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Traveling chimera states in locally coupled memristive Hindmarsh-
Rose neuronal networks and circuit simulation
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Chimera states have been found in many physiology systems as well as nervous systems and may relate to neural information
processing. The present work investigates the traveling chimera states in memristive neuronal networks of locally coupled
Hindmarsh-Rose neurons, with both excitation and inhibition considered. Various traveling chimera patterns and firing modes
are found to exist in the networks. Particularly, for excitatory connection, two kinds of traveling chimera states appear in opposite
directions. Besides, a new type of chimera state composed of traveling chimera state and incoherent state is observed, named the
semi-traveling chimera state. Multi-head traveling chimera states with several incoherent groups are also observed. For ex-
citatory-inhibitory connection, the network is observed to exhibit an imperfect coherent state under the synergistic effect of
strong excitatory and weak inhibitory coupling. Moreover, a firing pattern named mixed-amplitude bursting state is witnessed,
consisting of two bursts of different amplitudes in a time sequence. Furthermore, an electric circuit is designed and built on
Multisim to realize the above phenomena, suggesting that traveling chimera states could be generated in real circuits. Our
findings can deepen the understanding of the electromagnetic induction effect in regulating the dynamics of neuronal networks
and may provide useful clues for constructing artificial neural systems.
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1 Introduction

Chimera states are counter-intuitive and symmetry-broken
spatiotemporal patterns that exist in identical coupled os-
cillators, in which the coherent and incoherent dynamics
coexist. Since this phenomenon was discovered by Kur-
amoto and Battogtokh [1] in nonlocally coupled phase os-
cillators in 2002, it has been studied extensively in physics,
biology, and chemistry. In addition to the earliest findings of
chimera states in nonlocally coupled networks [1–3], recent
studies have also demonstrated the existence of chimera
states in globally [4,5] and locally [6–8] coupled networks.
The different types of chimera states are classified into

several categories according to the spatiotemporal dynamics
of oscillators, including the traveling, multi-head, and im-
perfect chimera states [8–10]. And depending on the sym-
metry breaking situations in networks, chimera states are
also named amplitude chimera state [11] and chimera death
[12]. Recently, chimera states have been observed in many
networks of different structures, and other factors that may
affect the existence of chimera states, such as the coupling
mode, node dynamics, and time delay, were also studied
deeply [13–15].
Chimera state is found in the nervous system and may be

involved in neural information processing. The unihemi-
spheric slow-wave sleep phenomenon discovered in some
birds and mammals indicates that half of the brain is syn-
chronous, and the other half is asynchronous when they fall
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asleep. The existence of chimera state has also been found in
the human cerebral cortex by using magnetic resonance
imaging (MRI) technology to scan the human brain when the
subject is involved in a specific activity [16]. Furthermore,
researchers constructed connection matrices based on the
C. Elegans soil worm connectome [17] and the cerebral
cortex of cats [18] and observed chimera states in networks.
In recent years, reports in various neuronal models, including
Leaky Integrate-and-Fire oscillators [19], Hindmarsh-Rose
oscillators [20–23], FitzHugh-Nagumo oscillators [24,25],
and several other neuron models, have also revealed that
chimera states can appear in neuronal networks. Majhi et al.
[26] studied a locally coupled two-layer network of ex-
citatory Hindmarsh-Rose neurons and demonstrated the
generation of chimera states in the uncoupled layer. Bera et
al. [21] reported chimera states in excitatory synaptic cou-
pled Hindmarsh-Rose neuronal network with local, nonlocal,
and global couplings, thereby proving that nonlocal coupling
is not a necessary condition for the emergence of a chimera
state.
Furthermore, excitation-inhibition balance plays an im-

portant role in information transfer in the brain and may
relate to the cognition of the nervous system [27]. Some
research studies regarding the chimera states in neuronal
networks with both excitatory and inhibitory connections
have emerged. Belykh et al. [28] reported that the synergy of
excitation and inhibition can make the system completely
synchronized. Bera et al. [9] built a neuronal network with
local and gradient coupling and found an imperfect traveling
chimera state in the network of excitatory-inhibitory coupled
Hindmarsh-Rose neurons.
Electromagnetic fields exist in the neural system, and there

