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The firing sequence of the neuron system that transmits information consumes a significant amount of energy, but it is unclear
how the firing pattern of the neuron system determines its energy efficiency. The mode transformation and energy efficiency in
different firing modes are investigated using the Chay neuron model. It has been found that when system parameters are tuned,
the neurons show complex bursting kinetics. The period-n bursting state of the neuron carries high amounts of information while
consuming less energy per unit of information, resulting in higher energy efficiency. In particular, the mixed discharge state,
where the neuron is in several bursting states simultaneously, is more energy efficient, and appropriate electromagnetic in-
ductioncan enhance the neuron’s energy efficiency. Furthermore, there are optimal system parameters that maximize the energy
efficiency of firing modes, demonstrating that the neuron carries high amounts of information while consuming less energy per
unit of information. The study helps to understand the energy mechanism of neural information propagation and provides an
insight into the energy efficiency characteristic of neuron systems.
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1 Introduction

A neuron is the basic unit of information processing in the
neurological system [1,2]. Neurons consume ten times the
energy of body cells. The human brain consumes more than
20% of the body’s energy but weighs only 2% of the body.
Neurons compute and communicate primarily through action
potentials and synaptic potentials [3,4]. In neurons, synaptic
activity consumes 60% of the energy, action potential con-
sumes 10%, and resting metabolism consumes 30%.
The neural system is important, multidimensional, and

complex, and each neuron has a unique firing mode, in-
formation processing mode, and information coding mode
[5–7]. Thus, it is necessary to construct the nervous system
using biological, physical, and mathematical methods based

on key neural circuits and microneural networks and to study
the effects of intrinsic and extrinsic factors on the complex
neuron system’s nonlinear dynamic characteristics through
stochastic simulation and nonlinear dynamic analysis [8–12].
Numerous elements influence the dynamic behavior of

neuron systems, such as fluctuation or randomness, internal
and external stimuli, energy transitions, time delay, and
electromagnetic radiation [13–18]. Neurons show a variety
of discharge behaviors under various conditions, such as
periodic spike discharge mode, period-doubling cluster dis-
charge mode, and mixed discharge mode [19]. These dis-
charge states can also be observed in the experiment [20,21].
The firing sequence of the neuron system carries different
amounts of information in various firing modes, and the
information-carrying firing modes consume a significant
amount of energy during the transition phase [22–24]. Be-
cause information coding occurs within a limited energy
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range, the energy efficiency of neural information trans-
mission is a necessary limiting factor for the neuron system
[25,26]. Recent studies show that neural information is more
likely to be encoded by sequences of spikes than by single
spikes [27], and energy efficiency depends not only on a
single peak but also on the state of the discharge mode.
There are many methods of analyzing neural coding, but

two of the most important are the principle of minimum
mutual information and the principle of maximum entropy
[28–30]. In the case of minimum mutual information, energy
consumption is minimal, and the amount of information
obtained is also minimal. At the same time, the energy
consumed in obtaining the maximum entropy is very large,
as is the information obtained. In addition, Hamilton energy
[31–33] is used to estimate the dependency of states on en-
ergy in the oscillator model and neuron using Helmholtz’s
theorem.
High energy consumption implies that the neural system

must operate efficiently, showing that neurons must process
as much information as possible with the lowest energy
consumption [34–36]. And because the human brain is re-
latively efficient, this is considered an important principle for
the nervous system’s evolution under selective pressure [37].
There are many studies on energy; for example, a neural
energy calculation method was proposed for calculating the
power of neuron bursts with or without current stimulation,
and it was found that neurons consume the least energy in the
bursting state [38]. The reference [39] discussed brain energy
metabolism in detail, with an emphasis on the metabolic
interactions between neurons and astrocytes. The energy and
collective dynamics were studied in the model of the star-
coupled neuron [40] and were found to be applicable to the
same and different chaotic oscillator networks.
In addition, an energy factor was proposed to measure the

