by the ideas of
convolution layer and residual learning, we design the pro-
posed feature extractor for extracting deep features auto-
matically. Finally, we use a multi-label classifier to detect
multiple bearing faults simultaneously.

3.2 Pre-processing

Similar to a previous article [26], we segment the vibration
signal into segments with 5120 sampling points. Then, in-
spired by the idea of the article, we use STFT to vibration
segments for yielding input information. Figure 3 shows an
example of the time-frequency input and its source vibration
signal.

3.3 Residual pre-processing block

With the development of DL technologies, many novel
processing approaches have been proposed, among which
CNN is a common type. A previous study [27] first proposed
CNN, and Lecun et al. [28] further developed it. Due to its
strong representative ability, CNN has been applied to in-
dustrial equipment operation and maintenance [29–31],
handwriting classification [32], medical diagnosis [33,34],
and fault diagnosis [35,36].
The main purpose of CNN is to represent input information

automatically. Eq. (1) shows the principle of the convolution
operation.

y w x b= Relu + , (1)i
j i

i k

j j
=

+

Table 1 Details of the proposed bearing fault dataset

Type Label Amount

Normal N 512

Outer fault Out 512

Inner fault In 512

Roller fault R 512

Outer with inner fault OI 512

Outer with roller fault OR 512

Inner with roller fault IR 512

Outer with inner and roller fault OIR 512

Figure 1 (Color online) Vibration signals with different signal faults and compound faults.
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where Relu(·) means ReLu activation function, and k re-
presents the stride and convolution kernel size.
With numerous training input signals, CNN can auto-

matically obtain representative features to achieve end-to-
end learning. Thus, in this paper, we use the convolutional
layer as the basic feature extraction method for designing
subsequent blocks.
Due to the complexity of actual working scenarios, the

collected vibration signals are typically accompanied by
numerous background noises. Hence, the achievement of
noise reduction of input information is very important. Tra-
ditional denoising methods, such as the sparse model, the
gradient model, and the Markov random field model, mainly
establish an a priori knowledge model for input information.
These methods have the following two disadvantages: (1) the
involvement of complex optimization problems in the test
phase, which is time-consuming, and (2) the nonconvex
nature of the model and involvement of several manually
selected parameters. Thus, to overcome the abovementioned

disadvantages, we propose the residual pre-processing block.
We consider that the collected vibration signal consists of
two parts, namely, actual vibration signal and noise, as
shown in eq. (2):

y x= + noise, (2)

where y and x refer to the collected vibration signal and the
actual vibration signal, respectively. By training a residual
mapping function F(y) ≈ noise with residual learning, and
then x = y −F(y), we can input information after denoising.
Figure 4 presents the proposed residual pre-processing block
inspired by a previous article [37]. The residual pre-proces-
sing block does not directly output the denoised image but
designs the proposed block as a prediction residual in-
formation, that is, the difference between noise observation
and potentially clean information. In other words, the pro-
posed block implicitly removes the potential cleaning in-
formation through the operation in the hidden layer.
Furthermore, to enable the block to conduct end-to-end

Figure 2 (Color online) Overview of the AM-CNN.

Figure 3 (Color online) The time-frequency input and its source vibration signal.

2554 Jin Y R, et al. Sci China Tech Sci November (2022) Vol.65 No.11



training with subsequent networks, we design residual loss to
ensure that the module parameters are updated iteratively in
the backpropagation process:

n vloss = 1 output , (3)i i
2

where v represents the present noise template.
The contributions of the proposed residual pre-processing

block are as follows: (1) an end-to-end CNN is proposed,
which uses residual learning to remove clean information
from noisy information, and (2) the proposed residual pre-
processing block can handle ordinary information denoising
tasks, also known as “blind denoising”.

3.4 Multi-scale convolution block

In combining different time scale features from vibration
signals, the multi-scale convolution block (MS-block)
skillfully adjusts convolution kernel sizes; hence, the con-
volution layer can learn the characteristics of different time
scales. Specifically, the MS-block utilizes multiple parallel
convolution layers with different convolution kernel sizes,
learns rich features of different scales simultaneously, and
fuses multi-scale features across channels through convolu-
tion operation. Figure 5 presents the structure of the MS-
block. As shown in Figure 5, we can see that the MS-block
has multiple branches to extract multi-scale features from
inputs in parallel. The output representation of the con-
volution layer is shown in eq. (1), in which the convolution
kernel sizes of different branches vary. For different con-
volution kernels, convolution can extract different scales of
information from the original signal. Thereafter, the con-
volution outputs of different branches are fused to obtain
complementary information of different time scales yout =
MS-block (input). The MS-block extracts deep features from
different scales. To comprehensively utilize different levels
of features, we fuse different scales features to obtain com-

prehensive features.
A previous article [38] showed that the low-level features

of the shallow learning signal and the high-level features of
the DL signal can enrich the features obtained by simply
superimposing the convolution layer. For understanding the
high-level fault features, a deep multi-scale convolutional
network composed of multiple MS-block is constructed in
this paper.