is also an energy dissipation in neurons [29]. Thus, Ma and
Tang [30] introduced the memristor model into neurons. In
recent years, the memristor model has attracted much at-
tention and has been widely studied. Some researchers uti-
lized a composite system made of memristors and neurons to
achieve synaptic functions, thus providing a foundation for
further research on the dynamics of memristive synapses
[31,32]. Complex chaotic dynamics can appear in memris-
tive neuronal networks. Korneev et al. [33] constructed a ring
locally coupled memristive neuronal network and explored
the influence of the initial state of the memristors on the
waveform and wave propagation velocity. Chimera states
have also been reported in the memristive neuronal network
of coupled Hindmarsh-Rose neurons [34,35]. Xu et al. [36]
constructed a two-layer neuronal network based on mem-
ristive synapses and studied the influence of electromagnetic
induction on the dynamics of neuronal networks along with
discovering traveling chimera states.
However, almost no work has reported the existence of

chimera states in memristive neuronal networks wherein
excitation and inhibition coexist. Therefore, in this paper, we

construct a ring network composed of identical Hindmarsh-
Rose neurons, where each neuron is connected to its nearest
neighboring nodes through memristive synapses. Ad-
ditionally, the network realizes the existence of excitatory
and inhibitory coupling by changing the values of memris-
tive synaptic coupling strength. Consequently, we witness
several types of traveling chimera states. We find a new
traveling chimera state with the coexistence of traveling
chimera state and incoherence when the parameters are
chosen appropriately. Moreover, we find a new firing pattern
named mixed-amplitude bursting state consisting of two
bursts with different amplitudes in one firing cycle.
The remainder of this paper is organized as follows. The

memristive synaptic Hindmarsh-Rose neuronal network is
described, and a statistical measure is introduced in Section
2. The main results regarding the existence of traveling
chimera states in the memristive neuronal network with one-
way excitatory coupling, bidirectional excitatory coupling,
and excitatory-inhibitory coupling, respectively, are clarified
in Section 3. An electric circuit is built in Section 4 to re-
generate the above results. The conclusions are given in
Section 5.

2 Model and method

In this paper, a ring neuronal network with local coupling is
constructed, as shown in Figure 1. The N identical Hind-
marsh-Rose neurons are selected as the network nodes, and
neighboring nodes are connected by memristive synapses.
The dynamics of the network are described as the following
equations:
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where xi represents the membrane potential of the ith neuron,
yi is the recovery variable, and zi is the slow current asso-
ciated with calcium and potassium ions. The parameters a, b,
c, μ, and α determine the dynamics of an individual oscil-
lator. The variables φi and M(φi) are the magnetic flux and
memductance of the ith memristive synapse, respectively.
The cubic order flux-controlled memristor model is ex-
pressed as

Figure 1 (Color online) Schematic diagram of a memristive neuronal
network. The circles and rectangles represent the neurons and memristive
synapses, respectively.
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where σ and β describe the memductance, and are related to
the environment and their own conditions. The parameter δ
contained in the equation of x x=i i i i+1 represents the
forgetting effect of the memristor; for an ideal memristor, δ =
0. Here, the parameter values σ = 0.12, β = 0.02, δ = 0.5 are
fixed at all times. The ring neuronal network satisfies the
conditions x0=xN and xN+1=x1 at any moment. Throughout the
paper, the parameter values a = 2.8, b = 9, c = 5, μ = 0.001,
α = 1.6 are considered to make an isolated neuron in the
square-wave bursting state.
The parameters ε1 and ε2 are important parts of eq. (1). The

ith neuron is connected to the (i+1)th neuron with a coupling
strength ε2 and to the (i−1)th neuron with a coupling strength
ε1. The excitation or inhibition can be achieved by choosing
the values of ε1 and ε2 [37]. ε1(ε2) > 0 represents an excitatory
coupling, while ε1(ε2) < 0 represents an inhibitory coupling.
If ε1(ε2) = 0, the neighboring neurons are not coupled. Here,
we mainly investigate the existence of chimera states in
memristive neuronal networks with one-way local excitatory
coupling, excitatory coupling, and excitatory-inhibitory
coupling.
The initial conditions for eq. (1) are given as follows:

x N i= 0.05 2i0 , y N i= 0.01 2i0 , z N i= 0.0151 2i0 for

i N= 1, 2, ..., 2 , and x i N= 0.012 2i0 , y i N= 0.02 2i0 ,

z i N= 0.0201 2i0 for the remaining neurons. The initial

magnetic flux φi=0 [36].
Furthermore, the statistical measure of the local order

parameter is used to clearly distinguish the incoherent, chi-
mera, and coherent states. The local order parameter reflects
the local ordering of neurons, indicating the degree of in-
coherence and coherence [9,38]. It is defined as follows:

L p= 1
2 e , (3)i

i k p

j k

where j = 1 , i = 1,2, …, N, and k = 1,2, …, N. The para-
meter p is the number of nearest neighbors on both sides for
the ith node, and Φk=arctan(yk/xk) is the geometric phase of
the kth neuron. If the local order parameter Li ≈ 0, the ith
neuron belongs to the incoherent group. If Li ≈ 1, the ith
neuron belongs to a coherent cluster, and a complete co-
herency is achieved for Li = 1.