metabolic demand during neuronal discharge, and it was
found that excitatory neurons consume more energy during
pathological seizures than they do during normal firing
mode, whereas inhibitory neurons consume less energy to
enter the seizure process than excitatory neurons do during
normal firing mode [41]. The reference [42] adopted the
energy cost theory to distinguish epileptiform discharges
from normal spike discharges and observed that the transi-
tion of somatic discharge patterns from regular to epilepti-
form discharges coexisted with “energy explosions,” i.e.,
epileptiform discharges consume more energy than con-
ventional discharges.
Additionally, some researchers studied the energy of the

neuron system from the perspective of circuits and biological
experiments [43–48]. The VLSI circuit was developed to
study the energy consumption of leaky integrate and fire
neurons, as well as to implement hardware acceleration [43].
It is found through experiments that fast Cordic-based Izhi-
kevich neurons have higher energy efficiency and accuracy

than traditional Cordic-based designs [45]. Integrated cir-
cuits based on ultra-low energy bionic neurons and synapses
have been demonstrated [47], and neurons and synapses
using STDP circuits consume low energy. The biological
experiment [48] used biological data analysis to evaluate the
relationship between neuron-astroglia metabolic rate and
volume fraction. An experimental study [49] of non-
myelinated mossy fibers of the rat hippocampus found that
the less temporal overlap of inward Na+ and outward K+

currents during action potentials, the lower the energy cost
and the higher the energy efficiency. In addition, the re-
ference [50] analyzed intracranial EEG recordings of pa-
tients and found that neuronal firing becomes more common
and cumulative energy increases prior to seizure.
Although extensive research has been conducted on the

energy supply and consumption of neuron systems
[37,51,52], surprisingly little attention has been devoted to
the relationship between energy efficiency and complex
firing modes. In particular, combining information and en-
ergy shows the inner connection between neural information
and neural energy. As a result, an interesting question now
arises: How does the nervous system’s firing pattern de-
termine energy efficiency? How does electromagnetic in-
duction affect the supply and consumption of energy by
neurons? How do the tuning system parameters affect the
neuron’s energy efficiency?
To address these challenges, we investigate the energy-

efficient firing modes associated with different bursting ki-
netics using the Chay neuron model. Section 2 introduces the
neural model and the formula for energy consumption and
energy efficiency. Section 3 discusses complex firing modes
and their transformations, followed by the study of the im-
pact of control parameters (relaxation time constants λn,
maximal conductances gkc, and feedback gains k) on energy
consumption and efficiency. It has been found that there are
optimal system parameters where the energy efficiency of
firing modes is greatest, and the neuron carries high amounts
of information while consuming less energy per unit of in-
formation. This discovery has significant implications for
understanding the different coding patterns found in the
neuron system.

2 Model and methods

2.1 The Chay neuron model

The Chay neuron model is a unified new theoretical model
based on many different types of excitable cells, such as
neurons, cardiomyocytes, and sensory terminals, that are
related to Ca2+ ions and play an important role in K+ ion
channels. This model can simulate various periodic, quasi-
periodic, and chaotic cluster discharge and spike discharge
rhythm patterns of real excitatory cells [25,53]. The mem-
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brane potential dynamics of the improved Chay neuron
model is

V
t I I I I Id

d = , (1)kv kc i l

C
t m h V V k Cd

d = ( ( ) ), (2)C C
3

n
t n nd

d = ( )( + ), (3)n n n

t k V kd
d = , (4)1 2

where V is membrane potential, C is the intracellular Ca2+

concentration, n is the probability of opening a voltage-
dependent K+ channel, and φ is magnetic flux, which de-
scribes the influence of electromagnetic induction. ρ is the
proportionality constant, λn is the relaxation time constant,
VC is the reversal potential for Ca

2+ ions, and kC is the ratio
constant of intracellular Ca2+ ions.
The term Ikv is the ionic current of the outward voltage-

dependent K+, Ikc is the ionic current of the outward calcium-
dependent K+, Ii is the ionic current of the inward mixed Na