3.5 Multi-label classifier

Compared with a signal fault, a compound fault means more
than two faults may occur simultaneously, which brings
more difficulties. Commonly, the Softmax classifier is used
for diagnosing singling faults, which are respectively listed
in eqs. (4) and (5). However, because only one classification
result can be selected, the Softmax classifier is not suitable
for compound fault diagnosis.

P e
e= , (4)i

z

j

z
i

j

Figure 4 (Color online) The structure of the residual pre-processing block.

Figure 5 (Color online) The structure of the multi-scale convolution
block.
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y P= argmax( ). (5)
i i

As for compound fault diagnosis, we build a multi-label
classifier based on the sigmoid function for calculating each
fault type probability. The details of the multi-label classifier
are shown in eqs. (6) and (7).
Eq. (6) represents the computing process of the sigmoid

function, which is used for calculating each fault probability
occurring. Then, each fault probability is restricted by the
sigmoid function occurring from 0 to 1. In this paper, we set
the threshold at 0.5, which means that when a fault type’s
probability of occurrence exceeds 0.5, the model considers
that there is a corresponding fault in this section of the signal;
otherwise, there is no fault. Eq. (7) is used to obtain the
output after processing input by the multi-label classifier,
which can locate multiple fault types in vibration signals.

P e= 1
1+ , (6)i zi

y
P
P

=
1, if  threshold,
0, if  < threshold.

(7)i
i

i

Thus, to effectively distinguish multiple fault types, the
multi-label classifier is utilized to calculate the probability of
each fault type and detect the compound fault.

3.6 The architecture

As shown in Figure 6, the architecture of the proposed AM-
CNN consists of three main parts: residual pre-processing

block, multi-scale convolution block, and the convolutional
multi-label classifier. The details of the AM-CNN are listed
in Table 2.
As shown in Figure 6, we use a residual pre-processing

block for input information cleaning to improve the model’s
anti-noise performance. The denoised information is fed into
the subsequent deep multi-scale convolutional network to
extract multi-scale features for representing fault features.
These meaningful features are required to classify compound
faults. The convolutional multi-label classifier includes
convolutional layers, max-pooling layers, and a multi-label
classifier. Due to the large feature dimension of features,
convolution layers and max-pooling layers are mainly used
to extract and filter information until the final judgment in-
formation is obtained. The final judgment information is fed
into the multi-label classifier for distinguishing compound
faults. Algorithm 1 lists the training process for the AM-
CNN.
This paper utilizes the Adam optimizer [39] for updating

network parameters during the backpropagation process and
sets the learning rate as 0.001. Further, we use two NVIDIA
GTX 1080 GPUs and an Intel Xeon E5-2620 CPU for
training the proposed method. We also set the batch size to
128 during the backpropagation process.

4 Results and verification

We design different experiments to validate the accuracy,

Figure 6 (Color online) The architecture of the proposed AM-CNN.
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effectiveness, and anti-noise performance of the proposed
AM-CNN model. First, we introduce the existing methods
and compare them with the proposed AM-CNN under no-
noise working conditions. Then, we further compare the
existing methods with the proposed AM-CNN under differ-
ent intensity noise working conditions. Furthermore, we train
the model with no-noise training data and verify the model
under different intensity noise data to validate the model’s
cross-domain performance.
To conduct a comprehensive evaluation of the model su-

periority and model anti-noise performance, this paper uti-
lizes accuracy (Acc) and macro F1 score (F1-macro), as
shown below:

Ppr TP
TP FP= + , (8)

TP
TP FNSen = + , (9)

Ppr
PprF1 = 2 × Sen×

Sen+ , (10)

N FF1-macro = 1 1 , (11)
i

N

i
=1

TP TN
TP TN FP FNAcc = +

+ + + . (12)

4.1 Model anti-noise performance

This experiment is designed to validate the anti-noise per-
formance of the proposed AM-CNN. Thus, we add different
intensity noises to the original vibration signals based on eq.
(13). This paper adds 10, 8, 6, 4, 2, −2, −4, −6, −8, and
−10 dB noises to the original vibration signals to generate ten
different noise datasets, respectively. For each noise dataset,
we select 80% of the whole data as training data to guarantee