3 Results

3.1 One-way local excitatory coupling

We start with the conditions ε1=0 and ε2>0, corresponding to
one-way local excitatory coupling. In this case, the ith neu-

ron is only connected to the (i+1)th neuron with the coupling
strength ε2.
We explore the existence of chimera states in one-way

local excitatory coupled neuronal networks by varying the
memristive coupling strength ε2. Figure 2 shows the spatio-
temporal responses, local order parameters, time series of
variables x, and distribution of membrane potentials for
ε2=0.02. 0.18, 1.7 in the neuronal network, respectively. For
ε2 = 0.02, we plot the distribution of membrane potentials at
time t = 818 ms as shown in Figure 2(c), where the neurons
are divided into two groups with i = 95 as the boundary. The
neurons of part I form several coherent clusters, while the
distribution of membrane potentials of the neurons of part II
is scattered. This indicates that the network is in a chimera
state, where coherence and incoherence coexist at time t =
818 ms. However, with an increase in time, the chimera state
disappears, and the network finally presents an asynchronous
state, as shown in Figure 2(a). This phenomenon is named
transient chimera state [39,40]. In Figure 2(d)–(f), the neu-
rons are in an asynchronous state for ε2 = 0.18. As the
memristive coupling strength increases continually to ε2 =
1.7, the neurons are divided into three coherent and two
incoherent groups, and the synchronous state of neurons will
change over time, implying that the network is in a traveling
chimera state. We also compute the local order parameter Li
of neurons for a long time interval (Figure 2(b), (e) and (h)),
which accords well with the above findings. Moreover,
changing the memristive coupling strength ε2 can change not
only the synchronous state of the network but also the firing
pattern of neurons. As shown in Figure 2(c), (f) and (i),
square wave bursting, plateau bursting, and irregular plateau
bursting states successively appear with the change of sy-
naptic coupling strength.
Then, we convert the memristive synaptic coupling

strengths ε1 and ε2 such that ε2 = 0, and change the value of ε1.
Figure 3 shows the spatiotemporal plots and distribution of
membrane potentials of neurons for ε1=2.15, 2.75. In Figure
3(a), the spatiotemporal plot exhibits two combined states
with i = 100 as the boundary. Neurons with indices from i = 1
to i = 100 are in a traveling chimera state, while the others are
in an incoherent state. We name the special phenomenon
observed in the memristive neuronal network as the semi-
traveling chimera state. On continually increasing the value
of ε1, we observe a global traveling chimera state in the
network (Figure 3(b)). Interestingly, the directions of tra-
veling chimera states are opposite to those in Figure 2. In
Figure 2, ε1 = 0 and ε2 > 0, while in Figure 3, ε1 > 0 and ε2 = 0.
Thus, changes in the traveling direction of the traveling
chimera state may relate to the transmission direction of the
excitatory coupling in the network.

3.2 Excitatory coupling

In this part, we investigate the dynamics of chimera state in
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excitatory coupled neuronal network with ε1 > 0 and ε2 > 0.
The ith neuron is connected to the (i−1)th neuron with a
memristive synaptic coupling strength ε1 and to the (i+1)th
neuron with the coupling strength ε2, so that a bidirectional
excitatory connection can be set up.
On changing the values of ε1 and ε2, we observe several

types of traveling chimera states, and the difference among
them is the number of coherent and incoherent groups con-
tained in traveling chimera states, as shown in Figure 4. The
upper part of each picture shows the spatiotemporal response
of neurons, and the lower part shows the distribution of

membrane potentials at t = 5000 ms. The neurons in the
network are divided into several coherent groups and in-
coherent groups, a phenomenon named multi-head traveling
chimera state [36], with the chimera’s heads referring to the
number of incoherent groups. By fixing ε1 = 0.8 and varying
ε2, it is found that for a small value of ε2 = 3.6, the network is
in a traveling chimera state with two incoherent groups,
which we term as the two-head traveling chimera state
(Figure 4(a)). For a large value of ε2 = 3.9, the three-head
traveling chimera state appears in the neuronal network
(Figure 4(b)). Similarly, Figure 4(c) and (d) show other

Figure 3 Spatiotemporal plots and distribution of membrane potentials of one-way excitatory coupled neurons for ε1> 0 and ε2 = 0. (a) Semi-traveling
chimera state, ε1 = 2.15; (b) traveling chimera state, ε1 = 2.75.