+-
Ca2+, and Il is the leakage current [25]. The term Iφ is the
feedback current on the membrane potential caused by
electromagnetic induction. Their descriptions are
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where gkv, gkc, gi, and gl are the maximal conductances, Vk, Vi,
Vl, VC, and Vφ are reversal potentials. Parameter k is feedback
gain, and the electromagnetic induction intensity depends on
the value of two parameters (k, k1). m∞ and h∞ are activation
and deactivation probabilities of the mixed channel, and n∞

is the steady-state value:
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where αn and βn are the opening and closing rates of the K
+

channel, αm and βm are the opening and closing rates of the
Na+ channel activation gates, respectively, αh and βh are the
opening and closing rates of the Na+ channel deactivation
gates, respectively.
The values of parameters are set as Vk = −75 mV, Vi =

100 mV, Vl = −40 mV, VC = 100 mV, Vφ = 16.0 mV, gi =
1800 s−1, gkv = 1700 s−1, gl = 7 s−1, ρ = 0.27 mV−1 s−1, kC =
3.3/18, a = 0.4, b = 0.02, and k1 = 0.1 and k2 = 0.1, the
detailed explanation of these parameters can be viewed in
refs. [52,54]. The Chay neuron model has a basic assumption
[53,55] that the potential energy stored in the battery reverse
potentials Vi, Vl, Vk, Vφ in the circuit comes from the bioe-
nergy ATP consumed by the Na/K-ATPase pump. The
schematic diagram for the improved Chay neuron circuit is
shown in Figure 1. The electric power provided by batteries
Vi and Vφ makes the membrane potential less negative (de-
polarization), and the electric power provided by batteries Vk
and Vl makes the membrane potential more negative. Fur-
thermore, nonlinear equations are integrated by using Euler’s
algorithm, and the time step is 0.00001.

2.2 Energy consumption and energy efficiency

The energy estimation method proposed in previous studies
[25,38] was adopted, and the net power P(t) causing changes
in membrane voltage is as follows:

P t I V I V I V I V( ) = + , (14)k k l l i i

where the rate at which each battery transfers electrical en-
ergy to the capacitor Cm is its electrical current multiplied by
its electromotive force |IyVy| (y = i, k, l, φ), and the corre-
sponding net power P during the action potential and its
following hyperpolarization. When P(t) is positive, the en-
ergy consumed to change the membrane potential comes
from the electrical power of batteries |IkVk| + |IlVl|, which is
not counterbalanced by the electrical power of batteries |IiVi|
+ |IφVφ|, the positive energy is calculated during the time
period T (120 s) of the firing activities:

E P t t P

P
= ( )d ,     0,

0,                < 0.
(15)

T

positive 0

Simultaneously, when P(t) is negative, electrical power

Figure 1 (Color online) Schematic of neuron circuit under electro-
magnetic induction.
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|IiVi| + |IφVφ| provides the energy consumed to change the
membrane potential, which is not counterbalanced by battery
electrical power |IkVk| + |IlVl|. The negative energy is calcu-
lated as follows:

E
P

P t t P
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0,                0,

( )d ,   < 0,
(16)Tnegative

0

so the total energy consumption (E) is

E E E P t t= + = ( ) d . (17)
T
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The ratio (δ) of the negative energy consumption to positive
energy consumption is

E
E= . (18)negative

positive

Each firing pattern is converted into a series of ISI (inter-
spike intervals), the standard deviation (σ) and the mean (μ)
of which are given by
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Therefore, the information (coefficient of variation, CV) of
the spike sequence variation is given as
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The more irregular the firing pattern is, the larger the value
of the CV is and, accordingly, the more information it carries.
In addition, the value η is calculated from energy con-
sumption per unit of information as follows:
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A smaller η value means higher energy efficiency, i.e.,

lower energy consumption per unit of information. Corre-
spondingly, a higher η value means lower energy efficiency.
In order to satisfy the statistical law, the CV is calculated over
a time length of 1200 s.