Table 2 The introduction of feature extractor details of the AM-CNN

Layers Type Kernel size Stride Output size

0–1 Input – – 80 × 32 × 1

1–2 Convolution 3 × 3 1 × 1 80 × 32 × 64

2–3 Convolution 3 × 3 1 × 1 80 × 32 × 64

3–4 Convolution 3 × 3 1 × 1 80 × 32 × 64

4–5 Convolution 3 × 3 1 × 1 80 × 32 × 64

5–6 Convolution 3 × 3 1 × 1 80 × 32 × 1

6–7 MS-block 1 5 × 5; 3 × 3; 1 × 1 1 × 1 80 × 32 × 8

7–8 MS-block 2 5 × 5; 3 × 3; 1 × 1 1 × 1 80 × 32 × 16

8–9 MS-block 3 5 × 5; 3 × 3; 1 × 1 1 × 1 80 × 32 × 32

9–10 MS-block 4 5 ×5; 3 × 3; 1 × 1 1 × 1 80 × 32 × 64

10–11 MS-block 5 5 × 5; 3 × 3; 1 × 1 1 × 1 80 × 32 × 128

11–12 Convolution 3 × 3 1 × 1 80 × 32 × 256

12–13 Max-pooling 2 × 2 2 × 2 40 × 16 × 256

13–14 Convolution 3 × 3 1 × 1 40 × 16 × 256

14–15 Max-pooling 2 × 2 2 × 2 20 × 8 × 256

15–16 Convolution 3 × 3 1 × 1 20 × 8 × 256

16–17 Average-Pooling 20 × 8 1 × 1 1 × 1 × 256

Algorithm 1

Input
XS: vibration signals from the training set
YS: labels from the training set
N: total training epochs
t: number of epoch
s: batch size
Start
Repeat

For from XS
and XT

, respectively obtain s samples
Deep features are obtained by the feature extractor of AM-CNN.
Calculate the probability of each fault occurring according to eq. (6).
Calculate the multi-label loss by the binary cross-entropy function.
Update the multi-label loss and residual loss based on backpropagation.

end
Until: t increases to N
Output: Bearing compound fault diagnosis model
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the model performance during the training process. Ad-
ditionally, we select 20% of the whole data as validating data
in choosing the best model during the training process. Fi-
nally, the remainder of the whole dataset is selected as the
test data for validating the model performance.

P
PSNR = log . (13)s

n
10

For effectively comparing model performance, we choose
some existing methods as the baseline models, which are
shown in Figure 7.
(1) CNN. CNN uses a convolution layer for replacing the

multi-scale convolution block and extracting numerous deep
features automatically. Similar to the AM-CNN, we use the
convolution multi-label classifier to classify features and
detect compound faults.
(2) LSTM. This method uses the long-short term memory

(LSTM) layer for replacing multi-scale convolution blocks
and extracting numerous deep features automatically. Simi-
lar to the AM-CNN, we use the multi-label classifier to
classify the features and detect compound faults.
(3) Zou’s method [40] with one-dimension input

(ANCNN_1d). According to the article, we reproduce the
methodology. Then, we use the vibration signal to replace the
time-domain input used in the paper as the input information
of the network to ensure consistency with the original paper.
Finally, we use the multi-label classifier to classify features
and detect compound faults.
(4) Zou’s method [40] with time-frequency input

(ANCNN_tf). According to the article, we reproduce the
methodology. Then, we use the time-domain input used in
the paper as the input information of the network to evaluate
the model performance of Zou’s method. Finally, we use the
multi-label classifier to classify the features and detect the
compound faults.

(5) Jin’s method [41] with one-dimension input
(ANNN_1d). According to the article, we reproduce the
methodology. Then, we also use the vibration signal to re-
place the time-domain input used in the paper as the input
information of the network to ensure consistency with the
original paper. Finally, the multi-label classifier is used to
classify the features and detect compound faults.
(6) Yuan’s method [42] (CNN_1d). According to the ar-

ticle, we reproduce the methodology and retain the proposed
CNN structure. Finally, the multi-label classifier is used to
classify the features and detect compound faults.
(7) Chen’s method [43] (MSCNNLSTM). According to

the article, we reproduce the methodology and retain the
combination of CNN and LSTM used in this paper. Finally,
the multi-label classifier is used to classify the features and
detect compound faults.
Figure 8 lists the comparison results of the baseline models