Figure 2 Snapshots of one-way locally excitatory coupled memristive neuronal network with ε1 = 0 and ε2> 0. (a)–(c) Transient chimera state, ε2 = 0.02;
(d)–(f) incoherent state, ε2 = 0.18; (g)–(i) traveling chimera state, ε2 = 1.7. (a), (d), (g) Reflect upon the spatiotemporal plots for neuron indices i = 1, 2, …, N;
(b), (e), (h) the local order parameters; (c), (f), (i) the time series and the distribution of membrane potentials of N = 200 neurons.
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patterns of traveling chimera states with additional in-
coherent clusters. This unique state of the neuronal network
may relate to a special information transfer mechanism.
Multi-head chimera states are composed of several in-

coherent and coherent clusters. To explore the influence and
law of memristive synaptic coupling strengths ε1 and ε2 on
the number of coherent clusters of traveling chimera states,
we plot the graphs of the relationship between ε1, ε2, and the
number of coherent groups, as shown in Figure 5. The
number 0 on the vertical axis indicates that the network is in
an incoherent state. Memristive synaptic coupling strength ε2

is set in the range (2, 10). Figure 5(a)–(d) correspond to
= 0.2,  0.5,  0.81 , and 1.0, respectively. Multi-head chimera

states appear in Figure 5, and the numbers of coherent groups
of traveling chimera states are concentrated to 4, 5, and 6.
However, the difference is that for a larger ε1, a larger ε2 is
also required for the occurrence of multi-head traveling
chimera state, as seen by comparing Figure 5(a) and (d).

3.3 Excitatory-inhibitory coupling

Here, we study the dynamics in the memristive synaptic

Figure 4 Snapshots of spatiotemporal responses and distribution of membrane potentials of neurons for different values of ε1 and ε2 in the excitatory
coupled network. (a) Two-head traveling chimera state, ε2 = 3.6; (b) three-head traveling chimera state, ε2 = 3.9; (c) four-head traveling chimera state, ε2 = 4.0;
(d) six-head traveling chimera state, ε2 = 6.0. (a), (b) ε1 = 0.8; (c), (d) ε1 = 1.0.

Figure 5 The number of coherent groups of the multi-head traveling chimera states for different values of memristive synaptic coupling strengths ε1 and ε2.
(a) ε1 = 0.2; (b) ε1 = 0.5; (c) ε1 = 0.8; (d) ε1 = 1.0. Here N = 200, ε2∈(2, 10).
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coupled neuronal network with excitatory-inhibitory cou-
pling. To connect the ith neuron and the (i−1)th neuron via
inhibitory synapses, and the ith neuron and the (i+1)th neu-
ron via excitatory synapses, we set ε1<0 and ε2>0, respec-
tively.
Several types of firing patterns are discovered when the

network is in incoherent states. Figure 6 shows the snapshots
of the distribution and time series of membrane potentials of
all neurons. First, we fix the value of ε2 and obtain the results.
For a weak inhibitory coupling strength of ε1=−0.01, the
neurons exhibit a square wave bursting state (Figure 6(a)).
For a stronger inhibitory coupling strength of ε1=−0.4, the
time sequences of the spiking state of neurons are shown in
Figure 6(b). In this paper, we set the initial state of the firing
pattern as a bursting state; however, a spiking state appears in
the network in an incoherent state. This is counter-intuitive
and may relate to the properties of memristive synapses.
Then, on continuously changing the synaptic coupling
strengths to ε1=−0.4 and ε2=0.38, we observe an irregular
bursting state (Figure 6(c)). The time sequences of mem-
brane potentials are composed of two types of bursts, one

with a larger amplitude and the other with a smaller ampli-
tude. We name this time series of membrane potentials a
mixed-amplitude bursting state.
Moreover, we discover traveling chimera states in the