3 Results

3.1 Different bursting kinetics of the Chay neuron
model

First, so as to show the complex firing modes of neurons, the
bifurcation diagrams of ISI are plotted with the different
parameters, as shown in Figure 2.
The electrical activities of the neuron show a series of

firing modes transformation: as system parameters change,
the firing mode transforms between spiking and bursting
behaviors, with the bursting behavior including chaotic and
periodic bursting states (such as period-2 state, …, 11, …,
and even period-25 state).
As shown in Figure 2(a), as the time constant λn increases,

the dynamic transition experiences the following succession:
spiking state→ period-2 bursting state→ period-3 bursting
state→ period-4 bursting state→ period-n bursting state→
spiking state, and the λn values for the critical point of the
spiking and bursting state are 240 and 381, respectively. In
Figure 2(b), as the gkc increases, the firing mode undergoes
an interesting transformation: spiking state→ chaos state→
period-4 bursting state→ period-3 bursting state→ period-2
bursting state → closed spiking state. This presents an op-
posite trend to the firing mode transition with increasing time
constant λn, and the gkc values for the critical point of the
spiking and bursting state are 10.35 and 19.55, respectively.
Furthermore, the complex bifurcation process of the feed-
back gain k is period-2 bursting state → spiking state →
period-2 bursting state → closed spiking state, and the k
values for the critical point of the four state transitions are
0.00112, 0.0115, and 0.0206. Compared with previous work
[25], the discharge activity of neurons induced by electro-
magnetic induction is more complex, showing a mixed dis-
charge state in which neurons are in several bursting states

Figure 2 (Color online) Dynamics of complex firing modes in the theoretical neuron model. Bifurcation diagrams with (a) various relaxation time constants
λn (the fixed parameters: gkc = 23.6 s

−1, k = 0.001), (b) various maximal conductances gkc (the fixed parameters: λn = 230, k = 0.001), and (c) various feedback
gains k (the fixed parameters: λn = 240.4, gkc = 23.6 s−1).
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simultaneously.
In addition, the neuronal diverse firing states are shown in

Figure 3. As can be seen, when the maximum conductance
gkc and the λn are fixed, the neuron’s electrical activities
undergo a transition into complex firing modes. First, to
characterize the behavior of the firing modes transformation
in Figure 2, we plot the action potentials of different para-
meter areas shown in Figure 3. These results correspond to
the bifurcation diagrams.
In addition, in order to investigate the energy computation

of neurons in different bursting kinetics, the modes of the
action potential of neurons, the electric power of batteries,
and the net power P are shown in Figure 4. The electrical
power of batteries and net power change as the action po-
tential of neuron firing modes changes, and the electrical
power of batteries are very different in value.

3.2 Energy efficiency of different bursting kinetics in-
duced by control parameters

In this section, the effects of control parameters (λn, gkc, and
k) on energy are investigated, and it is found that there exists

an optimal region of energy efficiency.
To study the system’s energy computation and efficiency,

we first evaluate the implications of varying the system’s
maximal conductance. The ratio (δ) is shown in Figure 5(a),
whereas the corresponding membrane potential distributions
are shown in Figure 5(b). With the maximal conductance
increasing, the En-Ep ratio gradually decreases (while the
ratio rapidly changes between 6 and 12 s−1), showing that the
distribution of membrane potential has significantly chan-
ged. The corresponding membrane potential distributions for
four special values (purple dots) show that when the maximal
conductance increases, the membrane potential distribution
changes from mostly above to predominantly below the
threshold potential (−46 mV). When gkc = 6.0 s−1, the
membrane potential of the high-frequency bursting pattern is
primarily between −46 and −20 mV and is generally greater
than the threshold potential (−46 mV). When gkc = 12.0 s−1,
the frequency distributed between −46 and −20 mV is sig-
nificantly reduced, whereas when gkc = 19.5 and 23.6 s

−1, the
membrane potential of the low-frequency bursting pattern is
primarily between −60 and −46 mV, which is below the
threshold potential. As a result, neurons with a high-fre-