and that of the proposed AM-CNN performance under dif-
ferent intensity noises. On average, CNN reaches 99.46%
accuracy and 99.78% F1-macro under different intensity
noise working conditions. Furthermore, LSTM reaches an
average of 99.22% accuracy and 99.82% F1-macro under
different intensity noise working conditions. Meanwhile,
ANCNN_1d reaches 13.16% accuracy and 33.54% F1-
macro under noise working conditions of varying intensity.
ANCNN_tf reaches 0% accuracy and 39.15% F1-macro
under noise working conditions of varying intensities. Si-
milarly, ANNN_1d reaches 12.59% accuracy and 49.53%
F1-macro, also under noise working conditions of varying
intensities. CNN_1d reaches 90.56% accuracy and 93.03%
F1-macro under noise working conditions of varying in-
tensities. Finally, MSCNNLSTM reaches 65.31% accuracy
and 91.08% F1-macro under noise working conditions of
varying intensities. Overall, the proposed AM-CNN reaches
better model performance, with 100% accuracy and 100%

Figure 7 (Color online) The architecture of baseline models. (a) CNN, (b) LSTM, (c) ANCNN_1d, (d) ANCNN_tf, (e) ANNN_1d, (f) CNN_1d, and (g)
MSCNNLSTM.
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Figure 8 (Color online) The anti-noise performance of Experiment 1.
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F1-macro under noise working conditions of varying in-
tensities.
According to the abovementioned experimental results, we

can arrive at the following conclusions.
(1) The proposed AM-CNN has better anti-noise ability

compared with the baseline models based on CNN, LSTM,
and the combination of CNN and LSTM.
(2) Compared with convolution layers, the MS-block can

extract multi-scale features, which can better reflect the fault
features of compound faults and improve the final diagnosis
results.
(3) Due to the limitation of the LSTM layer model struc-

ture, the corresponding operations must be completed during
feature extraction, which in turn leads to a model that re-
quires a long period of time to complete. Under actual
working conditions, the model with shorter time consump-
tion has a more real-time nature. The MS-block can also
extract multi-scale features, which can achieve better model
performance. Therefore, our method has better advantages in
model anti-interference and real-time performances.
(4) Under actual working conditions, data will continue to

be generated, and it is necessary to judge whether a fault
exists. Therefore, compared with CNN and LSTM, the AM-
CNN improves the anti-noise performance of the model and
can correctly diagnose more vibration signals in the actual
diagnosis process.
(5) Given that the characteristics of compound faults are

difficult to locate, the existing methods cannot easily diag-
nose compound faults, which reflects the advantages of the
proposed AM-CNN.

4.2 Model cross-domain performance

This experiment is designed to validate the cross-domain
performance of the AM-CNN. First, we add different in-
tensity noises to the remainder of the original vibration sig-
nals based on eq. (13). This paper adds 10, 8, 6, 4, 2, −2, −4,
−6, −8, and −10 dB noises to the original vibration signals to
generate ten different noise datasets, respectively. Table 3
lists the details of this experiment. To guarantee good model
performance during the training process, we select 80% of
the wholeDi data as the training data. Then, we select 20% of
the whole Di data as validating data in order to choose the
best model during the training process. Finally, we select
20% of the whole Dj data as the test data for validating the
model performance.
Figure 9 shows the cross-domain performance of the

proposed AM-CNN under different intensity noises. As we
can see, the proposed AM-CNN reaches better model per-
formance, with 99.94% accuracy and 99.97% F1-macro
under different tasks, thus indicating 55.01% accuracy and
35.60% F1-macro. The comparison results reveal that com-
pared with the existing methods, AM-CNN can extract do-

main-invariant features during the training process, which
are helpful in improving cross-domain performance.
As we can see in Figure 9, the proposed AM-CNN is stable

under different intensity noise environments.
(1) Through the parameter training of the network model

under one working condition, the trained model can still
achieve good performance under other different intensity
noise data. Compared with the laboratory environment, there
will be a great deal of background noise in the actual working
environment. The experimental results reveal that the pro-
posed AM-CNN can be trained by easily obtaining no-noise
data, thus achieving good results even in complex noise
environments.
(2) Compared with the existing methods, the AM-CNN

can reach better and more stable cross-domain performance,
which means the proposed model can extract domain-in-
variant features in any noise environment. The reasonable
architecture of the AM-CNN is helpful in applying the pro-
posed method to practical working conditions.
(3) The AM-CNN can achieve good cross-domain per-

formance without using other additional transferring meth-
ods, thus greatly simplifying the model structure and saving
on model training time. In practical industrial applications,
this can vastly improve the timeliness of diagnosis.
Thus, the proposed AM-CNN has a strong representative

capability of denoising noise and extracting essential deep
features for diagnosing compound faults.