memristive neuronal network with excitatory-inhibitory
coupling. The membrane potentials from t = 3500 ms to t =
5000 ms for all Hindmarsh-Rose neurons are recorded and
analyzed. In Figure 7, we fix ε1=−1 and vary the value of ε2.
For ε1=2.8, we observe a four-head traveling chimera state,
and the firing pattern of each neuron is in an irregular plateau
bursting state shown in Figure 7(a). As the value of ε2 in-
creases to 50, the system exhibits strong excitatory coupling
and weak inhibitory coupling. The snapshots of a memristive
neuronal network show spatiotemporal responses of all
neurons with regular edges. In this type of traveling chimera
states, only a few neurons are in the incoherent group, as
shown in Figure 7(b). Moreover, we calculate the local order
parameter Li, and almost the entire plane shows Li = 1; thus,
this state can also be called an imperfect coherent state.
Meanwhile, the time sequences of the membrane potentials
of neurons in the network also change, with the spikes de-

Figure 6 Snapshots of the distribution and time series of membrane potentials in networks with excitatory-inhibitory coupling. (a)–(c) All incoherent states.
(a) Square wave bursting state, ε1 = −0.1, ε2 = 0.1; (b) spiking firing state, ε1 = −0.4, ε2 = 0.1; (c) mixed-amplitude bursting state, ε1 = −0.4, ε2 = 0.38.

Figure 7 Snapshots of two types of traveling chimera states. (a) Traveling chimera state, ε2 = 2.8; (b) imperfect coherent state, ε2 = 50. Here ε1 = −1, N =
200.
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creasing in a burst. The results show that the larger excitatory
coupling strength can promote the synchronization of neu-
rons and the interaction of ε1 and ε2 can induce various firing
patterns.
To clearly show the spatiotemporal dynamics of the

memristive neuronal network with local coupling, we plot
the two-parameter (ε1, ε2) phase diagram, as shown in Figure
8. For the range of ε1∈(−1, 1) and ε2∈(−1, 3), the entire plane
is divided into three regions: incoherent, chimera, and tran-
sient chimera states. In a two-way inhibition (ε1<0 and ε2<0),
there is no stably persistent chimera state. The transient
chimera state appears in the range of ε1≈0 and ε2≈0, in-
dicating that weak interactions between neurons cannot
maintain stable chimera states or make the network with a
large incoherent domain. Eventually, the neurons collapse
into an incoherent state. Moreover, it is obvious that in the
case of excitatory–inhibitory coupling, as the inhibition be-
comes stronger, the system needs a larger excitatory coupling
strength to achieve the chimera state. Thus, it can be con-
cluded that the inhibitory coupling can inhibit the network
switching to a synchronized state.

4 Electric circuit design and simulation

In this section, an analog circuit of a locally coupled mem-
ristive neuronal network composed of 20 Hindmarsh-Rose
neurons is constructed on Multisim.
To facilitate the design and analysis, all variables of eq. (1)

are represented by electric potentials in the circuit. The
memristive synaptic coupling strengths ε1 and ε2 are re-
presented by Vesp1(esp1) and Vesp2(esp2), respectively, as
shown in Figure 9. The structures of a single Hindmarsh-
Rose neuron, a memristive synapse, and the input current of
a neuron are encapsulated as the Neui, SynI, and TotalI
blocks, respectively (Figure 10). The circuit diagram of a
single Hindmarsh-Rose neuron is shown in Figure 10(a),
where the voltages of the capacitors CX, CY, and CZ re-

present the state variables x, y, and z of the Hindmarsh-Rose
neuron model, respectively. The variable i of the block re-
presents the total input current of a neuron, and the output x
represents the membrane potential. From the Hindmarsh-
Rose model and the analog circuit based on the operational
amplifiers, the following equations are obtained:
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All capacitance and resistance values in the integration
circuit of all operational amplifiers are fixed: C = 50nF and R
= 20 kΩ. Then, the relationship between input and output of
the integration circuit is as follows:

u RC u t= 1 d . (5)out in

The structure of the memristive synapse is shown in Figure
10(b). The inputs xi and xi+1 of the block are the membrane
potentials of the ith and (i+1)th neurons, respectively, and the
output ISyn(i)=M(φi)(xi−xi+1). The magnetic flux and the
memductance can be expressed as
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The circuit of a single neuron receiving current is shown in
Figure 10(c). The inputs ISi and ISi–1 represent the current
from the ith synapse and the (i−1)th synapse to the ith neu-
ron. The variables esp1 and esp2 represent the memristive
synaptic coupling strengths ε1 and ε2, respectively.
By changing the values of memristive coupling strengths