Figure 3 (Color online) Firing modes of neurons’ electrical activities driven by different parameters. The maximal conductance gkc and relaxation time
constant λn are set as λn = 240.4 and gkc = 23.6 s−1.
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quency burst consume more negative energy than neurons
with a low-frequency bursting pattern, which consumes more
positive energy.
So as to study the effect of maximal conductance on the

energy efficiency of different bursting kinetics, the in-

formation (CV) and total energy consumption (E) are shown
in Figure 6(a). When the parameters are fixed as λn = 230, k =
0.001, and maximal conductance is in the range of
10.35–19.55 s−1, the neuron in different period-n bursting
states (as shown in Figure 2(b)) carries relatively high

Figure 4 (Color online) Modes of the neurons’ action potential, the electric power of batteries, and the net power P under different parameters. The
parameters are set as k = 0.001 and λn = 230. The larger the value of maximal conductance, the higher the neuron’s discharge frequency.

Figure 5 (Color online) (a) Ratio (δ) of the negative energy consumption to positive energy consumption; (b) membrane potential distribution of various
maximal conductances (gkc). The parameters are set as λn = 230 and k = 0.001.
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amounts of information, the neuron in a periodic spiking
state carries low amounts of information, and the total energy
consumption is relatively low. The extreme points (gkc =
11.7, 13.5, 15.5, 19.8 s−1) of the blue line (information) and
the purple line (total energy consumption) correspond to the
mixed discharge state where the neuron is in several bursting
states simultaneously. This is very different from previous
work [25]. Under electromagnetic induction, there are sev-
eral low-value states of energy efficiency that correspond to
the mixed discharge state.
Therefore, the energy efficiency calculated (Figure 6(b))

shows that the neuron in different period-n bursting states
consumes less energy per unit of information, resulting in
higher energy efficiency. In particular, a mixed discharge
state where neurons are in several bursting states simulta-
neously has high energy efficiency. In this condition, the
different period-n bursting states belong to a medium-fre-
quency pattern, which reduces energy consumption by pro-
ducing fewer spikes and consuming the potential energy
stored in the ion concentration gradient. On the contrary, the
neuron in a periodic spiking state (high-frequency pattern or
low-frequency pattern) consumes more energy per unit of
information, which means low energy efficiency. The pos-
sible reasons for low efficiency are that high-frequency
patterns dissipate the energy stored in the Na+ gradient and
do not fully dissipate the energy stored in the K+ gradient,
resulting in wasted energy. Low-frequency patterns do not
fully dissipate the energy stored in the Na+ gradient and
excessively dissipate the energy stored in the K+ gradient.
Thus, excessive Na+ gradients induce sparse firing, resulting
in energy waste in information transmission [56].
In addition, the effects of feedback gain on energy com-

putation and energy efficiency of the neuron system are
being studied. The ratio (δ) is computed at different feedback
gains in Figure 7(a), and the corresponding membrane po-
tential distributions are shown in Figure 7(b).
With the feedback gain increasing, the En-Ep ratio first

increases, reaches a maximum, and then reduces again. The
neuron in low feedback gain (below 0.1) has a low-frequency
firing rhythm (the corresponding value of ISI is larger in
Figure 2(a)), and the membrane potential of the low-fre-
quency bursting pattern is mostly between −60 and −46 mV,
which is below the threshold potential. While the neuron in
high feedback gain (above 0.1) has a high-frequency firing
rhythm, the membrane potential distribution changes from
mostly above the threshold potential (−46 mV) to mostly
below the threshold potential. Therefore, a high-frequency
pattern of neurons consumes more negative energy than a
low-frequency pattern of neurons consumes more positive
energy.
Furthermore, the energy efficiency of different firing

modes induced by feedback gain is evaluated in Figure 8(b),
and the information (CV) and total energy consumption (E)
are shown in Figure 8(a).
First of all, from the overall point of view, the information

is in a low value state. Interesting changes (green box) occur
when feedback is small and total energy consumption first
increases and then decreases. What needs to be emphasized
is that as feedback gain increases (green box), the informa-
tion undergoes a succession: decreases → increases → de-
creases. That is, the information carried by the neuron in
different firing patterns decreases first, then increases, and
finally decreases. These results are consistent with the firing
state in Figure 2(a). Furthermore, Figure 8(b) shows that
when the value η remains low, the neuron consumes less
energy per unit of information with a lower feedback gain k,
implying that the neuron in a complex bursting state is highly
energy efficient. Therefore, it is found that low feedback
current induced by electromagnetic induction can enhance
neural energy efficiency. The neuron in a complex period
bursting state carries high amounts of information. Total
energy consumption is relatively low, and it has high energy
efficiency.
The effects of relaxation time constant λn on energy