4.3 Model performance comparisons

This experiment is designed to validate the effectiveness of
the AM-CNN under the no-noise working condition. To
ensure the model performance during the training process,
we select 80% of the whole no-noise data as the training data.
Additionally, we select 20% of the whole no-noise data as
validating data in choosing the best model during the training
process. Finally, the remainder of the whole dataset is se-

Table 3 Details of Experiment 2

Task Training data/Validating
data (dB) Test data (dB)

1 No_noise −10/−8/−6/−4/−2/2/4/6/8/10

2 −10 −8/−6/−4/−2/2/4/6/8/10/No_noise

3 −8 −10/−6/−4/−2/2/4/6/8/10/No_noise

4 −6 −10/−8/−4/−2/2/4/6/8/10/No_noise

5 −4 −10/−8/−6/−2/2/4/6/8/10/No_noise

6 −2 −10/−8/−6/−4/2/4/6/8/10/No_noise

7 2 −10/−8/−6/−4/−2/4/6/8/10/No_noise

8 4 −10/−8/−6/−4/−2/2/6/8/10/No_noise

9 6 −10/−8/−6/−4/−2/2/4/8/10/No_noise

10 8 −10/−8/−6/−4/−2/2/4/6/10/No_noise

11 10 −10/−8/−6/−4/−2/2/4/6/8/No_noise
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lected as the test data for validating the model performance.
Table 4 shows the comparison results. As listed in Table 4,

under the no-noise working condition, CNN reaches 99.51%
accuracy and 99.88% F1-macro, LSTM reaches 99.27%

accuracy and 99.83% F1-macro, ANCNN_1d reaches
12.93% accuracy and 33.52% F1-macro, ANCNN_tf reaches
0% accuracy and 39.11% F1-macro, ANNN_1d reaches
13.17% accuracy and 49.35% F1-macro, CNN_1d reaches

Figure 9 (Color online) The cross-domain performance of Experiment 2.
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100% accuracy and 100% F1-macro, and MSCNNLSTM
reaches 95.61% accuracy and 97.44% F1-macro. Overall, the
proposed AM-CNN reaches better model performance, with
100% accuracy and 100% F1-macro under the no-noise
working condition.
According to the abovementioned experimental results, we

can conclude the following points.
(1) Compared with the existing methods, the AM-CNN

can reach better accuracy, which shows that the model has
better expression ability.
(2) Compared with the convolution layers and the LSTM

layers, the MS-block can extract multi-scale features, which
can better reflect the fault features of compound faults to
improve the final diagnosis results.
(3) Given that the characteristics of compound faults are

difficult to locate, the existing methods cannot easily diag-
nose compound faults, thus reflecting the advantages of the
AM-CNN.

4.4 Practical applications and future works

The experimental results prove that the AM-CNN reaches
competitive performance on our collected compound fault
dataset. Moreover, compared with the existing methods, the
AM-CNN improves model performance under working
conditions of varying noise intensities and achieves good
cross-domain performance with 100% accuracy and 100%
F1-macro. As for practical applications, the AM-CNN can be
an accurate and stable fault diagnosis tool in the industrial
environment to a certain extent.
As for future work, we will further explore a general

structure for fault diagnosis using other structures, such as
random convolutional kernels [44] and LSTM. We will also
apply the proposed method to other fields, such as industrial
equipment maintenance [45–47] and medical diagnosis [48–
52].

5 Conclusion

This paper proposes the AM-CNN for addressing the issue of

compound fault diagnosis under different intensity noises.
First, according to the principle of noise superposition, we
propose a residual pre-processing block to process the input
information and present the residual loss to construct a new
loss function. Additionally, considering the characteristic
frequency caused by compound fault changes, we design a
multi-scale convolution block to realize multi-scale feature
extraction. Multiple convolution layers with different bran-
ches and convolution kernel sizes are utilized to extract
different time scale features and enhance the robustness of
the network model to the learning of compound fault fea-
tures.
Finally, we use a multi-label classifier to distinguish

among multiple bearing faults simultaneously. The proposed
AM-CNN is verified under our collected compound fault
dataset. The findings show that compared with the existing
methods, AM-CNN improves accuracy by 39.93% and
45.67% with 25.84% and 27.72% F1-macro, respectively,
under noise working conditions of varying intensities. Fi-
nally, the experimental results show that the AM-CNN can
achieve good cross-domain performance with 100% accu-
racy and 100% F1-macro.
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