Veps1 and Veps2 in Figure 9, the excitatory and inhibitory
connections of the network can be realized. We set the si-
mulation step size as 0.001 s, run the circuit, and monitor the
membrane potentials of neurons for a long time interval; the
data of membrane potentials of all neurons are recorded by
using the function of transient analysis on Multisim. We
import the data from Multisim into MATLAB and plot the
graphs of spatiotemporal responses and the distribution of
membrane potentials of neurons (Figure 11). First, for Veps1
= 0 and Veps2 = 0, each neuron is in an isolated state and
should present a square wave bursting state, and the simu-
lation results are as expected, as shown in Figure 11(a).
Then, for Veps1 = 0 & Veps2 = 0.5 and Veps1 = 0.6 & Veps2 =
0.2, the results (Figure 11(b) and (c)) corresponds well to the
cases of one-way excitatory coupling and bidirectional ex-
citatory coupling in Figures 2 and 4, respectively. The neu-
rons are organized into traveling chimera states and exhibit
plateau bursting states. Finally, for Veps1 = 1.5 and Veps2 =

Figure 8 Two-parameter (ε1, ε2) phase diagram for a locally coupled
memristive network of N = 200 identical Hindmarsh-Rose oscillators. The
yellow, blue, and green regions represent the incoherent, chimera, and
transient chimera states, respectively.
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−0.25, the coupling mode of the memristive network is the
excitatory-inhibitory connection. The network presents a
traveling chimera state, and the time series of the membrane
potential of a single neuron is recorded in Figure 11(d), in
accordance with the snapshots in Figure 7. The results of
circuit simulation further confirm that the magnitude of sy-
naptic coupling strength, inhibition, and excitation can affect
the traveling direction of a traveling chimera state. Our work
also verifies that traveling chimera states can arise in real
circuits and may provide a new idea for further study of
chimera states.

5 Conclusion

In this paper, a model of memristive neuronal network with
locally excitatory and inhibitory coupling is proposed. The
ith neuron connects the (i−1)th and (i+1)th neuron by two

variables of memristive synaptic coupling strengths, and we
investigate the existence of traveling chimera states in the
network. The results show that the interaction of synaptic
coupling strengths ε1 and ε2 can induce not only various
modes of traveling chimera states but also firing patterns of
neurons in the excitatory and inhibitory locally coupled
neuronal networks. For weak interactions among the neu-
rons, the network has a large incoherent domain, while the
strong interactions make the system have a large basin of
attraction for chimera states. Interestingly, in the one-way
locally excitatory coupling, we observe a transient chimera
state, eventually collapsing into an incoherent state. A new
type of chimera pattern consisting of a traveling chimera
state and an incoherent state is defined as the semi-traveling
chimera state. In a network with bidirectional excitatory lo-
cal coupling, the neurons show multi-head traveling chimera
states with different numbers of incoherent groups by sui-
tably changing the memristive coupling strength. Further-

Figure 9 Electric circuit of a memristive neuronal network of 20 coupled Hindmarsh-Rose neurons.
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more, as the memristive synaptic coupling strength varies,
the firing pattern of neurons changes from square-wave
bursting to plateau bursting. In the excitatory-inhibitory
coupling, for strong excitatory connection and weak in-
hibitory connection between the neighboring nodes, we ob-
serve a traveling chimera state with regular edges and the
neurons of the network almost in a coherent state, which is
imperfect. Moreover, we observe a mixed-amplitude burst-
ing pattern whose burst consists of two different amplitudes
when the network is in an incoherent state. Meanwhile, in-

coherent and chimera states are distinguished by using the
statistical measure of the local order parameter. Con-
clusively, our work confirms that in locally coupled mem-
ristive neuronal networks, various dynamical behaviors can
be realized by regulating coupling modes appropriately. We
also confirm the above results for a smaller (N = 100) size of
the Hindmarsh–Rose neuronal network, ensuring that our
results are applicable to other sizes of networks as well.
Finally, we design a neural circuit to regenerate the above
phenomena, and the results accord well with our findings,

Figure 10 (Color online) Three blocks contained in an electric circuit. (a) Neui: structure of a single Hindmarsh-Rose neuron; (b) SynI: structure of a
memristive synapse; (c) TotalI: input current of a neuron.
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indicating that chimera states in memristive neuronal net-
works could be realized by circuits. Our study could be used
to control the dynamical behaviors of memristive neuronal
networks and may provide clues for constructing artificial
neural systems.
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