Figure 6 (Color online) (a) Information and total energy consumption; (b) energy efficiency; a lower η value signifies high energy efficiency. The
parameters are set as λn = 230 and k = 0.001.
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computation and energy efficiency of the neuron system are
investigated. First, δ shows obvious fluctuations in Figure
9(a). When the relaxation time constants are small, the
membrane voltage of the low-frequency bursting pattern is
mostly between −60 and −46 mV, which is below the
threshold potential. With the λn increasing, the En-Ep ratio
gradually decreases; the distribution is that one-third of the
membrane potential is above the threshold potential
(−46 mV) and nearly two-thirds of the membrane potential is
lower than the threshold potential. Thus, the high-frequency
bursting pattern of neurons consumes more negative energy
than the low-frequency bursting pattern of neurons consumes
more positive energy. These results are consistent with the
above conclusion.
In addition, the information (CV), total energy consump-

tion (E), and energy efficiency are calculated in Figure 10.
With relaxation time constant increasing, the information
undergoes a successive transition, i.e., first maintaining a
stable low state → increase → decrease. This transition

corresponds to the neuron firing state shown in Figure 2(b).
And total energy consumption increases first, then decreases
and maintains a stable value. Furthermore, when the para-
meters are fixed as gkc = 23.6 s−1, k = 0.001, and the re-
laxation time constant is in the range of 240 and 381, the
neuron is in a different period-n bursting state (as shown in
Figure 2(a)). At this time, the neuron consumes less energy
per unit of information in the green box (Figure 6(b)), which
means higher energy efficiency.
As a result, it is found that the more complex the state of

the neuron, the greater the information (CV) and the higher
the total energy consumption. However, the neuron in a
complex period-n bursting state consumes relatively less
energy per unit of information; that is, the neuron in a
complex period-n bursting state carries high amounts of in-
formation, the total energy consumption is relatively low,
and the energy efficiency is high. The different period-n
bursting states belong to medium-frequency patterns (as
shown in Figure 2(a)), which reduce the energy consumption

Figure 8 (Color online) (a) Information and total energy consumption; (b) energy efficiency. The parameters are set as λn = 240.4 and gkc = 23.6 s−1.

Figure 7 (Color online) (a) Ratio (δ) of the negative energy consumption to positive energy consumption; (b) membrane potential distribution of various
feedback gain k. The parameters are set as λn = 240.4 and gkc = 23.6 s−1.
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by producing fewer spikes and consuming the potential en-
ergy stored in the ion concentration gradient.

3.3 Energy efficiency of different bursting kinetics in-
duced by the combined influence of k, gkc, and λn

In this section, the energy efficiency and the information are
discussed under the combined influence of the λn, gkc, and k.
The results show that there is an optimal parameter area
where the neuron has high energy efficiency; that is, it carries
a high amount of information and consumes less energy.
The combined effect of the relaxation time constant λn and

the maximum conductance gkc are shown in Figure 11. The
state of “the middle is high and the ends are gradually de-
creased’’ is shown in Figure 11(a). When the relaxation time
constant λn is fixed at 350, the information is relatively large.
However, when the maximal conductance gkc is set to a value
between 6 and 10 s−1, the information greatly fluctuates.

There exists an intermediate area of maximal conductance
the relaxation time constant is fixed, the information is lar-
ger, and the neuron carries a high amount of information. The
total energy consumption shown in Figure 11(b) is a “step”
style change; at a lower relaxation time constant and median
of maximal conductance (from 10 to 20 s−1), the neuron
consumes relatively low total energy.
The reciprocal of the 1/η value is shown in Figure 11(c);

the change trend of 1/η is opposite to that of Figure 6(b) and
Figure 10(b). A bigger 1/η value shows higher energy effi-
ciency (that is, lower energy consumption per unit of in-
formation). It has been observed that an obvious area with a
high 1/η value exists in which the neuron carries a large
amount of information while consuming less energy. In ad-
dition, the ratio (δ) is shown in Figure 10(d). At a low
maximal conductance and high relaxation time constant, the
neuron is in a high-frequency bursting pattern, the En-Ep ratio
is high, and the neuron consumes more negative energy. On

Figure 9 (Color online) (a) Ratio (δ) of the negative energy consumption to positive energy consumption; (b) membrane potential distribution of various
relaxation time constants λn. The parameters are set as gkc = 23.6 s−1 and k = 0.001.

Figure 10 (Color online) (a) Information and total energy consumption; (b) energy efficiency. The parameters are set as gkc = 23.6 s−1 and k = 0.001.
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the contrary, when the neuron has a high maximal con-
ductance and a short relaxation time constant, it bursts at a
low frequency, the En-Ep ratio is low, and the neuron con-
sumes more positive energy.
Thus, a neuron with a high-frequency bursting pattern

consumes more negative energy, whereas a neuron with a
low-frequency bursting pattern consumes more positive en-
ergy. Additionally, there is an optimal parameter area of
maximum conductance and relaxation time constant where
the energy efficiency of firing modes is greatest, and the
neuron carries a large amount of information while con-
suming less energy per unit of information.
Furthermore, the combined influences of feedback gain k

and relaxation time constant λn on energy efficiency are
shown in Figure 12. The information in Figure 12(a) presents
an obvious high-low distribution; it is found that the in-
formation (CV) is larger at a high relaxation time constant,
shows an obvious high distribution, and carries high amounts
of information at high feedback gain and high relaxation time
constant. The total energy consumption in Figure 12(b) also
shows a “step” style change; as we can see, the neuron
consumes relatively low total energy at high feedback gain
and high relaxation time constant. On the contrary, at higher

feedback gain (0.05–0.1) and lower relaxation time constant
(150–240), the neuron consumes relatively high total energy.
In addition, the reciprocal of the 1/η value is calculated in

Figure 12(c); it is observed that there exists a high 1/η value
area of the high feedback gain and high the relaxation time
constant, in which the neuron carried high amounts of in-
formation, but consumes less energy. In addition, the ratio (δ)
is shown in Figure 12(d). The En-Ep ratio shows a “step”
style change, and if it is below 0.6, the neuron consumes
more positive energy than negative energy.
Additionally, under the combined influence of feedback

gain k and maximal conductance gkc in Figure 13. The in-
formation in Figure 13(a) presents the obvious protrusion,
i.e., under the lower feedback gain (0 < k < 0.02) and the
intermediate maximal conductance (12 s−1 < gkc < 20 s

−1), the
information is relatively large, and the neuron carried high
amounts of information. The total energy consumption in
Figure 13(b) shows the smooth change; it is found that under
the lower feedback gain, the neuron consumes relatively low
total energy.
The reciprocal of the 1/η value is shown in Figure 13(c).

There is a high 1/η value area of lower feedback gain (0 < k <
0.02) and an intermediate maximal conductance (12 s−1 < gkc

Figure 11 (Color online) (a) Information (CV); (b) total energy consumption (E, nJ); (c) energy efficiency; (d) ratio (δ) of the negative to positive energy
consumption. The value of the parameter is set to k = 0.001.
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< 20 s−1), in which the neuron carries high amounts of in-
formation but consumes less energy. The ratio (δ) is shown in
Figure 13(d). Under the high maximal conductance and
lower feedback gain, the neuron is in a period-n bursting
pattern, the En-Ep ratio is low, and the neuron consumes more
positive energy. On the contrary, under the lower maximal
conductance and high feedback gain, the neuron is in a
spiking pattern, the En-Ep ratio is high, and the neuron con-
sumes more negative energy.
As a result, the period-n bursting pattern of a neuron

consumes more positive energy than the spiking pattern of a
neuron consumes more negative energy. And there exists the
optimal parameter area of maximal conductance and feed-
back gain, where the energy efficiency of firing modes is
greatest, and the neuron carries high amounts of information
and consumes less energy per unit of information.

4 Conclusions and discussion

Neural information encoding takes place in firing sequences;
neurons carry different amounts of information in different

firing patterns [23,49,57]. The firing patterns will consume a
significant amount of energy during the transition process,
but the firing pattern of the nervous system determines en-
ergy efficiency is unclear. As a result, it is necessary to study
the energy consumption and efficiency of neurons and neuron
systems in different firing patterns and modes of transformation.
The energy-efficiency firing modes of different bursting

kinetics are investigated using the Chay neuron model. First,
we studied the complex firing modes of neurons and found
that as the time constant λn increases, the neuron experiences
the complex bursting kinetics with tuning system parameter
with the time constant λn increasing, the dynamic transition
experiences a succession: spiking state→ period-2 bursting
state→ period-3 bursting state→ period-4 bursting state→
period-n bursting state → spiking state. When the maximal
conductances of gkc are increased, an interesting transfor-
mation occurs in the firing modes: spiking state → closed
period-n bursting state→ period-4 bursting state→ period-3
bursting state → period-2 bursting state → spiking state.
Furthermore, the complex bifurcation process with respect to
feedback gains k is: period-2 bursting state → spiking state
→ period-2 bursting state → spiking state. Compared with

Figure 12 (Color online) (a) Information (CV); (b) total consumption (E, nJ); (c) energy efficiency; (d) ratio (δ) of the negative energy consumption to
positive energy consumption. The parameter is set as gkc = 23.6 s−1.
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the previous work [25], the discharge activity of neurons
induced by electromagnetic induction becomes more com-
plex, with the appearance of a mixed discharge state where
the neuron is simultaneously in several bursting states.
Following that, the relationship between energy con-

sumption and information is discussed. (1) While neurons
with a high-frequency bursting pattern consume more ne-
gative energy, neurons with a low-frequency pattern con-
sume more positive energy. (2) At an intermediate maximal
conductance gkc (10.35–19.55 s

−1), the neuron is in a differ-
ent period-n bursting state, consuming less energy per unit of
information, demonstrating a higher energy efficiency. On
the contrary, when a neuron is in a periodic spiking state, it
consumes more energy per unit of information, which means
lower energy efficiency. Additionally, there are several states
with extremely low energy efficiency, which correspond to a
mixed discharge state, where neurons are in several bursting
states simultaneously. (3) Neural energy efficiency can be
enhanced when a low feedback current is induced by elec-
tromagnetic induction (k = 0.0115–0.0206). The neuron in a
complex period bursting state carries a high amount of in-
formation, total energy consumption is relatively low, and
energy efficiency is high. (4) When the relaxation time

constant is between 240 and 381, the neuron is in a different
period-n bursting state. At this time, the neuron in a complex
period-n bursting state carries a high amount of information,
total energy consumption is relatively low, and it has high
energy efficiency. (5) The period-n bursting state (medium-
frequency patterns) induced by an appropriate control para-
meter demonstrates more efficient use of sodium entry due to
the reduced overlap load between the inward Na+ and out-
ward K+ currents [35,56].
Finally, the effects of control parameters (λn, gkc, and k) on

energy consumption and efficiency are studied. It is found
that there are optimal system parameters where the energy
efficiency of firing modes is greatest, and the neuron may
carry a high amount of information while consuming less
energy per unit of information.
The study contributes to the understanding of the energy

mechanism of neural information propagation and sheds
light on the energy efficiency of neuron systems. It is ne-
cessary to continue studying the relationship between the
complex discharge mode and energy efficiency of the noise
neuron system with time delay, as well as to discuss the
relationship between signal propagation and energy in mul-
tilayer neural systems.

Figure 13 (Color online) (a) Information (CV); (b) total consumption (E, nJ); (c) energy efficiency; (d) ratio (δ) of the negative energy consumption to
positive energy consumption. The parameter is set as λn = 230.
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